草业学报 ›› 2021, Vol. 30 ›› Issue (2): 82-92.DOI: 10.11686/cyxb2020099
罗文蓉1(), 胡国铮1(), 干珠扎布1, 高清竹1, 李岩1, 葛怡情2, 李钰3, 何世丞4, 旦久罗布4
收稿日期:
2020-03-07
修回日期:
2020-04-27
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
胡国铮
作者简介:
E-mail: huguozheng@caas.cn基金资助:
Wen-rong LUO1(), Guo-zheng HU1(), Ganjurjav H1, Qing-zhu GAO1, Yan LI1, Yi-qing Ge2, Yu LI3, Shi-cheng HE4, Luo-bu DANJIU4
Received:
2020-03-07
Revised:
2020-04-27
Online:
2021-02-20
Published:
2021-01-19
Contact:
Guo-zheng HU
摘要:
为探究生长季不同时期干旱事件对高寒草甸植物物候期和生产力的影响,采用截雨棚于藏北高寒草甸生长季前期和后期进行为期2年(2016-2017年)的截雨试验。结果表明:1)植物物候期对不同时期干旱处理响应不同,高寒草甸关键物种植物物候期对生长季前期干旱(SE)响应较为敏感,SE会导致植物返青期大幅推迟,生长季长度和繁殖期明显缩短(P<0.05),而生长季后期干旱(SL)对植物物候期无显著影响;2)群落和各功能类群的生物量在不同时期干旱处理下均显著降低,总生物量较对照样地下降幅度最大,达62.9%(P<0.05),群落高度和盖度受到干旱不同程度的抑制,而不同功能类群的响应存在差异;3)群落高度、生物量与生长季长度和繁殖期均呈显著正相关(P<0.05)。表明高寒草甸植被生产力对干旱的响应受物候期的调控,物候期主要通过影响植株高度调控群落生产力,而不同功能类群植物对干旱事件的差异化响应,指示着干旱事件增多和加剧将导致高寒草甸植被群落结构的改变。
罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布. 模拟干旱对藏北高寒草甸植物物候期和生产力的影响[J]. 草业学报, 2021, 30(2): 82-92.
Wen-rong LUO, Guo-zheng HU, Ganjurjav H, Qing-zhu GAO, Yan LI, Yi-qing Ge, Yu LI, Shi-cheng HE, Luo-bu DANJIU. Effects of simulated drought on plant phenology and productivity in an alpine meadow in Northern Tibet[J]. Acta Prataculturae Sinica, 2021, 30(2): 82-92.
处理 Treatments | 2016年 Year | 2017年 Year | ||
---|---|---|---|---|
截雨量 Intercepted rainfall (mm) | 全年占比 Percentage of annual rainfall (%) | 截雨量 Intercepted rainfall (mm) | 全年占比 Percentage of annual rainfall (%) | |
5-6月截雨棚Shelter on early growing season (SE) | 174.2 | 31.6 | 228.1 | 40.0 |
7-8月截雨棚Shelter on late growing season (SL) | 224.5 | 40.7 | 183.8 | 32.3 |
表1 2016和2017年各处理的截雨量
Table 1 Intercepted rainfall on each treatment in 2016 and 2017
处理 Treatments | 2016年 Year | 2017年 Year | ||
---|---|---|---|---|
截雨量 Intercepted rainfall (mm) | 全年占比 Percentage of annual rainfall (%) | 截雨量 Intercepted rainfall (mm) | 全年占比 Percentage of annual rainfall (%) | |
5-6月截雨棚Shelter on early growing season (SE) | 174.2 | 31.6 | 228.1 | 40.0 |
7-8月截雨棚Shelter on late growing season (SL) | 224.5 | 40.7 | 183.8 | 32.3 |
物候 Phenology | 处理 Treatments | 高山嵩草K. pygmaea | 早熟禾P. pratensis | 钉柱委陵菜P. saundersiana | 菊叶委陵菜P. tanacetifolia | ||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | ||
