[1] Feng Y, Wang Y R, Hu X.Effects of soil water stress on seedling growth and water use efficiency of two desert shrubs. Acta Prataculturae Sinica, 2011, 20(4): 293-298. 冯燕, 王彦荣, 胡小文. 水分胁迫对两种荒漠灌木幼苗生长与水分利用效率的影响. 草业学报, 2011, 20(4): 293-298. [2] Biehler K, Fock H.Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiology, 1996, 112(1): 265-272. [3] Yao Q Q, Xie G S.The photosynthetic stomatal and nonstomatal limitation under drought stress. Chinese Journal of Tropical Agriculture, 2005, 25(4): 84-89. 姚庆群, 谢贵水. 干旱胁迫下光合作用的气孔与非气孔限制. 热带农业科学, 2005, 25(4): 84-89. [4] Pei B, Zhang G C, Zhang S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedings. Acta Ecologica Sinica, 2013, 33(5): 1386-1396. 裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响. 生态学报, 2013, 33(5): 1386-1396. [5] Sage R F.The evolution of C4 photosynthesis. New phytologist, 2004, 161(2): 341-370. [6] Yun J Y, Yang J D, Zhao H L.Research progress in the mechanism for drought and high temperature to affect plant photosynthesis. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(3): 641-648. 云建英, 杨甲定, 赵哈林. 干旱和高温对植物光合作用的影响机制研究进展. 西北植物学报, 2006, 26(3): 641-648. [7] Sage T L, Sage R F, Vogan P J, et al. The occurrence of C2 photosynthesis in Euphorbia subgenus Chamaesyce (Euphorbiaceae). Journal of Experimental Botany, 2011, 62(9): 3183-3195. [8] Gao S, Su P X, Yan Q D, et al. Leaf anatomical structure and photosynthetic physiological characteristics of C4 desert species Salsola collina and S. arbuscula. Chinese Journal of Plant Ecology, 2009, 33(2): 347-354. 高松, 苏培玺, 严巧娣, 等. C4荒漠植物猪毛菜与木本猪毛菜的叶片解剖结构及光合生理特征. 植物生态学报, 2009, 33(2): 347-354. [9] Voznesenskaya E V, Koteyeva N K, Akhani H, et al. Structural and physiological analyses in Salsoleae (Chenopodiaceae) indicate multiple transitions among C3, intermediate, and C4 photosynthesis. Journal of Experimental Botany, 2013, 64(12): 3583-3604. [10] Freitag H, Kadereit G.C3 and C4 leaf anatomy types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). Plant Systematics and Evolution, 2014, 300(4): 665-687. [11] Sage R F, Khoshravesh R, Sage T L.From proto-Kranz to C4 Kranz: Building the bridge to C4 photosynthesis. Journal of Experimental Botany, 2014, 65(13): 3341-3356. [12] Gong C M, Ning P B, Wang G X, et al. A review of adaptable variations and evolution of photosynthetic carbon assimilating pathway in C3 and C4 palnts. Chinese Journal of Plant Ecology, 2009, 33(1): 206-221. 龚春梅, 宁蓬勃, 王根轩, 等. C3和C4植物光合途径的适应性变化和进化. 植物生态学报, 2009, 33(1): 206-221. [13] Piao H C, Zhu J M, Yu D L, et al. The controlling factors of C4-grass C/N ratios and their relationships with soil organic carbon accumulation. Quatemary Sciences, 2004, 24(6): 621-629. 朴河春, 朱建明, 余登利, 等. 影响C4草本植物C/N比值变化的因素与土壤有机C积累的关系. 第四纪研究, 2004, 24(6): 621-629. [14] Piao H C, Liu C Q, Zhu S F, et al. Variations of C4 and C3 plant N:P ratios influenced by nutrient stoichiometry in limestone and sandstone areas of Guizhou. Quatemary Sciences, 2005, 25(5): 52-60. 