[1] He Y F.The effect of different ratio forages on digestion metabolism and performance of dairy cattle. Harbin: Northeast Agricultural University, 2007. 赫英飞. 不同粗饲料配比对奶牛消化代谢和生产性能的影响. 哈尔滨:东北农业大学, 2007. [2] Ma D M.Effects of NDF and length of Chinese wildrye in TMR on intaking, rumen fermentation and milk production of dairy cows. Daqing: Heilongjiang Bayi Agricultural University, 2009. 马冬梅. TMR中NDF水平及饲草长度对奶牛采食、瘤胃发酵和生产性能的影响. 大庆: 黑龙江八一农垦大学, 2009. [3] Zhang Y, Guo H M, Tang Z H, et al. Effects of pelleted rape straw feed on productive performance, rumen fermentation parameters, and blood biochemical indexes of Hu sheep. Acta Prataculturae Sinica, 2016, 25(10): 171-179. 张勇, 郭海明, 汤志宏, 等. 油菜秆颗粒料对湖羊生产性能、瘤胃发酵参数及血液生化指标的影响. 草业学报, 2016, 25(10): 171-179. [4] Zhang M C, Tian P Y, Wang H L, et al. Effects of different treatments of roughage on growth performance of Fattening Sheep. Feed Review, 2005, (3): 35-37. 张满昌, 田培育, 王洪亮, 等. 不同处理粗饲料对育肥羊生长性能的影响. 饲料博览, 2005, (3): 35-37. [5] Ma Q Q, Li T J, He L Q, et al. Effects of different roughage combinations on the growth performance, slaughter performance and meat quality of Tan sheep in Ningxia. Chinese Journal of Animal Nutrition, 2015, 27(6): 1936-1942. 马琴琴, 李铁军, 何流琴, 等. 不同粗饲料组合对宁夏滩羊生长性能、屠宰性能及肉品质的影响. 动物营养学报, 2015, 27(6): 1936-1942. [6] Turner K E, Wildeus S, Collins J R.Intake, performance, and blood parameters in young goats offered high forage diets of lespedeza or alfalfa hay. Small Ruminant Research, 2005, 59(1): 15-23. [7] Huws S A, Lee M R, Muetzel S M, et al. Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiology Ecology, 2010, 73(2): 396-407. [8] Kong Y, Teather R, Forster R.Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiology Ecology, 2010, 74(3): 612-622. [9] Morales R, Parga J, Subiabre I, et al. Finishing strategies for steers based on pasture or silage plus grain and time on feed and their effects on beef quality. Ciencia E Investigación Agraria, 2015, 42(1): 1-2. [10] Li F, Yang X J, Cao Y C, et al. Effects of dietary effective fiber to rumen degradable starch ratios on the risk of sub-acute ruminal acidosis and rumen content fatty acids composition in dairy goat. Animal Feed Science and Technology, 2014, 189(3): 54-62. [11] Meng J.Comparison of chemical compositions, energetic values, growth performance and carcass quality of some alternative feed sources fed to beef cattle. Beijing: China Agriculture University, 2014. 孟杰. 几种农副产品饲料的化学成分、能量价值和饲喂肉牛的生长性能与肉品质比较. 北京: 中国农业大学, 2014. [12] Fimbres H, Kawas J R, Hernández V G, et al. Nutrient intake, digestibility, mastication and ruminal fermentation of lambs fed finishing ration with various forage levels. Small Ruminant Research, 2002, 43(3): 275-281. [13] Imani M, Mirzaei M, Baghbanzadehnobari B, et al. Effects of forage provision to dairy calves on growth performance and rumen fermentation: A meta-analysis and meta-regression. Journal of Dairy Science, 2017, 100(2): 1136-1150. [14] Tian H Q.Effects of grape pomace extract and linseed oil on growth performance and nutrient digestibility of Hu lambs. Lanzhou: Gansu Agricultural University, 2016. 田华勤. 葡萄渣提取物和亚麻籽油对湖羊羔羊生产性能和养分消化代谢的影响. 兰州: 甘肃农业大学, 2016. [15] Zhang L Y.Feed analysis and feed quality testing (Version 2). Beijing: China Agricultural University Press, 2003. 张丽英. 饲料分析及饲料质量检测技术(第2版). 北京: 中国农业大学出版社, 2003. [16] Jin D.Bacterial community in the rumen of dairy cows fed diets differing in forage and protein sources. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2013. 金迪. 不同粗饲料及蛋白质来源日粮条件下奶牛瘤胃细菌群落多样性变化. 北京: 中国农业科学院, 2013. [17] Koike S, Kobayashi Y.Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus, and Ruminococcus flavefaciens. FEMS Microbiology Letters, 2001, 204(2): 361-366. [18] Denman S E, Mcsweeney C S.Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006, 58(3): 572-582. [19] Li D, Wang J Q, Bu D P, et al. Determination of the effects of soybean oil and linseed oil in diets on the quantities of rumen cellulytic bacteria in beef cattle by real-time PCR. Chinese Journal of Animal Nutrition, 2008, 20(3): 256-260. 李旦, 王加启, 卜登攀, 等. 运用Real-time PCR方法研究日粮添加豆油与胡麻油对肉牛瘤胃纤维分解菌数量的影响. 动物营养学报, 2008, 20(3): 256-260. [20] Liang Y S, Li G Z, Li X Y, et al. Growth performance, rumen fermentation, bacteria composition, and gene expressions involved in intracellular pH regulation of rumen epithelium in finishing Hu lambs differing in residual feed intake phenotype. Journal of Animal Science, 2017, 95(4): 1727-1738. [21] Stevenson D M, Weimer P J.Dominance of prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology, 2007, 75(1): 165-174. [22] Zhang B, Yu C S.Factors affecting dry matter intake of ruminants. Feed Review, 2010, (7): 21-23. 张兵, 俞春山. 影响反刍动物干物质采食量的因素. 饲料博览, 2010, (7): 21-23. [23] Poppi D P.Predictions of food intake in ruminants from analyses of food composition. Australian Journal of Agricultural Research, 1996, 47(4): 489-504. [24] Fan T.Study on intake and milk production of dairy cows fed diets that differed in diet DNF and forage NDF degradation. Taian: Shandong Agricultural University, 2014. 范铤. 日粮中NDF水平及粗饲料NDF降解率对奶牛采食量及生产性能的影响的研究. 泰安: 山东农业大学, 2014. [25] Xie B, Zhang N F, Cui K, et al. Effects of different levels of dietary neutral detergent fiber on growth performance, serum parameters, slaughter performance and tissue and organ development of early-weaned Hu lambs. Chinese Journal of Animal Nutrition, 2018, 30(3): 963-972. 解彪, 张乃峰, 崔凯, 等. 不同中性洗涤纤维水平饲粮对早期断奶羔羊生长性能, 血清指标, 屠宰性能和组织器官发育的影响. 动物营养学报, 2018, 30(3): 963-972. [26] Si B W, Shen Y, Tu Y, et al. Effects of crude protein levels on growth performance, serum biochemical and immune indexes in dorper×thin-tailed han crossbred weaning lambs. China Animal Husbandry and Veterinary Medicine, 2014, 41(12): 131-136. 司丙文, 沈岩, 屠焰, 等. 日粮粗蛋白质水平对杜寒杂交断奶羔羊生长性能、血清生化及免疫指标的影响. 中国畜牧兽医, 2014, 41(12): 131-136. [27] Ma G Z, Luo J, Zhang X Y, et al. Effects of concentrate protein levels on growth and development of xinong Saanen dairy goat lambs. China Animal Husbandry and Veterinary Medicine, 2017, 44(5): 1329-1337. 马功珍, 罗军, 张雪莹, 等. 精料粗蛋白质水平对西农萨能奶山羊羔羊生长发育的影响. 中国畜牧兽医, 2017, 44(5): 1329-1337. [28] Haddad S G, Nasr R E, Muwalla M M.Optimum dietary crude protein level for finishing Awassi lambs. Small Ruminant Research the Journal of the International Goat Association, 2001, 39(1): 41-46. [29] Ge G T.Feeding study on roughage forages of caragana, salsola and poplar leaves. Hohhot: Inner Mongolia Agricultural University, 2005. 格根图. 非常规粗饲料柠条、猪毛菜、杨树叶的饲用研究. 呼和浩特: 内蒙古农业大学, 2005. [30] Wang D D.Diversity of ruminal fiber degrading bacteria and protein-degrading bacteria. Lanzhou: Gansu Agricultural University, 2013. 王丹丹. 奶牛日粮与瘤胃纤维和蛋白降解菌多样性的关系. 兰州: 甘肃农业大学, 2013. [31] Cantalapiedrahijar G, Yáñezruiz D R, Martíngarcí A I, et al. Effects of forage: concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats. Journal of Animal Science, 2009, 87(2): 622-631. [32] Horn H H V, Taylor M J. By-product feeds for lactating dairy cows: Effects of cottonseed hulls, sunflower hulls, corrugated paper, peanut hulls, sugarcane bagasse, and whole cottonseed with additives of fat, sodium bicarbonate, and aspergillus oryzae, product on milk production. Journal of Dairy Science, 1984, 67(12): 2922-2938. [33] Cao Z A.Effects of peNDF levels on chewing, rumen fermentation and milk composition of dairy cows. Yangling: Northwest Agriculture and Forest University, 2015. 曹志昂. 日粮peNDF水平对泌乳牛咀嚼活动、瘤胃发酵及乳成分的影响. 