欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2019, Vol. 28 ›› Issue (1): 37-49.DOI: 10.11686/cyxb2018069

• 研究论文 • 上一篇    下一篇

基于响应面设计的饲草型小黑麦新品系C31栽培条件优化筛选

刘晶1,2**, 曲广鹏3**, 田新会1, 杜文华1,*   

  1. 1.甘肃农业大学草业学院,草业生态系统教育部重点实验室,甘肃省草业工程实验室,甘肃 兰州 730070;
    2.青海民族大学生态环境与资源学院,青海 西宁 810000;
    3.西藏自治区农牧科学院草业科学研究所, 西藏 拉萨 850009
  • 收稿日期:2018-01-30 出版日期:2019-01-20 发布日期:2019-01-20
  • 通讯作者: *E-mail: duwh@gsau.edu.cn
  • 作者简介:刘晶(1983-),女,山西平陆人,在读博士。E-mail: 654138133@qq.com;曲广鹏(1981-),男,山东菏泽人,副研究员,硕士。E-mail: qgp0707@163.com。**共同第一作者
  • 基金资助:
    甘肃省草地畜牧业可持续发展创新团队项目(2017C-11),国家自然基金(31760702)和国家重点研发计划(2018YFD0502402-3)资助

Optimal cultivation conditions for forage triticale line C31, based on a response surface experiment

LIU Jing1,2**, QU Guang-peng3**, TIAN Xin-hui1, DU Wen-hua1,*   

  1. 1.College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Lanzhou 730070, China;
    2.College of Ecological Environment and Resource, Qinghai University for Nationalities, Xining 810000, China;
    3.Institute of Pratacultural Tibet Agricultural and Animal Husbandry Sciences, Lhasa 850009, China
  • Received:2018-01-30 Online:2019-01-20 Published:2019-01-20
  • Contact: * E-mail: duwh@gsau.edu.cn
  • About author:These authors contributed equally to this work.

摘要: 为筛选饲草型小黑麦新品系C31最适合的栽培条件,利用三因素(种植密度,氮肥施用量,降水量)五水平的中心复合试验响应面设计法,研究了种植密度、氮肥施用量和降水量对饲草型小黑麦草产量和营养品质的影响,构建饲草型小黑麦新品系C31草产量和营养品质的三元二次回归预测模型。结果表明:1)种植密度、氮肥施用量和降水量对饲草型小黑麦的草产量与营养品质均有显著影响(P<0.05),降水量×氮肥施用量交互作用对小黑麦干草产量有显著影响(P<0.05),降水量×种植密度交互作用对小黑麦干草的营养品质有显著影响(P<0.05)。2)三元二次回归分析结果显示,种植密度、氮肥施用量和降水量与小黑麦草产量和营养品质间的回归模型极显著(P<0.01),表明干草产量和营养品质回归模型能够代表饲草型小黑麦的实际干草产量和营养品质。3)小黑麦新品系C31适合在生长季降水量为318~325 mm的合作地区生长。4)生长季降水量为322.07 mm时,小黑麦新品系C31的干草产量最高,营养品质最佳。在此降水量下,氮肥施用量为289.17 kg N·hm-2,种植密度为579.40 万基本苗·hm-2,模型预测小黑麦干草产量为16732.50 kg·hm-2,干草营养品质的最大值为0.71。本研究将为评价小黑麦种质草产量和营养品质表现及适宜种植区域提供简便有效的分析手段。

关键词: 小黑麦, 降水量, 氮肥施用量, 种植密度, 干草产量, 营养品质

Abstract: In order to identify the optimal cultivation conditions for forage triticale (Triticale wittmack) line C31, the effects of plant density, nitrogen fertilizer rate, and rainfall on hay yield and nutritional quality of triticale line C31 grown for forage, were studied. A regression prediction model for hay yield and nutritional quality of triticale line C31 was established based on the response surface method, which included 3 factors (plant density, nitrogen fertilizer rate, rainfall) and 5 levels. Key results were: 1) The 3 factors (plant density, nitrogen fertilizing rate, rainfall) all significantly affected the hay yield and nutritional quality of forage triticale (P<0.05). The interaction between rainfall and nitrogen fertilizer rate was significant for hay yield (P<0.05), while the interaction between rainfall and triticale plant density was significant for triticale nutritional quality (P<0.05). 2) In the multiple quadratic regression analysis, all 3 factors were shown to have highly significant effects on hay yield and nutritional quality of triticale (P<0.01), the results show that the regression model of hay yield and nutrient quality can represent the actual hay yield and nutrient quality of forage triticale. 3) Forage triticale line C31 was found to be suitable for growing in Hezuo, where the rainfall varied from 318 mm to 325 mm during the growth period of triticale. 4) Triticale line C31 was predicted to have the highest hay yield and nutritional quality when the rainfall was 322.07 mm during the growth period of triticale. At this predicted optimum rainfall, the nitrogen fertilizer rate indicated by the model was 289.17 kg N·ha-1, and modelled optimal plant density of triticale was 5.79 million seedlings·ha-1. Under these conditions the model predicted hay yield and nutritional quality of 16732.50 kg·ha-1 and 0.71, respectively. This study demonstrates a simple and effective method for evaluating the hay yield and nutritional quality of triticale germplasm under different growing conditions and suitable planting locations.

Key words: triticale, rainfall, nitrogen fertilizing rate, plant density, hay yield, nutritional quality