返青期 Green-up date | CK | 153.0±0.0b | 128.3±1.7a | 156.3±1.7b | 123.3±3.3a | 148.3±4.7b | 115.0±0.0a | 146.3±1.7b | 115.0±0.0a |
SE | 179.0±0.0a | 123.3±1.7b | 183.7±2.9a | 121.7±1.7a | 174.0±3.2a | 115.0±0.0a | 173.7±10.7a | 115.0±0.0a | |
SL | 154.7±1.7b | 125.0±0.0ab | 151.3±1.7b | 121.7±1.7a | 148.3±4.7b | 115.0±0.0a | 151.3±1.7b | 115.0±0.0a | |
枯黄期 Withered date | CK | 215.3±3.7a | 214.3±1.7a | 244.0±0.0a | 223.7±1.7a | 222.3±1.7b | 222.0±0.0a | 222.3±1.7b | 221.7±3.2a |
SE | 220.7±1.7a | 206.0±5.0a | 244.0±0.0a | 216.7±10.3a | 230.7±3.3a | 212.7±3.3b | 230.7±3.3a | 216.0±0.0a | |
SL | 212.0±2.0a | 211.0±0.0a | 234.0±0.0a | 214.3±1.7a | 217.3±1.7b | 216.0±0.0ab | 211.7±3.7b | 216.0±0.0a | |
生长季长度 Growing season duration | CK | 62.3±3.7a | 86.0±2.9a | 87.7±1.7a | 100.3±4.4a | 74.0±5.7a | 107.0±0.0a | 76.0±0.0a | 106.7±3.2a |
SE | 41.7±1.7b | 82.7±6.0a | 60.3±2.9b | 95.0±12.0a | 56.7±5.0b | 97.7±3.3b | 57.0±7.6b | 101.0±0.0a | |
SL | 57.3±3.7a | 86.0±0.0a | 82.7±1.7a | 92.7±3.3a | 69.0±3.0ab | 101.0±0.0ab | 60.3±3.2ab | 101.0±0.0a | |
繁殖期 Reproductive duration | CK | 12.0±1.0a | 56.0±0.0a | 53.7±3.7a | 26.3±2.3a | 56.0±2.9a | 51.0±0.0a | 50.7±3.2a | 49.3±1.7a |
SE | 3.3±3.3a | 52.7±3.3a | 32.3±3.7b | 24.0±0.0a | 22.3±4.5b | 47.0±4.0a | 20.0±2.9c | 53.5±2.5a | |
SL | 5.7±3.2a | 57.7±1.7a | 45.3±3.2a | 29.0±5.0a | 49.3±1.7a | 51.0±0.0a | 37.7±4.5b | 49.3±1.7a |
表2 干旱对高寒草甸植物物候的影响
Table 2 Effects of drought on the plant phenology of alpine meadow
物候 Phenology | 处理 Treatments | 高山嵩草K. pygmaea | 早熟禾P. pratensis | 钉柱委陵菜P. saundersiana | 菊叶委陵菜P. tanacetifolia | ||||
---|---|---|---|---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | 2016 | 2017 | 2016 | 2017 | ||
返青期 Green-up date | CK | 153.0±0.0b | 128.3±1.7a | 156.3±1.7b | 123.3±3.3a | 148.3±4.7b | 115.0±0.0a | 146.3±1.7b | 115.0±0.0a |
SE | 179.0±0.0a | 123.3±1.7b | 183.7±2.9a | 121.7±1.7a | 174.0±3.2a | 115.0±0.0a | 173.7±10.7a | 115.0±0.0a | |
SL | 154.7±1.7b | 125.0±0.0ab | 151.3±1.7b | 121.7±1.7a | 148.3±4.7b | 115.0±0.0a | 151.3±1.7b | 115.0±0.0a | |
枯黄期 Withered date | CK | 215.3±3.7a | 214.3±1.7a | 244.0±0.0a | 223.7±1.7a | 222.3±1.7b | 222.0±0.0a | 222.3±1.7b | 221.7±3.2a |
