[1] Xia L L, Lam S K, Chen D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Global Change Biology, 2017, 23(7): 1917-1925. [2] Liu S W, Cheng J, Wang C, et al. Climatic role of terrestrial ecosystem under elevated CO2: A bottom-up greenhouse gases budget. Ecology Letters, 2018, 21(1): 1108-1118. [3] Zhang Z Q, Zhang L X, Xu W, et al. Several important issues of soil respiration under climate warming. Acta Prataculturae Sinica, 2019, 28(9): 164-173. 张智起, 张立旭, 徐炜, 等. 气候变暖背景下土壤呼吸研究的几个重要问题. 草业学报, 2019, 28(9): 164-173. [4] Xiong Z Q, Zhang X X. Key role of efficient nitrogen application in low carbon agriculture. Journal of Plant Nutrition and Fertilizer, 2017, 23(6): 1433-1440. 熊正琴, 张晓旭. 氮肥高效施用在低碳农业中的关键作用. 植物营养与肥料学报, 2017, 23(6): 1433-1440. [5] Chen L F, He Z B, Du J, et al. Response of soil carbon cycling to climate warming: Challenges and perspectives. Acta Prataculturae Sinica, 2015, 24(11): 183-194. 陈龙飞, 何志斌, 杜军, 等. 土壤碳循环主要过程对气候变暖响应的研究进展. 草业学报, 2015, 24(11): 183-194. [6] Song M, Qi P, Cai L Q, et al. Effect of different biochar application levels on greenhouse gas emissions in the Loess Plateau semi-arid environment in China. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1185-1195. 宋敏, 齐鹏, 蔡立群, 等. 不同生物质炭输入水平下旱作农田温室气体排放研究. 中国生态农业学报, 2016, 24(9): 1185-1195. [7] O’neill, Brian C, Oppenheimer M, et al. IPCC reasons for concern regarding climate change risks. Nature Climate Change, 2017, 7(5): 28-37. [8] Zhu Z K, Shen B J, Ge T D, et al. Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland ecosystems. Acta Ecologica Sinica, 2016, 36(19): 5987-5997. 祝贞科, 沈冰洁, 葛体达, 等. 农田作物同化碳输入与周转的生物地球化学过程. 生态学报, 2016, 36(19): 5987-5997. [9] Wen Y C, Li Y Q, Yuan L, et al. Comprehensive assessment methodology of characteristics of soil fertility under different fertilization regimes in North China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7): 91-99. 温延臣, 李燕青, 袁亮, 等. 长期不同施肥制度土壤肥力特征综合评价方法. 农业工程学报, 2015, 31(7): 91-99. [10] Zhang G R, Li J M, Xu M G, et al. Effects of chemical fertilizer and organic manure on rice yield and soil fertility. Scientia Agricultura Sinica, 2009, 42(2): 543-551. 张国荣, 李菊梅, 徐明岗, 等. 长期不同施肥对水稻产量及土壤肥力的影响. 中国农业科学, 2009, 42(2): 543-551. [11] Meng Q F, Hou P, Wu L, et al. Understanding production potentials and yield gaps in intensive maize production in China. Field Crops Research, 2013, 143(3): 91-97. [12] Wang H L, Zhang X C, Yu X F, et al. Effects of optimal nitrogen fertilizer management on water and fertilizer utilization efficiency and yield under double-ridge-furrow sowing with the whole plastic film mulching in maize in a semi-arid area. Chinese Journal of Applied Ecology, 2020, 31(2): 449-458. 王红丽, 张绪成, 于显枫, 等. 半干旱区氮肥运筹对全膜双垄沟播玉米水肥利用和产量的影响. 应用生态学报, 2020, 31(2): 449-458. [13] Zha Y, Wu X P, Zhang H M, et al. Effects of long-term organic and inorganic fertilization on enhancing soil organic carbon and basic soil productivity in black soil. Scientia Agricultural Sinica, 2015, 48(23): 4649-4659. 查燕, 武雪萍, 张会民, 等. 长期有机无机配施黑土土壤有机碳对农田基础地力提升的影响. 