[1] Fu Y Y, Ma W G, Cao D D, et al. Effects of polyamines on germination, growth and maturation of seeds. Seed, 2016, 35(5): 52-58. 付玉营, 马文广, 曹栋栋, 等. 多胺对种子萌发生长及成熟的影响. 种子, 2016, 35(5): 52-58. [2] Yuan Z L, Liu X M, Li H X.Review on the relationship between polyamines and environmental stress. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(9): 1912-1919. 袁祖丽, 刘秀敏, 李华鑫. 多胺与环境胁迫关系研究进展. 西北植物学报, 2008, 28(9): 1912-1919. [3] Cai Q H.Physiological research progress of plant polyamines. Fujian Rice & Wheat Technology, 2009, 27(1): 37-40. 蔡秋华. 植物多胺的生理研究进展. 福建稻麦科技, 2009, 27(1): 37-40. [4] Wimalasekara R, Scherer G F E. Crop improvement. Germany: Springer, 2013: 459-483. [5] Yang J, Zhang J, Liu K, et al. Involvement of polyamines in the drought resistance of rice. Journal of Experimental Botany, 2007, 58(6): 1545-1555. [6] Li Z, Peng Y, Pan M H, et al. Effects of spermidine on the accumulation of osmoregulatory matter in leaves of white clover under PEG stress. Chinese Journal of Grassland, 2014, 36(1): 31-36. 李州, 彭燕, 潘明洪, 等. 亚精胺对PEG胁迫下白三叶幼苗渗透调节物质积累的影响. 中国草地学报, 2014, 36(1): 31-36. [7] Zita Kovács, Simon-Sarkadi L, Szcs A, et al. Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids, 2010, 38(2): 623-631. [8] Majumdar R, Shao L, Turlapati S A, et al. Polyamines in the life of Arabidopsis: Profiling the expression of S-adenosylmethionine decarboxylase (SAMDC) gene family during its life cycle. BMC Plant Biology, 2017, 17(1): 264. [9] Tabor C W.Adenosylmethionine decarboxylase. Methods in Enzymology, 1962, 5: 756-760. [10] Hashimoto T, Tamaki K, Suzuki K, et al. Molecular cloning of plant spermidine synthases. Plant & Cell Physiology, 1998, 39(1): 73-79. [11] Ifigeneia M, Moschou P N, Ioannidis N E, et al. Silencing S-adenosyl-l-methionine decarboxylase (SAMDC) in Nicotiana tabacum points at a polyamine-dependent trade-off between growth and tolerance responses. Frontiers in Plant Science, 2016, 7(3): 1-17. [12] Wang G L, Que F, Chen B Q, et al. Cloning of S-adenosylmethioine decarboxylase gene SAMDC from Daucus carota and its response to abiotic stresses. Plant Physiology Journal, 2017, 53(3): 413-421. 王广龙, 却枫, 陈伯清, 等. 胡萝卜S-腺苷甲硫氨酸脱羧酶SAMDC基因的克隆及其对非生物胁迫的响应. 植物生理学报, 2017, 53(3): 413-421. [13] Liu Z Y, Wang X X, Gao J C, et al. Cloning and sequence analysis of a S-adenosylmethionine decarboxylase gene (SISAMDC1) in tomato. Acta Hortieuhurae Siniea, 2008, 35(8): 1137-1146. 刘志勇, 王孝宣, 高建昌, 等. 番茄S-腺苷蛋氨酸脱羧酶基因SlSAMDC1的克隆与序列分析. 园艺学报, 2008, 35(8): 1137-1146. [14] Ding S L, Lu G, Li J Y, et al. Cloning and evolutionary analysis of homologous sequences of SAMDC gene in Cruciferae. Hereditas, 2007, 29(1): 109-117. 丁淑丽, 卢钢, 李建勇, 等. 十字花科植物SAMDC基因同源序列的克隆与进化分析. 遗传, 2007, 29(1): 109-117. [15] Hu W W, Gong H, Pua E C.The pivotal roles of the plant S-adenosylmethionine decarboxylase 5' untranslated leader sequence in regulation of gene expression at the transcriptional and posttranscriptional levels. Plant Physiology, 2005, 138(1): 276-286. [16] Chen M, Chen J, Fang J, et al. Down-regulation of S-adenosylmethionine decarboxylase genes results in reduced plant length, pollen viability, and abiotic stress tolerance. Plant Cell Tissue & Organ Culture, 2014, 116(3): 311-322. [17] Walden R, Cordeiro A, Tiburcio A F.Polyamines: Small molecules triggering pathways in plant growth and development. Plant Physiology, 1997, 113(4): 1009-1013. [18] Waie B, Rajam M V.Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Science (Oxford), 2003, 164(5): 727-734. [19] Wi S J, Kim W T, Park K Y.Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Reports, 2006, 25(10): 1111-1121. [20] Cheng L, Zou Y, Ding S, et al. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. Journal of Integrative Plant Biology, 2009, 51(5): 11. [21] Hazarika P, Rajam M V.Biotic and abiotic stress tolerance in transgenic tomatoes by constitutive expression of S-adenosylmethionine decarboxylase gene. Physiology and Molecular Biology of Plants, 2011, 17(2): 115-128. [22] Peng D D, Wang X J, Li Z, et al. Effects of spermidine on seed germination and seedling drought resistance of white clover under osmotic stress induced by PEG. Pratacultural Science, 2016, 33(9): 1739-1746. 彭丹丹, 王晓娟, 李州, 等. 亚精胺PEG渗透胁迫下白三叶种子萌发及幼苗抗旱效应的影响. 草业科学, 2016, 33(9): 1739-1746. [23] Yu C C.High-yielding cultivation of white clover of fine herbage. Henan Animal Husbandry and Veterinary Medicine (Comprehensive Edition), 2011, 32(5): 30-31. 于长春. 优良牧草白三叶的高产栽培. 河南畜牧兽医(综合版), 2011, 32(5): 30-31. [24] Annicchiarico P, Piano E.Indirect selection for root development of white clover and implications for drought tolerance. Journal Agronomy & Crop Science, 2004, 190(1): 28-34. [25] Ren Y X, Zhang M Y, Sun B Y, et al. Research progress and prospect on cold resistance of white clover. Heilongjiang Animal Science and Veterinary Medicine, 2018, 563(23): 54-57. 任毅晓, 张鸣宇, 孙博扬, 等. 白三叶抗寒性研究进展与展望. 黑龙江畜牧兽医, 2018, 563(23): 54-57. [26] Wang Q.Effects of salinity and heavy metals on plant growth and development. Modern Horticulture, 2013, 8(16): 1-5. 王琴. 盐碱和重金属在植物生长发育过程中的影响. 现代园艺, 2013, 8(16): 1-5. [27] Wu X, Zhang Y, Yong B, et al. Cloning and expression analysis of TrFQR1 gene from Trifolium repens cv. ‘Ladino’. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(3): 431-438. 吴星, 张艳, 雍斌, 等. 白三叶TrFQR1基因克隆与表达分析. 西北植物学报, 2018, 38(3): 431-438. [28] Xia X J, Wang Y J, Zhou Y H, et al. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cumumber. Plant Physiology, 2009, 150(2): 801-814. [29] Wi S J, Kim S J, Kim W T, et al. Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis. Planta, 2014, 239(5): 979-988. [30] Jiang Z, Wang F, He X, et al. Progress on protein/peptide phosphorylation. Letters in Biotechnology, 2009, 20(2): 233-237. 姜铮, 王芳, 何湘, 等. 蛋白质磷酸化修饰的研究进展. 生物技术通讯, 2009, 20(2): 233-237. [31] Lü H Q, Wang Z M, Tang Q L, et al. Polyamine biosynthesis enzyme research progress in two key genes. Biotechnology Bulletin, 2015, 31(2): 61-64. 吕焕青, 王志敏, 汤青林, 等. 多胺生物合成途径中两个关键酶基因研究进展. 生物技术通报, 2015, 31(2): 61-64. [32] Liu Z, Liu P, Qi D, et al. Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. Journal of Plant Physiology, 2017, 211(1): 90-99. [33] Gong X Q, Dou F F, Cheng X, et al. Genome-wide identification of genes involved in polyamine biosynthesis and the role of exogenous polyamines in Malus hupehensis Rehd. under alkaline stress. Gene, 2018, 669(8): 52-62. |