SE | 220.7±1.7a | 206.0±5.0a | 244.0±0.0a | 216.7±10.3a | 230.7±3.3a | 212.7±3.3b | 230.7±3.3a | 216.0±0.0a | |
SL | 212.0±2.0a | 211.0±0.0a | 234.0±0.0a | 214.3±1.7a | 217.3±1.7b | 216.0±0.0ab | 211.7±3.7b | 216.0±0.0a | |
生长季长度 Growing season duration | CK | 62.3±3.7a | 86.0±2.9a | 87.7±1.7a | 100.3±4.4a | 74.0±5.7a | 107.0±0.0a | 76.0±0.0a | 106.7±3.2a |
SE | 41.7±1.7b | 82.7±6.0a | 60.3±2.9b | 95.0±12.0a | 56.7±5.0b | 97.7±3.3b | 57.0±7.6b | 101.0±0.0a | |
SL | 57.3±3.7a | 86.0±0.0a | 82.7±1.7a | 92.7±3.3a | 69.0±3.0ab | 101.0±0.0ab | 60.3±3.2ab | 101.0±0.0a | |
繁殖期 Reproductive duration | CK | 12.0±1.0a | 56.0±0.0a | 53.7±3.7a | 26.3±2.3a | 56.0±2.9a | 51.0±0.0a | 50.7±3.2a | 49.3±1.7a |
SE | 3.3±3.3a | 52.7±3.3a | 32.3±3.7b | 24.0±0.0a | 22.3±4.5b | 47.0±4.0a | 20.0±2.9c | 53.5±2.5a | |
SL | 5.7±3.2a | 57.7±1.7a | 45.3±3.2a | 29.0±5.0a | 49.3±1.7a | 51.0±0.0a | 37.7±4.5b | 49.3±1.7a |
因子 Factors | 返青期 Green-up date | 枯黄期 Withered date | 生长季长度 Growing season duration | 繁殖期 Reproductive duration |
---|---|---|---|---|
Y | 1063.786*** | 55.914*** | 317.972*** | 122.336*** |
T | 45.236*** | 10.662*** | 19.911*** | 37.700*** |
S | 12.053*** | 27.827*** | 20.562*** | 34.392*** |
Y×T | 53.091*** | 12.525*** | 7.038** | 28.625*** |
Y×S | 1.108 | 11.621*** | 5.945** | 132.034*** |
T×S | 0.477 | 0.730 | 0.541 | 2.244 |
Y×T×S | 0.354 | 0.434 | 0.692 | 3.138* |
表3 年份、干旱处理、物种及其交互作用对高寒草甸返青期、枯黄期、生长季长度和繁殖期的影响的多因素方差分析结果
Table 3 Results of multi-factor analysis of variance on the effects of year, species, drought treatment and their interactions on green up date, first leaf coloring date, length of growing season, and reproductive duration of alpine meadow
因子 Factors | 返青期 Green-up date | 枯黄期 Withered date | 生长季长度 Growing season duration | 繁殖期 Reproductive duration |
---|---|---|---|---|
Y | 1063.786*** | 55.914*** | 317.972*** | 122.336*** |
T | 45.236*** | 10.662*** | 19.911*** | 37.700*** |
S | 12.053*** | 27.827*** | 20.562*** | 34.392*** |
Y×T | 53.091*** | 12.525*** | 7.038** | 28.625*** |
Y×S | 1.108 | 11.621*** | 5.945** | 132.034*** |
T×S | 0.477 | 0.730 | 0.541 | 2.244 |
Y×T×S | 0.354 | 0.434 | 0.692 | 3.138* |
图1 干旱对高寒草甸群落高度、盖度和生物量的影响不同小写字母表示同一年份不同处理间差异显著(P<0.05)。Different lowercase letters indicate significant differences among treatments in the same year (P< 0.05).