中国农业科学, 2015, 48(23): 4649-4659. [14] Gao X N, Han X R, Zhan X M, et al. Effect of long-term fertilization on total nitrogen storage in a brown soil. Plant Nutrition and Fertilizer Science, 2009, 15(3): 567-572. 高晓宁, 韩晓日, 战秀梅, 等. 长期不同施肥处理对棕壤氮储量的影响. 植物营养与肥料学报, 2009, 15(3): 567-572. [15] Xu Y M, Liu H, Wang X H. Evolution of soil organic carbon and crop yield under long-term fertilization in grey desert soils. Chinese Journal of Eco-Agriculture, 2016, 24(2): 154-162. 许咏梅, 刘骅, 王西和. 长期施肥下新疆灰漠土有机碳及作物产量演变. 中国生态农业学报, 2016, 24(2): 154-162. [16] Eberwein J, Oikawa P, Allsman L, et al. Carbon availability regulates soil respiration response to nitrogen and temperature. Soil Biology and Biochemistry, 2015, 88(9): 158-164. [17] Liu L T, Hu C S, Yang P P, et al. Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat-soybean/fallow. Agricultural and Forest Meteorology, 2015, 207(15): 38-47. [18] Devaraju N, Bala G, Caldeira K, et al. A model based investigation of the relative importance of CO2 fertilization, climate warming, nitrogen deposition and land use change on the global terrestrial carbon uptake in the historical period. Climate Dynamics, 2016, 47(12): 173-190. [19] Zhou L Y, Zhou X H, Zhang B C, et al. Different responses of soil respiration and its components to nitrogen addition among biomes: A meta-analysis. Global Change Biology, 2014, 20(7): 2332-2343. [20] Wang X J, Zhang R Z, Qi P, et al. Meta-analysis on farmland soil CO2 emission in northern China affected by organic fertilizer. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(10): 99-107. 王晓娇, 张仁陟, 齐鹏, 等. Meta分析有机肥施用对中国北方农田土壤CO2排放的影响. 农业工程学报, 2019, 35(10): 99-107. [21] Six J, Elliott E T, Paustian K, et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 1998, 62(5): 1367-1377. [22] Jastrow J D, Amonette J E, Bailey V L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 2007, 80(12): 5-23. [23] Von L M, KÖgel-Knabner I, Ekschmitt K, et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biology and Biochemistry, 2007, 39(9): 2183-2207. [24] Wang J K, Xu Y D, Ding F, et al. Process of plant residue transforming into soil organic matter and mechanism of its stabilization: A review. Acta Pedologica Sinica, 2019, 56(3): 528-540. 汪景宽, 徐英德, 丁凡, 等. 植物残体向土壤有机质转化过程及其稳定机制的研究进展. 土壤学报, 2019, 56(3): 528-540. [25] Yan J, Wang L, Hu Y, et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma, 2018, 319: 194-203. [26] Xu Y D, Wang J K, Wang S Y, et al. Effects of maize residue decomposition on aggregate composition and organic carbon distribution of different fertilities Brown soils. Chinese Journal of Eco-Agriculture, 2018, 26(7): 1029-1037. 徐英德, 汪景宽, 王思引, 等. 玉米残体分解对不同肥力棕壤团聚体组成及有机碳分布的影响. 中国生态农业学报, 2018, 26(7): 1029-1037. [27] Lu X L. Soil CO2 emission rate in dry land maize field under different tillage and wheat straw returning conditions. Yangling: Northwest A&F University, 2014. 禄兴丽. 耕作和秸秆还田措施下旱作夏玉米田土壤CO2排放速率的研究. 杨凌: 西北农林科技大学, 2014. [28] Lu R K. Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science Press, 1999. 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999. [29] Wu J, Cai L Q, Zhang R Z, et al. Distribution of soil particulate organic carbon fractions as affected by tillage practices in dry farmland of the Loess Plateau of central Gansu Province. Chinese Journal of Eco-Agriculture, 2018, 26(5): 728-736. 