[1] Chen X Q, Hu B, Yu R.Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biology, 2005, 11(7): 1118-1130. [2] Piao S L, Fang J Y, Zhou L M, et al. Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 2006, 12(4): 672-685. [3] Chen S Y.Dynamics of grassland vegetation and lake, and their relationship on Tibetan Plateau. Lanzhou: Lanzhou University, 2015. 陈思宇. 青藏高原地区草地植被与湖泊变化及其关系研究. 兰州: 兰州大学, 2015. [4] Yu F F, Price K P, Ellis J, et al. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sensing of Environment, 2003, 87(1): 42-54. [5] Pouliot D, Latifovic R, Olthof I.Trends in vegetation NDVI from 1 km AVHRR data over Canada for the period 1985-2006. International Journal of Remote Sensing, 2009, 30(1): 149-168. [6] Richardson A D, Black T A, Ciais P, et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society of London, 2010, 365: 3227-3246. [7] Chen B X, Zhang X Z, Tao J, et al. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural & Forest Meteorology, 2014, 190(3): 11-18. [8] Nash M S, Bradford D F, Wickham J D, et al. Detecting change in landscape greenness over large areas: an example for New Mexico, USA. Remote Sensing of Environment, 2014, 150(7): 152-162. [9] Xu H J, Wang X P, Zhang X X.Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 2016, 92: 251-259. [10] Delbart N, Toan T L, Kergoat L, et al. Remote sensing of spring phenology in boreal regions: a free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982-2004). Remote Sensing of Environment, 2006, 101(1): 52-62. [11] Reed B C, Brown J F, Vanderzee D, et al. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 1994, 5(5): 703-714. [12] Menzel A.Plant phenological anomalies in germany and their relation to air temperature and NAO. Climatic Change, 2003, 57(3): 243-263. [13] Ma X F, Chen S Y, Deng J, et al.Vegetation phenology dynamics and its response to climate change on the Tibetan Plateau. Acta Prataculturae Sinica, 2016, 25(1): 13-21. 马晓芳, 陈思宇, 邓婕, 等. 青藏高原植被物候监测及其对气候变化的响应. 草业学报, 2016, 25(1): 13-21. [14] Li R P, Zhou G S.Responses of woody plants phenology to air temperature in Northeast China in 1980-2005. Chinese Journal of Ecology, 2010, 29(12): 2317-2326. 李荣平, 周广胜. 1980-2005年中国东北木本植物物候特征及其对气温的响应. 生态学杂志, 2010, 29(12): 2317-2326. [15] Piao S L, Cui M D, Chen A P, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural & Forest Meteorology, 2011, 151(12): 1599-1608. [16] Li G Y, Jiang C H, Cheng T, et al. Spatial-temporal variation of vegetation phenology and their relationships with vegetation degradation in a Qinghai Lake watershed. Acta Prataculturae Sinica, 2016, 25(1): 22-32. 李广泳, 姜翠红, 程滔, 等.青海湖流域植被物候格局时空动态变化及其与植被退化的关系. 草业学报, 2016, 25(1): 22-32. [17] Hou X H, Niu Z, Gao S, et al. Monitoring vegetation phenology in farming-pastoral zone using SPOT-VGT NDVI data.Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(1): 142-150. 侯学会, 牛铮, 高帅, 等. 基于SPOT-VGT NDVI时间序列的农牧交错带植被物候监测.农业工程学报, 2013, 29(1): 142-150. [18] Cong N, Wang T, Nan H J, et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biology, 2013, 19(3): 881-891. [19] Shen M G, Zhang G X, Cong N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agricultural & Forest Meteorology, 2014, 189(190): 71-80. [20] Chen J, Jönsson P, Tamura M, et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sensing of Environment, 2004, 91(4): 332-344. [21] Zhang X Y, Friedl M A, Schaaf C B, et al. Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 2003, 84: 471-475. [22] Xiao W W, Sun Z G, Wang Q X, et al. Evaluating MODIS phenology product for rotating croplands through ground observations. Journal of Applied Remote Sensing, 2013, 7(1): 609-618. [23] Begue A, Vintrou E, Saad A, et al. Differences between cropland and rangeland MODIS phenology (start-of-season) in Mali. International Journal of Applied Earth Observation & Geoinformation, 2014, 31(1): 167-170. [24] Liu B, Feng J M, Ma Z G, et al. Characteristics of climate change in Xinjiang from 1960 to 2005.Climatic and Environmental Research, 2009, 14(4): 414-426. 刘波, 冯锦明, 马柱国, 等. 1960-2005年新疆气候变化的基本特征. 气候与环境研究, 2009, 14(4): 414-426. [25] Li L H, Bai L, Yao Y N, et al. Projection of climate change in Xinjiang under IPCC SRES. Resources Science, 2012, 34(4): 602-612. 李兰海, 白磊, 姚亚楠, 等. 基于IPCC情景下新疆地区未来气候变化的预估. 资源科学, 2012, 34(4): 602-612. [26] Ma Y G, Zhang C, Tiyip T.Spatial-temporal change of vegetation phenology in arid zone of Central Asia and Xinjiang, China. Advances in Climate Change Research, 2014, 10(2): 95-102. [27] Burn D H, Elnur M A H. Detection of hydrologic trends and variability. Journal of Hydrology, 2002, 255(1/2/3/4): 107-122. [28] Cai B F, Yu R.Advance and evaluation in the long time series vegetation trends research based on remote sensing. Journal of Remote Sensing, 2009, (6): 1170-1186. 蔡博峰, 于嵘. 2009.基于遥感的植被长时序趋势特征研究进展及评价. 遥感学报, 2009, (6): 1170-1186. [29] Toši ? I.Applied Climatology, 2004, 77(1): 47-56. [30] Theil H.A rank-invariant method of linear and polynomial regression analysis: Springer netherlands. Mathematisch Centrum, Amsterdam, 1950, 53: 386-392. [31] Sen P K.Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 1968, 63: 1379-1389. [32] Zeng H, Jia G, Epstein H.Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environmental Research Letters, 2011, 6(4): 1-11. [33] Kaufmann R K, Zhou L, Tucker C J, et al. Reply to comment on “variations in northern vegetation activity inferred from satellite data of vegetation index during 1981-1999” by J. R. Ahlbeck. Journal of Geophysical Research Atmospheres, 2002, 107(11): 1-3. [34] Delbart N, Toan T L, Kergoat L, et al. Remote sensing of spring phenology in boreal regions: a free of snow-effect method using NOAA-AVHRR and SPOT-VGT data (1982-2004). Remote Sensing of Environment, 2006, 101(1): 52-62. [35] Qin D H, Thomas S.Highlights of the IPCC working group I fifth assessment report. Progressus Inquisitiones de Mutatione Climatis, 2014, 10(1): 1-6. [36] Tedesco M, Pulliainen J, Takala M, et al. Artificial neural network-based techniques for the retrieval of SWE and snow depth from SSM/I data. Remote Sensing of Environment, 2004, 90(1): 76-85. [37] Zhang R P.Analysis of grassland NPP and phenology in response to climate change in Xinjiang. Lanzhou: Lanzhou University, 2017. 张仁平. 新疆地区草地NPP和物候对气候变化的响应研究.兰州: 兰州大学, 2017. [38] Chmielewski F M, Rotzer T.Response of tree phenology to climate change across Europe. Agricultural & Forest Meteorology, 2001, 108(2): 101-112. [39] Yu H Y, Luedeling E, Xu J C.Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(51): 22151-22156. [40] Eike L, Zhang M, Gale M G, et al. Validation of winter chill models using historic records of walnut phenology. Agricultural & Forest Meteorology, 2009, 149: 1854-1864. [41] Fontana F, Rixen C, Jonas T, et al. Alpine grassland phenology as seen in AVHRR, VEGETATION, and MODIS NDVI time series-a comparison with in situ measurements. Sensors, 2008, 8(4): 2833-2853. [42] Fisher J I, Mustard J F, Vadeboncoeur M A.Green leaf phenology at Landsat resolution: scaling from the field to the satellite. Remote Sensing of Environment, 2006, 100(2): 265-279. |