朴河春, 刘丛强, 朱书法, 等. 贵州石灰岩和砂岩地区C4和C3植物营养元素的化学计量对N/P比值波动的影响. 第四纪研究, 2005, 25(5): 52-60. [15] Chen Y Q, Yang J, Wang P P, et al. Effects of simulated warming on seed emergence and seedling growth of C3/C4 plants. Chinese Journal of Agrometeorology, 2014, 35(4): 395-402. 陈宇琪, 杨劼, 王平平, 等. 模拟增温对C3/C4植物种子出苗和幼苗生长的影响. 中国农业气象, 2014, 35(4): 395-402. [16] Wang Y K.Study on photosynthetic pathway and drought resistance ecophysiological characteristics of seven introduced Atriplex species. Beijing: Chinese Academy of Forestry, 2007. 王玉魁. 引进滨藜属植物的光合途径及抗旱生理生态特性研究. 北京: 中国林业科学研究院, 2007. [17] Huang J H.Geographical distribution of Salsola L. in China. Arid Land Geography, 2005, 28(3): 325-329. 黄俊华. 中国猪毛菜属(Salsola L.)植物的地理分布特点. 干旱区地理, 2005, 28(3): 325-329. [18] Wen Z B, Zhang M L.C4 photosynthetic enzymes and antioxidant enzymes activities in two photosynthetic subtypes of C4 desert plants under soil drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(9): 1815-1822. 闻志彬, 张明理. 干旱胁迫对2种光合类型C4荒漠植物叶片光合特征酶和抗氧化酶活性的影响, 西北植物学报, 2015, 35(9): 1815-1822. [19] Wang Y, Li L, Qian Y, et al. Influences of salinity and water stress on the seed germination of two species of Salsola L. Arid Land Geography, 2007, 30(2): 217-222. 王娅, 李利, 钱翌, 等. 盐分与水分胁迫对两种猪毛菜种子萌发的影响. 干旱区地理, 2007, 30(2):217-222. [20] Zhao X F, Xu H L, Zhang P, et al. Influence of nutrient and water additions on functional traits of salsola nitraria in desert grassland. Chinese Journal of Plant Ecology, 2014, 38(2): 134-146. 赵新风, 徐海量, 张鹏, 等. 养分与水分添加对荒漠草地植物钠猪毛菜功能性状的影响. 植物生态学报, 2014, 38(2): 134-146. [21] Liu Z C, Liu H F, Zhao D, et al. Influence of altitude and difference of different-sized individuals on reproductive allocation in Salsola affinis C. A. Mey. and Salsola nitraria Pall. Acta Ecologica Sinica, 2015, 35(18): 5957-5965. 刘尊驰, 刘华峰, 赵丹, 等. 紫翅猪毛菜、钠猪毛菜不同个体大小繁殖分配差异及随海拔的变化. 生态学报, 2015, 35(18): 5957-5965. [22] Wang Y, Chen X, Zhou L J, et al. Expression profiles of pathogen-related protein gene (SfPR-1) from Salsola ferganica and construction of plant expression vectors. Biotechnology Bulletin, 2014, (1): 116-124. 王艳, 陈西, 周莲洁, 等. 费尔干猪毛菜病程相关蛋白基因SfPR-1的表达规律和植物表达载体构建. 生物技术通报, 2014, (1): 116-124. [23] Pyankov V, Ziegler H, Kuz’min A, et al. Origin and evolution of C4 photosynthesis in the tribe Salsoleae (Chenopodiaceae) based on anatomical and biochemical types in leaves and cotyledons. Plant Systematics and Evolution, 2001, 230(1/2): 43-74. [24] Voznesenskaya E V, Artyusheva E G, Franceschi V R, et al. Salsola arbusculiformis, a c-cintermediate in salsoleae (chenopodiaceae). Annals of Botany, 2001, 88(3): 337-348. [25] Wen Z, Zhang M.Salsola laricifolia, another C3-C4 intermediate species in tribe Salsoleae s.l. (Chenopodiaceae). Photosynthesis Research, 2015, 123(1): 33-43. [26] Schussler C, Freitag H, Koteyeva N, et al. Molecular phylogeny and forms of photosynthesis in tribe Salsoleae (Chenopodiaceae). Journal of Experimental Botany, 2017, 68(2): 207-223. [27] Gao M, Li Y, Chong P F, et al. Physiological responses of Nitraria tangutorum from different geographic provenances under osmotic stress. Acta Prataculturae Sinica, 2011, 20(3): 99-107. 