杨凌: 西北农林科技大学, 2015. [34] Zhang L T, Li Y L, Wang J W, et al. Effects of diets with different neutral detergent fiber levels on growth performance and nutrient apparent digestibility of meat sheep. Chinese Journal of Animal Nutrition, 2013, 25(2): 433-440. 张立涛, 李艳玲, 王金文, 等. 不同中性洗涤纤维水平饲粮对肉羊生长性能和营养成分表观消化率的影响. 动物营养学报, 2013, 25(2): 433-440. [35] Yang W Z, Beauchemin K A.Physically effective fiber: Method of determination and effects on chewing, ruminal acidosis, and digestion by dairy cows. Journal of Dairy Science, 2006, 89(7): 2618-2633. [36] Park J H, Kim K H, Park P J, et al. Effects of physically effective neutral detergent fibre content on dry-matter intake, digestibility and chewing activity in beef cattle fed total mixed ration. Animal Production Science, 2014, 55(2): 166-169. [37] Yáñezruiz D R, Abecia L, Newbold C J.Manipulating rumen microbiome and fermentation through interventions during early life: A review. Frontiers in Microbiology, 2015, (6): 1133-1144. [38] Dong R Y.Effect of roughage combinations on methane production, rumen fermentation pattern and microbial population of lactating cows and dry cows. Zhengzhou: Henan Agricultural University, 2014. 董瑞阳. 粗饲料组合对泌乳牛与干奶牛甲烷产量、瘤胃发酵模式及微生物菌群的影响. 郑州: 河南农业大学, 2014. [39] Zhou R.Effects of dried oat hay content in diet on digestion and metabolism of nutrients, and microflora of rumen in sheep. Lanzhou: Gansu Agricultural University, 2016. 周瑞. 饲粮中燕麦干草含量对绵羊营养物质消化代谢及瘤胃微生物区系的影响. 兰州: 甘肃农业大学, 2016. [40] Yang H B, Liu H, Zhan J S, et al. Effects of diet pellets with different concentrate-roughage ratios on rumen fermentation parameters and microorganism abundance in weaned bull calves. Acta Prataculturae Sinica, 2015, 24(12): 131-138. 杨宏波, 刘红, 占今舜, 等. 不同精粗比颗粒饲料对断奶公犊牛瘤胃发酵参数和微生物的影响. 草业学报, 2015, 24(12): 131-138. [41] Alzahal O, Li F, Guan L L, et al. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast. Journal of Dairy Science, 2017, 100(6): 4377-4393. [42] Sun Y Z, Mao S Y, Yao W, et al. DGGE and 16S rDNA analysis reveals a highly diverse and rapidly colonising bacterial community on different substrates in the rumen of goats. Animal an International Journal of Animal Bioscience, 2008, 2(3): 391-398. [43] Mcallister T A, Bae H D, Jones G A, et al. Microbial attachment and feed digestion in the rumen. Journal of Animal Science, 1994, 72(11): 3004-3018. [44] Wang Y Y, Zhao Z Y, Wang X T, et al. Effect of dietary nutrient levels on the number of related microbes, pH and VFA levels in rumen of Tan sheep aged from 150 to 180 days. Acta Veterinaria Et Zootechnica Sinica, 2016, 47(10): 2060-2070. 王尧悦, 赵钊艳, 王兴涛, 等. 日粮营养水平对150~180日龄滩羊瘤胃相关微生物菌群数量、pH和VFA含量的影响. 畜牧兽医学报, 2016, 47(10): 2060-2070. [45] Zhang G H.Effects of isovalerate on rumen development in pre- and post-weaning dairy calves. Taigu: Shanxi Agricultural University, 2015. 张贵花. 异戊酸对断奶前后犊牛瘤胃发育的影响. 太谷: 山西农业大学, 2015. [46] Bentley O G, Johnson R R, Hershberger T V, et al. Cellulolytic-factor activity of certain short-chain fatty acids for rumen microorganisms in vitro. Journal of Nutrition, 1955, 57(3): 389-400. [47] Yang C M.Response of forage fiber degradation by ruminal microorganisms to branched-chain volatile fatty acids, amino acids, and dipeptides. Journal of Dairy Science, 2002, 85(5): 1183-1190. [48] Nasrollahi S M, Zali A, Ghorbani G R, et al. Variability in susceptibility to acidosis among high producing mid-lactation dairy cows is associated with rumen pH, fermentation, feed intake, sorting activity, and milk fat percentage. Animal Feed Science and Technology, 2017, 228: 72-82. [49] Fernando S C, Li H T P, Najar F Z, et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Applied and Environmental Microbiology, 2010, 76(22): 7482-7490. [50] Mosoni P, Fonty G, Gouet P.Competition between ruminal cellulolytic bacteria for adhesion to cellulose. Current Microbiology, 1997, 35(1): 44-47. |