[1] Foster A, Vera C L, Malhi S S, et al. Forage yield of simple and complex grass-legume mixtures under two management strategies. Canadian Journal of Plant Science, 2014, 94(1): 41-50. [2] Ergon A, Kirwan L, Bleken M A, et al. Species interactions in a grassland mixture under low nitrogen fertilization and two cutting frequencies: 1. dry-matter yield and dynamics of species composition. Grass and Forage Science, 2016, 71(4): 667-682. [3] Nyfeler D, Huguenin E O, Suter M, et al. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 155-163. [4] Sanderson M A, Brink G, Ruth L, et al. Grass-legume mixtures suppress weeds during establishment better than monocultures. Agronomy Journal, 2012, 104(1): 36-42. [5] Aponte A, Samarappuli D, Berti M T. Alfalfa-grass mixtures in comparison to grass and alfalfa monocultures. Agronomy Journal, 2019, 111(2): 628-638. [6] Cox S, Peel M D, Creech J E, et al. Forage production of grass-legume binary mixtures on intermountain western USA irrigated pastures. Crop Science, 2017, 57(3): 1742-1753. [7] Tracy B F, Albrecht K, Flores J, et al. Evaluation of alfalfa-tall fescue mixtures across multiple environments. Crop Science, 2016, 56(4): 2026-2034. [8] Albayrak S, Mevlüt T, Osman Y, et al. Forage yield and the quality of perennial legume-grass mixtures under rainfed conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2011, 39(1): 114-118. [9] Bell L W, Sparling B, Tenuta M, et al. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland. Agriculture, Ecosystems & Environment, 2012, 158: 156-163. [10] Li Q, Song Y, Li G, et al. Grass-legume mixtures impact soil N, species recruitment, and productivity in temperate steppe grassland. Plant and Soil, 2015, 394(1/2): 271-285. [11] Zhang Q Q, Jin G L, Zhu J Z, et al. Analyzing spatial patterns of prime plant population in mix-sowed artificial grassland with different established years. Acta Agrestia Sinica, 2011, 19(5): 735-739. 张强强, 靳瑰丽, 朱进忠, 等. 不同建植年限混播人工草地主要植物种群空间分布格局分析. 草地学报, 2011, 19(5): 735-739. [12] Wang P, Zhou D W, Zhang B T. Coexistence and inter-specific competition in grass-legume mixture. Acta Ecologica Sinica, 2009, 29(5): 2560-2567. 王平, 周道玮, 张宝田. 禾-豆混播草地种间竞争与共存. 生态学报, 2009, 29(5): 2560-2567. [13] Zheng W, Jianaerguli , Tang G R, et al. Determination and comparison of community stability in different legume-grass mixes. Acta Prataculturae Sinica, 2015, 24(3): 155-167. 郑伟, 加娜尔古丽, 唐高溶, 等. 不同混播方式下豆禾混播草地群落稳定性的测度与比较. 草业学报, 2015, 24(3): 155-167. [14] Albayrak S, Ekiz H. An investigation on the establishment of artificial pasture under Ankara’s ecological conditions. Turkish Journal of Agriculture and Forestry, 2005, 29(1): 69-74. [15] Xie K Y, Zhang Y J, Li X L, et al. Competition and coexistence of alfalfa (Medicago sativa L.) and smooth brome (Bromus inermis Layss.) in mixture. Scientia Agricultura Sinica, 2015, 48(18): 3767-3778. 谢开云, 张英俊, 李向林, 等. 无芒雀麦和紫花苜蓿在(1: 1)混播中的竞争与共存. 中国农业科学, 2015, 48(18): 3767-3778. [16] Sierra J, Nygren P. Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biology and Biochemistry, 2006, 38(7): 1893-1903. [17] Carlsson G, Huss D K. Does nitrogen transfer between plants confound 15 N-based quantifications of N2 fixation? Plant and Soil, 2014, 374(1/2): 345-358. [18] Dong S K. The stability of mixture grassland of cultivated perennial grass and its regulation in alpine region of Qinghai Tibetan Plateau of China. Lanzhou: Gansu Agriculture University, 2001. 董世魁. 高寒地区多年生禾草混播草地群落稳定性及其调控机制研究. 兰州: 甘肃农业大学, 2001. [19] Shen H H, Zhu Y K, Zhao X, et al. Analysis of current grassland resources in China. Chinese Science Bulletin, 2016, 61(2): 139-154. 沈海花, 朱言坤, 赵霞, 等. 中国草地资源的现状分析. 科学通报, 2016, 61(2): 139-154. [20] Pan Q M, Xue J G, Tao J, et al. Current status of grassland degradation and measures for grassland restoration in northern China. Chinese Science Bulletin, 2018, 63(17): 1642-1650. 潘庆民, 薛建国, 陶金, 等. 中国北方草原退化现状与恢复技术. 科学通报, 2018, 63(17): 1642-1650. [21] Qi X L. Thinking of accelerate the development of modern animal husbandry in Xinjiang. Xinjiang Animal Husbandry, 2015, (1): 13-15. 齐新林. 关于加快推进新疆现代畜牧业发展问题的思考. 新疆畜牧业, 2015, (1): 13-15. [22] Gao J Q, Yang X G, Dong C Y, et al. Precipitation resource changed characteristics in arid and humid regions in Northern China with climate changes. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 99-110. 高继卿, 杨晓光, 董朝阳, 等. 气候变化背景下中国北方干湿区降水资源变化特征分析. 