Fig. 1 Effects of drought on community height, coverage and biomass in alpine meadow
特征 Features | 处理 Treatments | 禾莎类草Grasses and sedges | 杂类草Forbs | ||
---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | ||
高度 Height (cm) | CK | 8.5±1.1a | 8.1±0.8a | 1.5±0.1a | 1.3±0.2a |
SE | 4.4±0.6b | 5.1±1.4a | 1.0±0.0b | 1.3±0.2a | |
SL | 7.4±0.8ab | 4.8±1.0a | 1.8±0.2a | 1.5±0.1a | |
盖度Coverage (%) | CK | 38.0±5.6a | 42.6±2.3a | 27.4±1.7a | 19.8±0.3a |
SE | 31.7±5.5a | 40.0±3.3a | 19.7±4.8ab | 15.1±3.4a | |
SL | 35.7±2.4a | 10.0±2.5b | 14.1±1.2b | 15.1±2.2a | |
生物量Biomass (g·m-2) | CK | 45.8±9.8a | 44.1±2.7a | 27.0±2.4a | 20.4±3.0a |
SE | 20.3±5.5b | 26.0±6.8b | 12.7±3.1b | 15.0±3.5a | |
SL | 36.1±3.2ab | 6.3±2.2c | 16.3±1.8b | 17.6±3.4a |
表4 干旱对高寒草甸不同功能群高度、盖度和生物量的影响
Table 4 Effects of drought on height, coverage and biomass of different functional groups in alpine meadow
特征 Features | 处理 Treatments | 禾莎类草Grasses and sedges | 杂类草Forbs | ||
---|---|---|---|---|---|
2016 | 2017 | 2016 | 2017 | ||
高度 Height (cm) | CK | 8.5±1.1a | 8.1±0.8a | 1.5±0.1a | 1.3±0.2a |
SE | 4.4±0.6b | 5.1±1.4a | 1.0±0.0b | 1.3±0.2a | |
SL | 7.4±0.8ab | 4.8±1.0a | 1.8±0.2a | 1.5±0.1a | |
盖度Coverage (%) | CK | 38.0±5.6a | 42.6±2.3a | 27.4±1.7a | 19.8±0.3a |
SE | 31.7±5.5a | 40.0±3.3a | 19.7±4.8ab | 15.1±3.4a | |
SL | 35.7±2.4a | 10.0±2.5b | 14.1±1.2b | 15.1±2.2a | |
生物量Biomass (g·m-2) | CK | 45.8±9.8a | 44.1±2.7a | 27.0±2.4a | 20.4±3.0a |
SE | 20.3±5.5b | 26.0±6.8b | 12.7±3.1b | 15.0±3.5a | |
SL | 36.1±3.2ab | 6.3±2.2c | 16.3±1.8b | 17.6±3.4a |
因子 Factor | 高度 Plant height | 盖度 Coverage | 生物量 Biomass |
---|---|---|---|
Y | 1.065 | 4.309* | 3.358 |
T | 7.669** | 15.946*** | 15.705*** |
G | 153.032*** | 56.168*** | 19.670*** |
Y×T | 1.866 | 4.908* | 4.064* |
Y×G | 0.734 | 0.018 | 2.133 |
T×G | 6.077** | 2.675 | 3.718* |
Y×T×G | 0.949 | 11.536*** | 5.075* |
表5 年份、功能群、干旱处理及其相互作用对高寒草甸植株高度、盖度和生物量的影响的多因素方差分析结果
Table 5 Results of multi-factor analysis of variance on the effects of years, functional groups, drought treatment and their interactions on plant height, coverage and biomass of alpine meadow
因子 Factor | 高度 Plant height | 盖度 Coverage | 生物量 Biomass |
---|---|---|---|
Y | 1.065 | 4.309* | 3.358 |
T | 7.669** | 15.946*** | 15.705*** |
G | 153.032*** | 56.168*** | 19.670*** |
Y×T | 1.866 | 4.908* | 4.064* |
Y×G | 0.734 | 0.018 | 2.133 |
T×G | 6.077** | 2.675 | 3.718* |
Y×T×G | 0.949 | 11.536*** | 5.075* |
1 | IPCC. Climate change 2013: The physical science basis. Cambridge: Cambridge University Press, 2013. |
2 | Easterling D R, Meehl G A, Parmesan C, et al. Climate extremes: Observations, modeling, and impacts. Science, 2000, 289: 2068- 2074. |
3 | Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology & Management, 2010, 259(4): 660-684. |
4 | Walter J, Nagy L, Hein R, et al. Do plants remember drought? Hints towards drought-memory in grasses. Environmental & Experimental Botany, 2011, 71(1): 34-40. |