高暝, 李毅, 种培芳, 等. 渗透胁迫下不同地理种源白刺的生理响应. 草业学报, 2011, 20(3): 99-107. [28] Su L W, Li S, Ma S Y, et al. A comprehensive assessment method for cold resistance of grape vines. Acta Prataculturae Sinica, 2015, 24(3): 70-79. 苏李维, 李胜, 马绍英, 等. 葡萄抗寒性综合评价方法的建立. 草业学报, 2015, 24(3): 70-79. [29] Nelson D W, Sommers L E, Sparks D L, et al. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, 1996, 9: 961-1010. [30] Jackson M L.Soil chemical analysis-an advanced cavrse. Madison: University Wisconsin. India, 1973. [31] Sommers L E, Nelson D W.Determination of total phosphorus in soils: A rapid perchloric acid digestion procedure. Soil Science Society of America Journal, 1972, 36(6): 902-904. [32] Ren B Q, Chen Z D.DNA barcoding plant life. Chinese Bulletin of Botany, 2010, 45(1): 1-12. 任保青, 陈之端. 植物DNA条形码技术. 植物学报, 2010, 45(1): 1-12. [33] McKown A D, Moncalvo J M, Dengler N G. Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. American Journal of Botany, 2005, 92(11): 1911-1928. [34] Li H Y, Ma S M.The evolution of C3, C4 and C3-C4 intermediate plants. Plant Physiology Communications, 2008, 44(5): 1004-1006. 李辉严, 马三梅. C3、C4和C3-C4中间型植物的进化. 植物生理学通讯, 2008, 44(5): 1004-1006. [35] Wu L, Huo Y, Nie X L, et al. Studies on leaf tissue parameters and their relations to drought resistance of sea buckthorn. Journal of Jilin Agricultural University, 2003, 25(4): 390-393. 吴林, 霍焰, 聂小兰, 等. 沙棘叶片组织结构观察及其与抗旱性关系的研究. 吉林农业大学学报, 2003, 25(4): 390-393. [36] Deng Y B, Jiang Y C, Liu J.The xeromorphic and saline morphic structure of leaves and assimilating branches in ten chenopodiacea species in Xinjiang. Acta Phytoecologica Sinica, 1998, 22(2): 164-170. 邓彦斌, 姜彦成, 刘健. 新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究. 植物生态学报, 1998, 22(2): 164-170. [37] Yan Q D, Su P X, Chen H B, et al. Comparative studies on crystal idioblasts of five desert C4 plants. Journal of Plant Ecology, 2008, 32(4): 873-882. 严巧娣, 苏培玺, 陈宏彬, 等. 五种C4荒漠植物光合器官中含晶细胞的比较分析. 植物生态学报, 2008, 32(4): 873-882. [38] Zhang Y, Xue L G, Gao T P, et al. Research advance on seed germination of desert plants. Journal of Desert Research, 2005, 25(1): 106-112. 张勇, 薛林贵, 高天鹏, 等. 荒漠植物种子萌发研究进展. 中国沙漠, 2005, 25(1): 106-112. [39] Wu G L, Du G Z.Relationships between seed size and seedling growth strategy of herbaceous plant: A review. Chinese Journal of Applied Ecology, 2008, 19(1): 191-197. 武高林, 杜国祯. 植物种子大小与幼苗生长策略研究进展. 应用生态学报, 2008, 19(1): 191-197. [40] Lü E E, Zhou X R, Zhou Z Y, et al. Physiological responses of the desert shrub Hedysarum mongolicum to drought stress. Acta Prataculturae Sinica, 2016, 25(6): 42-50. 