农业工程学报, 2015, 31(12): 99-110. [23] Da Silveira Pontes L, Maire V, Louault F, et al. Impacts of species interactions on grass community productivity under contrasting management regimes. Oecologia, 2012, 168(3): 761-771. [24] Bao S D.Soil and agricultural chemistry analysis (3rd edition). Bejing: China Agricultural Press, 2018. 鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2018. [25] Bai Y, Wu J, Pan Q, et al. Positive linear relationship between productivity and diversity: Evidence from the Eurasian Steppe. Journal of Applied Ecology, 2007, 44(5): 1023-1034. [26] Bai Y, Wu J, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 2008, 89(8): 2140-2153. [27] Tilman D, Haddi A. Drought and biodiversity in grasslands. Oecologia, 1992, 89(2): 257-264. [28] Xie K Y, Zhao Y, Li X L, et al. Relationship between grasses and legumes in mixed grassland: A review. Acta Prataculturae Sinica, 2013, 22(3): 284-296. 谢开云, 赵云, 李向林, 等. 豆-禾混播草地种间关系研究进展. 草业学报, 2013, 22(3): 284-296. [29] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 1991, 13(2): 87-115. [30] Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20(1): 5-15. [31] Bai Y, Wu J, Clark C M, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372. [32] Robertson G. Effect of rainfall on biomass, growth and dieback of pastures in an arid grazing system. Australian Journal of Ecology, 1988, 13(4): 519-528. [33] Osipova V V, Pavlov N E, Petrova M I, et al. Cultivation technology and its effect on productivity, botanical composition and nutritive value of herbage mixtures intended for grazing. EurAsian Journal of BioSciences, 2018, 12(1): 121-128. [34] Herridge D F, Peoples M B, Boddey R M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 2008, 311(1/2): 1-18. [35] Malézieux E, Crozat Y, Dupraz C, et al. Mixing plant species in cropping systems: concepts, tools and models: A review. Agronomy for Sustainable Development, 2009, 29(1): 43-62. [36] Chen J S, Zhu R F, Gao C, et al. Interspecific competition of mixed grassland of bromegrass (Bromus inermis L.) and alfalfa (Medicago sativa L.). Acta Agrestia Sinica, 2013, 21(6): 1157-1161. 陈积山, 朱瑞芬, 高超, 等. 苜蓿和无芒雀麦混播草地种间竞争研究. 草地学报, 2013, 21(6): 1157-1161. [37] Xie K Y, Li X L, He F, et al. Response of alfalfa and smooth brome to nitrogen fertilizer in monoculture and mixed grasslands. Acta Prataculturae Sinica, 2014, 23(6): 148-156. 谢开云, 李向林, 何峰, 等. 单播与混播下紫花苜蓿与无芒雀麦生物量对氮肥的响应. 草业学报, 2014, 23(6): 148-156. [38] Wang B J, Tang H P, He L, et al. Stability of alfalfa and wheatgrass pasture under dry farming in a pastoral agronomy area. Acta Prataculturae Sinica, 2016, 25(4): 222-229. 王博杰, 唐海萍, 何丽, 等. 农牧交错区旱作条件下苜蓿和冰草人工草地稳定性研究. 草业学报, 2016, 25(4): 222-229. [39] Staniak M. Changes in yield and nutritive value of red clover (Trifolium pratense L.) and festulolium [Festulolium braunii (K. Richt) A. Camus] under drought stress. Agricultural and Food Science, 2019, 28(1): 27-34. [40] Malisch C S, Suter D, Studer B, et al. Multifunctional benefits of sainfoin mixtures: Effects of partner species, sowing density and cutting regime. Grass and Forage Science, 2017, 72(4): 794-805. [41] Rumbaugh M D. Effects of population density on some components of yield of alfalfa. Crop Science, 1963, 3(5): 423-424. [42] Lamba P S, Ahlgren H L, Muckenhirn R J. Root growth of alfalfa, medium red clover, bromegrass, and timothy under various soil conditions. Agronomy Journal, 1949, 41(10): 451-458. [43] Otfinowski R, Kenkel N C. Clonal integration facilitates the proliferation of smooth brome clones invading northern fescue prairies. Plant Ecology, 2008, 199(2): 235-242. [44] Karnezos T P, Matches A G, Brown C P. Spring lamb production on alfalfa, sainfoin, and wheatgrass pastures. Agronomy Journal, 1994, 86(3): 497-502. [45] Sheppard S C, Cattani D J, Ominski K H, et al. Sainfoin production in western Canada: A review of agronomic potential and environmental benefits. Grass and Forage Science, 2019, 74(1): 6-18. [46] Sanderson M A, Corson M S, Rotz C A, et al. Economic analysis of forage mixture productivity in pastures grazed by dairy cattle. Forage and Grazinglands, 2006, DOI: 10.1094/FG-2006-0929-01-RS. [47] Li G D, Lodge G M, Moore G A, et al. Evaluation of perennial pasture legumes and herbs to identify species with high herbage production and persistence in mixed farming zones in southern Australia. Australian Journal of Experimental Agriculture, 2008, 48(4): 449-466. |