武均, 蔡立群, 张仁陟, 等. 耕作措施对旱作农田土壤颗粒态有机碳的影响. 中国生态农业学报, 2018, 26(5): 728-736. [30] Peng Z K, Li L L, Xie J H, et al. Effects of conservational tillage on water characteristics in dryland farm of central Gansu, Northwest China. Chinese Journal of Applied Ecology, 2018, 29(12): 4022-4028. 彭正凯, 李玲玲, 谢军红, 等. 保护性耕作对陇中旱作农田水分特征的影响. 应用生态学报, 2018, 29(12): 4022-4028. [31] Sun L. Effects of long-term conservation tillage on soil melioration, carbon storage and greenhouse gas mitigation of wheat field on weibei arid plateau. Yangling: Northwest A&F University, 2018. 孙磊. 渭北旱塬麦田长期保护性耕作的土壤改良与固碳减排效应研究. 杨凌: 西北农林科技大学, 2018. [32] Zheng J J, Fang H J, Cheng S L, et al. Effects of N addition on soil organic carbon components in an alpine meadow on the eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2012, 32(17): 5363-5372. 郑娇娇, 方华军, 程淑兰, 等. 增氮对青藏高原东缘典型高寒草甸土壤有机碳组成的影响. 生态学报, 2012, 32(17): 5363-5372. [33] Tang H M, Li C, Xiao X P, et al. Effect of different manure and chemical fertilizer N input ratios on physiological characteristics of leaves and yield of rice under double-cropping rice field. Journal of Agricultural Science and Technology, 2020, 22(5): 88-96. 唐海明, 李超, 肖小平, 等. 不同有机无机肥氮投入比例对双季水稻生理特性与产量的影响. 中国农业科技导报, 2020, 22(5): 88-96. [34] Du S P, Ma Z M, Xue L. Effect of manure combined with chemical fertilizer application on fruit yield, quality and water and nitrogen use efficiency of watermelon in gravel-mulched field. Journal of Fruit Science, 2020, 37(3): 380-389. 杜少平, 马忠明, 薛亮. 有机无机肥配施对砂田西瓜产量、品质及水氮利用率的影响. 果树学报, 2020, 37(3): 380-389. [35] Zhang R Z, Huang G B, Cai L Q, et al. Dry farmland practice involving multi-conservation tillage measures in the Loess Plateau. Chinese Journal of Eco-Agriculture, 2013, 21(1): 61-69. 张仁陟, 黄高宝, 蔡立群, 等. 几种保护性耕作措施在黄土高原旱作农田的实践. 中国生态农业学报, 2013, 21(1): 61-69. [36] Wang S L, Wang G L, Zhao X, et al. Effect of long-term fertilization on organic carbon fractions and contents of cinnamon soil. Journal of P1ant Nutrition and Fertilizer, 2015, 21(1): 104-111. 王朔林, 王改兰, 赵旭, 等. 长期施肥对栗褐土有机碳含量及其组分的影响. 植物营养与肥料学报, 2015, 21(1): 104-111. [37] Xu J H, Sun Y, Gao L, et al. A review of the factors influencing soil organic carbon stability. Chinese Journal of Eco-Agriculture, 2018, 26(2): 222-230. 徐嘉晖, 孙颖, 高雷, 等. 土壤有机碳稳定性影响因素的研究进展. 中国生态农业学报, 2018, 26(2): 222-230. [38] He M, Wang L G, Wang Y C, et al. Characteristic of black soil respiration and its influencing factors under long-term fertilization regimes. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(4): 151-161. 贺美, 王立刚, 王迎春, 等. 长期定位施肥下黑土呼吸的变化特征及其影响因素. 农业工程学报, 2018, 34(4): 151-161. [39] Xu Y C, Shen Q R, Ran W, et al. Effects of zero tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping. Acta Pedologica Sinica, 2002, 39(1): 89-96. 徐阳春, 沈其荣, 冉炜, 等. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响. 土壤学报, 2002, 39(1): 89-96. [40] Dai Z M, Su W Q, Chen H H, et al. Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Global Change Biology, 2018, 27(4): 1-7. |