吕娥娥, 周向睿, 周志宇, 等. 荒漠灌木蒙古岩黄芪对干旱胁迫的生理响应. 草业学报, 2016, 25(6): 42-50. [41] Flowers T, Yeo A.Ion relations of plants under drought and salinity. Functional Plant Biology, 1986, 13(1): 75-91. [42] Patakas A, Nikolaou N, Zioziou E, et al. The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 2002, 163(2): 361-367. [43] Choɨuj D, Karwowska R, Ciszewska A, et al. Influence of long-term drought stress on osmolyte accumulation in sugar beet (Beta vulgaris L.) plants. Acta Physiologiae Plantarum, 2008, 30(5): 679. [44] Sánchez F J, Manzanares M, Andres E F D, et al. Turgor maintenance, osmotic adjustment and soluble sugar and proline accumulation in 49 pea cultivars in response to water stress. Field Crops Research, 1998, 59(3): 225-235. [45] Jdey A, Slama I, Rouached A, et al. Growth, Na+, K+, osmolyte accumulation and lipid membrane peroxidation of two provenances of Cakile maritima during water deficit stress and subsequent recovery. Flora-Morphology, Distribution,Functional Ecology of Plants, 2014, 209(1): 54-62. [46] Liu J, Xu X Y, Zhang R J, et al. Physicochemical and biological properties of soil in Haloxylon ammodendron plantations with different states of degradation. Acta Prataculturae Sinica, 2017, 26(12): 1-12. 刘江, 徐先英, 张荣娟, 等. 不同退化程度人工梭梭林对土壤理化性质与生物学特性的影响. 草业学报, 2017, 26(12): 1-12. [47] Wang D M, Yang H M.Carbon and nitrogen stoichiometry at different growth stages in legumes and grasses. Pratacultural Science, 2011, 28(6): 921-925. 王冬梅, 杨惠敏. 4种牧草不同生长期C、N生态化学计量特征. 草业科学, 2011, 28(6): 921-925. [48] Guo Z W, Chen S L, Yang Q P, et al. Effects of stand density on Oligostachyum lubricum leaf carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption. Chinese Journal of Applied Ecology, 2013, 24(4): 893-899. 郭子武, 陈双林, 杨清平, 等. 密度对四季竹叶片C、N、P化学计量和养分重吸收特征的影响. 应用生态学报, 2013, 24(4): 893-899. [49] Liu H L, Song M F, Duan S M, et al. Seed germination strategies of 32 chenopodiaceae species on the southern Gurbantunggut Desert. Journal of Desert Research, 2012, 32(2): 413-420. 刘会良, 宋明方, 段士民, 等. 古尔班通古特沙漠南缘32种藜科植物种子萌发策略初探. 中国沙漠, 2012, 32(2): 413-420. [50] Zhang Z M, Huang D F, Zhang J C, et al. The distribution characteristic of soil carbon, nitrogen and phosphorus for Abies fanjingshanensis and Davidia involucrate. Northern Horticulture, 2016, (6): 163-168. 张珍明, 黄冬福, 张家春, 等. 梵净山冷杉与珙桐产地土壤碳、氮、磷分布特征. 北方园艺, 2016, (6): 163-168. [51] Cleveland C C, Liptzin D.C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85: 235-252. [52] Wu W, He X D, Zhou Q X.Review on N:P stoichiometry in eco-system. Journal of Desert Research, 2010, 30(2): 296-302. 邬畏, 何兴东, 周启星. 生态系统氮磷比化学计量特征研究进展. 中国沙漠, 2010, 30(2): 296-302. [53] Guo D Y.Research on ecological stoichiometry of degraded grassland-a case study of meadow in western Jilin Province. Changchun: Jilin University, 2013. 郭冬艳. 退化草地的生态化学计量学研究. 长春: 吉林大学, 2013. |