5 | Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change. Nature, 2004, 427: 145-148. |
6 | Gao Q Z, Wan Y F, Li Y E, et al. Climate change risk and integrated adaptation management of alpine grassland ecosystem in Northern Tibet. Beijing: Low Carbon Agriculture Seminar, 2010. |
高清竹, 万运帆, 李玉娥, 等. 藏北地区高寒草地生态系统气候变化风险及其综合适应管理. 北京: 低碳农业研讨会, 2010. | |
7 | Gao Q Z, Li Y E, Xu H M, et al. Adaptation strategies of climate variability impacts on alpine grassland ecosystems in Tibetan Plateau. Mitigation and Adaptation Strategies for Global Change, 2014, 19: 199-209. |
8 | Yang C Y, Shen W S, Lin N F. Climate change and its regional differences over the Tibet Plateau. Arid Land Geography, 2014, 37(2): 290-298. |
杨春艳, 沈渭寿, 林乃峰. 西藏高原气候变化及其差异性. 干旱区地理, 2014, 37(2): 290-298. | |
9 | Sheng W P, Gao Q Z, Li Y E, et al. Characteristic of climate change in Northern Tibet and its impact. Plateau Meteorology, 2008, 27(3): 509-516. |
盛文萍, 高清竹, 李玉娥, 等. 藏北地区气候变化特征及其影响分析. 高原气象, 2008, 27(3): 509-516. | |
10 | Yuan L, Liu Y L, Ma P F. Temporal and spatial patterns of drought based on standard precipitation index (SPI) in Tibet during 1981-2013. Chinese Agricultural Science Bulletin, 2015, 31(25): 228-234. |
袁雷, 刘依兰, 马鹏飞. 基于标准化降水指数的1981-2013年西藏干旱时空特征分析. 中国农学通报, 2015, 31(25): 228-234. | |
11 | Wang Z P, Zhang X Z, He Y T, et al. Effects of precipitation changes on the precipitation use efficiency and aboveground productivity of alpine steppe-meadow on Northern Tibetan Plateau. Chinese Journal of Applied Ecology, 2018, 29(6): 1822-1828. |
王志鹏, 张宪洲, 何永涛, 等. 降水变化对藏北高寒草原化草甸降水利用效率及地上生产力的影响. 应用生态学报, 2018, 29(6): 1822-1828. | |
12 | Ge S, Ai J F, Nima C R, et al. Preliminary analysis of drought climate change characteristics in Tibet in recent 50 years by CI Index. Tibet’s Science & Technology, 2011(5): 63-67. |
格桑, 艾俊峰, 尼玛次仁, 等. 初步采用CI指标分析西藏近50年干旱气候变化特征. 西藏科技, 2011(5): 63-67. | |
13 | Wang J S, Zhang X Z, Chen B X, et al. Causes and restoration of degraded alpine grassland in Northern Tibet. Journal of Resources and Ecology, 2013, 4(1): 43-49. |
14 | Xia J, Wan S. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 2013, 111(6): 1207-1217. |
15 | Polley H W, Derner J D, Jackson R B, et al. Impacts of climate change drivers on C4 grassland productivity: Scaling driver effects through the plant community. Journal of Experimental Botany, 2014, 65(13): 3415-3424. |
16 | Bernal M, Estiarte M, Peñuelas J. Drought advances spring growth phenology of the Mediterranean shrub Erica multiflora. Plant Biology, 2011, 13(2): 252-257. |
17 | Zhao G S, Shi P L, Zong N, et al. Decling precipitation enhances the effect of warming on phenological variation in a Semiarid Tibeten Meadow steppe. Journal of Resources and Ecology, 2017, 8(1): 50-56. |
18 | Mu C X, Sun G, Luo P, et al. Flowering responses of alpine meadow plant in the Qinghai-Tibetan Plateau to extreme drought imposed in different periods. Chinese Journal of Applied & Environmental Biology, 2013, 19(2): 272-279. |
牟成香, 孙庚, 罗鹏, 等. 青藏高原高寒草甸植物开花物候对极端干旱的响应. 应用与环境生物学报, 2013, 19(2): 272-279. | |
19 | Li X H, Chen S H, Han F. Effects of drought on grassland turning green period in Inner Mongolia, China. Pratacultural Science, 2013, 30(3): 452-456. |
李兴华, 陈素华, 韩芳. 干旱对内蒙古草地牧草返青期的影响. 草业科学, 2013, 30(3): 452-456. | |
20 | Ma G G. Responses of plant phenology to changes of precipitation regimes in a temperate steppe in Inner Mongolia, China. Kaifeng: Henan University, 2015. |
马改改. 中国内蒙古温带典型草原植物物候对降水格局改变的响应. 开封: 河南大学, 2015. | |
21 | Jentsch A, Kreyling J, Boettcher-treschkow J. Beyond gradualwarming: Extreme weather events alter flower phenology of European grassland and heath species. Global Change Biology, 2009, 15(4): 837-849. |
22 | Cornelius C, Leingartner A, Hoiss B, et al. Phenological response of grassland species to manipulative snowmelt and drought along an altitudinal gradient. Journal of Experimental Botany, 2013, 64(1): 241-251. |
23 | Ogaya R, Penuelas J. Tree growth, mortality, and above-ground biomass accumulation in a Holm Oak forest under a five-year experimental field drought. Plant Ecology, 2007, 189(2): 291-299. |
24 | Huang C Y, Anderegg W R L. Large drought-induced aboveground live biomass losses in southern Rocky Mountain aspen forests. Global Change Biology, 2012, 18(3): 1016-1027. |
25 | Ren L W, Wang X T, Liu M C, et al. Effects of drought stress on soil moisture dynamics and water use efficiency in corn. Chinese Agricultural Science Bulletin, 2015, 31(32): 142-147. |
任丽雯, 王兴涛, 刘明春, 等. 干旱胁迫对土壤水分动态及玉米水分利用效率影响研究. 中国农学通报, 2015, 31(32): 142-147. | |
26 | Tian H Q, Xu X F, Song X. Drought impacts on terrestrial ecosystem productive. Journal of Plant Ecology, 2007, 31(2): 231-241. |
田汉勤, 徐小锋, 宋霞. 干旱对陆地生态系统生产力的影响. 植物生态学报, 2007, 31(2): 231-241. | |
27 | Zhang H, Wang X P, Zhang Y F, et al. Responses of plant growth of different life forms to rainfall amount changes in an arid desert area. Chinese Journal of Ecology, 2015, 34(7): 1847-1853. |
张浩, 王新平, 张亚峰, 等. 干旱荒漠区不同生活型植物生长对降雨量变化的响应. 生态学杂志, 2015, 34(7): 1847-1853. | |
28 | Sun Y, He M Z, Wang L. Effects of precipitation control on plant diversity and biomass in a desert region. Acta Ecologica Sinica, 2018, 38(7): 2425-2433. |
孙岩, 何明珠, 王立. 降水控制对荒漠植物群落物种多样性和生物量的影响. 生态学报, 2018, 38(7): 2425-2433. | |
29 | Lei T J. Quantitative assessment of the impacts of droughts on grassland productivity. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 134. |
雷添杰. 干旱对草地生产力影响的定量评估研究. 测绘学报, 2017, 46(1): 134. | |
30 | Chu D, Deji Y Z, Pubu C R, et al. The response of typical vegetation growth to climate conditions in North Tibetan Plateau. Journal of Applied Meteorological Science, 2007(6): 832-839. |
除多, 德吉央宗, 普布次仁, 等. 西藏藏北高原典型植被生长对气候要素变化的响应. 应用气象学报, 2007(6): 832-839. | |
31 | Zhu J T, Zhang Y J, Liu Yao J. Effects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan Alpine Meadow. Entific Reports, 2016, 6(1): 27781. |
32 | Desclaux D, Roumet P. Impact of drought stress on the phenology of two soybean (Glycine max L. Merr) cultivars. Field Crops Research, 1996, 46(1/2/3): 61-70. |
33 | Yang S, Wang B X, Xu X, et al. Sex-specific responses of flowering phenology and floral morphology of Humulus scandens to drought. Plant Diversity and Resources, 2014, 36(5): 653-660. |
杨帅, 王碧霞, 胥晓, 等. 葎草雌雄植株开花物候和花器官对干旱的响应差异. 植物分类与资源学报, 2014, 36(5): 653-660. | |
34 | Borchert R, Rivera G, Hagnauer W. Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica, 2002, 34: 27-39. |
35 | Wu J G. Effects of changing in precipitation and temperature on the photosynthesis and related physiological parameters of straw-yellow gentian. Chinese Journal of Grassland, 2010, 32(5): 73-79. |
吴建国. 降雨量和温度变化对麻花艽叶片光合作用及相关生理参数的影响. 中国草地学报, 2010, 32(5): 73-79. | |
36 | Song C Q, You S C, Ke L H, et al. Spatiotemporal dynamics of land cover in Northern Tibetan Plateau with responses to climate change. Chinese Journal of Applied Ecology, 2011, 22(8): 2091-2097. |
宋春桥, 游松财, 柯灵红, 等. 藏北高原地表覆盖时空动态及其对气候变化的响应. 应用生态学报, 2011, 22(8): 2091-2097. | |
37 | Holub P, Fiala K. Effects of artificially varying amounts of rainfall on two semi-natural grassland types. Journal of Vegetation Science, 2013, 24(3): 518-529. |
38 | Wang C T, Wang Q J, Shen Z X, et al. Response of biodiversity and productivity to simulated rainfall on an alpine Kobresia humilis meadow. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(10): 1713-1718. |
王长庭, 王启基, 沈振西, 等. 高寒矮蒿草草甸群落植物多样性和初级生产力对模拟降水的响应. 西北植物学报, 2003, 23(10): 1713-1718. | |
39 | Zhao N W, Gong J P, Kong X P. Effect on the productive forces of grassland of phenology climatic factors in the Gonghe basin temperate steppe. Gansu Animal and Veterinary Sciences, 2010(2): 3-9. |
赵年武, 龚建平, 孔祥萍. 气候因子对共和盆地温性草原物候期草地生产力的影响分析. 甘肃畜牧兽医, 2010(2): 3-9. | |
40 | Zhu J, Zhang Y, Jiang L. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan Alpine Meadow. Agricultural & Forest Meteorology, 2017, 233 (Complete): 242-249. |
41 | Bai Y F, Xu Z X. A model of above-ground biomass of aneurolepidium chinense community in response to seasonal precipitation. Acta Prataculturae Sinica, 1997, 6(2): 1-6. |
白永飞, 许志信. 降水量的季节分配对羊草草原群落地上部生物量影响的数学模型. 草业学报, 1997, 6(2): 1-6. | |
42 | Xin J, Zha T, Gong J, et al. Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural & Forest Meteorology, 2016(228/229): 120-129. |
43 | Still C J, Berry J A, Collatz G J, et al. Global distribution of C3 and C4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 2003, 17(1): 6-14. |
44 | Yuan W P. Study on phenological characteristics of typical grassland and its influence on ecosystem function. Beijing: Chinese Academy of Science, 2007. |
袁文平. 典型草原物候特征及其对生态系统功能的影响研究. 北京: 中国科学院, 2007. | |
45 | Bardgett R D, Wal R V D, Jónsdóttir I S, et al. Temporal variability in plant and soil nitrogen pools in a high-arctic ecosystem. Soil Biology & Biochemistry, 2007, 39(8): 2129-2137. |
46 | Wipf S, Rixen C. A review of snow manipulation experiments in arctic and alpine tundra ecosystems.Polar Research, 2010, 29: 95-109. |
47 | Monson R K, Sparks J P, Rosenstiel T N, et al. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia, 2005, 146(1): 130-147. |
48 | Li X Q. Phenology of plant community in alpine marsh meadow on the eastern margin of Qinghai-Xizang Plateau and its relationship with other characters. Lanzhou: Lanzhou University, 2010. |
李向前. 青藏高原东缘高寒沼泽化草甸植物群落物候及其与其它性状的关系. 兰州: 兰州大学, 2010. | |
49 | Chen G G. Study on phenology and plant characters of alpine meadow flora in the eastern margin of Qinghai-Xizang Plateau at flowering stage. Lanzhou: Lanzhou University, 2016. |
陈冠光. 青藏高原东缘高寒草甸植物群落花期物候以及植物性状的研究. 兰州: 兰州大学, 2016. | |
50 | Yu H Y,Wang L. The correlation between phenology and plant height of herbaceous plants species on alpine meadow. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2018, 39(4): 39-46. |
于海英, 王力. 高寒草甸草本植物物候期和植株高度的关系研究.内蒙古农业大学学报(自然科学版), 2018, 39(4): 39-46. |
[1] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[2] | 张伟, 宜树华, 秦彧, 上官冬辉, 秦炎. 基于无人机的高寒草甸地表温度监测及影响因素研究[J]. 草业学报, 2021, 30(3): 15-27. |
[3] | 刘万弟, 李小伟, 黄文广, 马惠成, 马红英, 王文晓. 宁夏草原针茅属植物群落物种多样性和生产力格局及影响因素研究[J]. 草业学报, 2021, 30(1): 12-23. |
[4] | 王琇瑜, 黄晓霞, 和克俭, 孙晓能, 吕曾哲舟, 张勇, 朱湄, 曾睿钦. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8): 6-17. |
[5] | 崔博超, 郑江华, 吐尔逊·哈斯木, 段素素, 杜梦洁. 塔里木河流域草地净初级生产力时空分异特征研究[J]. 草业学报, 2020, 29(6): 1-13. |
[6] | 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响[J]. 草业学报, 2020, 29(5): 109-120. |
[7] | 徐田伟, 赵炯昌, 毛绍娟, 耿远月, 刘宏金, 赵新全, 徐世晓. 青海省海北地区高寒草甸群落特征和生物量对短期休牧的响应[J]. 草业学报, 2020, 29(4): 1-8. |
[8] | 车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明. 半干旱沙地草本植物群落特征对短期降水变化的响应[J]. 草业学报, 2020, 29(4): 19-28. |
[9] | 谢开云, 曹凯, 万江春, 王玉祥, 赵云, 朱进忠. 新疆半干旱区不同豆科/禾本科牧草混播草地生产力的变化研究[J]. 草业学报, 2020, 29(4): 29-40. |
[10] | 杨鼎, 齐昊昊, 王倩, 徐海鹏, 张静, 张红艳, 郭正刚. 青藏高原高原鼢鼠鼠丘植被恢复过程中植物群落特征的变化[J]. 草业学报, 2020, 29(2): 114-122. |
[11] | 乌尼图, 刘桂香, 杨勇, 宋向阳, 白海花. 基于光能利用率模型的内蒙古天然草原植被净初级生产力动态监测与气候因子的响应[J]. 草业学报, 2020, 29(11): 1-10. |
[12] | 水宏伟, 干珠扎布, 吴红宝, 王子欣, 吕成文, 高清竹, 胡国铮, 严俊, 谢文栋, 王有侠. 禁牧对藏北高原狼毒型退化草地群落特征及生产力的影响[J]. 草业学报, 2020, 29(10): 14-21. |
[13] | 杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平. 增温对川西北高寒草甸草场植物凋落物分解的影响[J]. 草业学报, 2020, 29(10): 35-46. |
[14] | 马海霞, 张德罡, 陈瑾, 郭春秀, 董永平, 马源, 康玉坤, 陈璐, 杜凯, 陈建纲. 祁连山东段高寒草甸土壤持水能力在小尺度不同坡面位置的分异特征[J]. 草业学报, 2020, 29(1): 28-37. |
[15] | 宋月媛, 杨允菲. 松嫩平原林缘草地羽茅无性系构件结构与生长分析[J]. 草业学报, 2019, 28(7): 168-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||