[1] Castle S C, Neff J C. Plant response to nutrient availability across variable bedrock geologies. Ecosystems, 2009, 12(1): 101-113. [2] Killingbeck K T. The terminological jungle revisited: Making a case for use of the term resorption. Oikos, 1986, 46(2): 263-264. [3] Aerts R, Vander M J. A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos, 1993, 66(1): 144-147. [4] Pugnaire F I, Chapin III F S. Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology, 1993, 74(1): 124-129. [5] Zhao Q, Liu X Y, Hu Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii. Scientia Silvae Sinicae, 2010, 46(5): 14-19. 赵琼, 刘兴宇, 胡亚林, 等. 氮添加对兴安落叶松养分分配和再吸收效率的影响. 林业科学, 2010, 46(5): 14-19. [6] Lu J Y, Duan B H, Yang M, et al. Research progress in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors. Acta Prataculturae Sinica, 2018, 27(4): 178-188. 陆姣云, 段兵红, 杨梅, 等. 植物叶片氮磷养分重吸收规律及其调控机制研究进展. 草业学报, 2018, 27(4): 178-188. [7] May J D, Killingbeck K T. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 1992, 73(5): 1868-1878. [8] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 1999, 30: 1-67. [9] Manzoni S, Trofymow J A, Jackson R B, et al. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 2010, 80(1): 89-106. [10] Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 2012, 82(2): 205-220. [11] Blanco J A, Imber J B, Castillo F J. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecological Applications, 2009, 19(3): 682-698. [12] Lü X T, Freschet G T, Flynn D F B, et al. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 2012, 100(1): 144-150. [13] Su B, Han X G, Huang J H, et al. The nutrient use efficiency (NUE) of plants and its implications on the strategy of plant adaptation to nutrient-stressed environments. Acta Ecologica Sinica, 2000, 20(2): 335-343. [14] Liu H W. The comparative study on leaf functional traits and nutrient resorption in two different ecosystems of Chongqing. Chongqing: Southwest University, 2014. 刘宏伟. 两种不同生态系统中植物叶片功能性状及养分再吸收比较研究. 重庆: 西南大学, 2014. [15] Kobe R K, Lepczyk C A, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a Global Data Set. Ecology, 2005, 86(10): 2780-2792. [16] Fisher R F, Binkley D. Ecology and management of forest soils (3rd Edition). New York: John Wiley and Sons, 2000. [17] Aerts R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology, 1996, 84(4): 597-608. [18] You F F, Zeng L Q, Qiao Z M, et al. Responses of leaf N and P re-sorption in grasses of three functional groups to fertilization. Chinese Journal of Grassland, 2018, 40(3): 55-61. 尤菲菲, 曾令强, 乔子楣, 等. 不同功能群草类植物叶片氮磷重吸收对施肥的响应. 中国草地学报, 2018, 40(3): 55-61. [19] Lambers H, Chapin III F S, Pons T L. Plant physiological ecology. New York: Springer Science & Business Media, 2008. [20] Killingbeck K T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 1996, 77(6): 1716-1727. [21] Wang G X, Cheng G D. Characteristics of grassland and ecological changes of vegetations in the source regions of Yangtze and Yellow rivers. Journal of Desert Research, 2001, 21(2): 101-107. [22] Shang Z H, Long R J. Formation causes and recovery of the “Black Soil Type” degraded alpine grassland in Qinghai-Tibetan Plateau. Frontiers of Agriculture in China, 2007, 1(2): 197-202. [23] Yang M X, Wang S L, Yao T D, et al. Desertification and its relationship with permafrost degradation in Qinghai-Xizang (Tibet) Plateau. Cold Regions Science and Technology, 2004, 39(1): 47-53. [24] Harris R B. Rangeland degradation on the Qinghai-Tibetan Plateau: A review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. [25] Shang Z H, Long R J, Ma Y S, et al. Spatial heterogeneity and similarity of adult plants and seedlings in ‘black soil land’ secondary weed community, Qinghai-Tibetan Plateau. Journal of Plant Ecology, 2008, 32(5): 1157-1165. 尚占环, 龙瑞军, 马玉寿, 等. 青藏高原“黑土滩”次生毒杂草群落成体植株与幼苗空间异质性及相似性分析. 植物生态学报, 2008, 32(5): 1157-1165. [26] Yu Q, Elser J J, He N P, et al. Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland.Oecologia, 2011, 166(1): 1-10. [27] Ren H, Zhao C Z, An L J. Spatial point patterns of Stellera chamaejasme and Stipa krylovii populations in degraded grassland of Noxious and Miscellaneous types based on Ripley’s K(r) function. Journal of Arid Land Resources and Environment, 2015, 29(1): 59-64. 任珩, 赵成章, 安丽涓. 基于Ripley的K(r)函数的“毒杂草”型退化草地狼毒与西北针茅种群空间分布格局. 干旱区资源与环境, 2015, 29(1): 59-64. [28] Liu Y, Long R J, Yao T. Research progress on Stellera chamaejasme L. in grassland. Pratacultural Science, 2004, 21(6): 55-61. 刘英, 龙瑞军, 姚拓. 草地狼毒研究进展. 草业科学, 2004, 21(6): 55-61. [29] Wang H, Ma Q C, Geng P S, et al. Progress on Stellera chamaejasme in natural grasslands. Progress in Veterinary Medicine, 2015, 36(12): 154-160. 王欢, 马青成, 耿朋帅, 等. 天然草地瑞香狼毒研究进展. 动物医学进展, 2015, 36(12): 154-160. [30] Sun G, Luo P, Wu N, et al. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology and Biochemistry, 2009, 41(1): 86-91. [31] Bao G S, Wang Y Q, Song M L, et al. Effects of Stellera chamaejasme patches on the surrounding grassland community and on soil physical-chemical properties in degraded grasslands susceptible to S. chamaejasme invasion. Acta Prataculturae Sinica, 2019, 28(3): 51-61. 鲍根生, 王玉琴, 宋梅玲, 等. 狼毒斑块对狼毒型退化草地植被和土壤理化性质影响的研究. 草业学报, 2019, 28(3): 51-61. [32] Song M L, Wang Y Q, Bao G S, et al. Effect of different management methods on the community structure and forage quality in Stellera-dominated degraded grassland. Pratacultural Science, 2018, 35(10): 2318-2326. 宋梅玲, 王玉琴, 鲍根生, 等. 不同草地管理措施对狼毒型退化草地群落结构及牧草品质的影响. 草业科学, 2018, 35(10): 2318-2326. [33] Fu Y. Study on allelopathy of Stellera chamaejasme of Horqin grassland. Shenyang: Northeastern University, 2008. 富瑶. 科尔沁草地瑞香狼毒化感作用研究. 沈阳: 东北大学, 2008. [34] Jo B G, Park N J, Jegal J, et al. A new flavonoid from Stellera chamaejasme L. stechamone, alleviated 2,4-dinitrochlorobenzene- induced atopic dermatitis-like skin lesions in a murine model. International Immunopharmacology, 2018, 59(6): 113-119. [35] Lü X T, Han X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 2010, 327(1/2): 481-491. [36] Bao S D. Soil agro-chemistrical analysis. Beijing: Chinese Agricultural Press, 2005. 鲍士旦. 土壤农化学分析. 北京: 中国农业出版社, 2005. [37] Zhang H, Guo W H, Yu M K, et al. Latitudinal patterns of leaf N, P stoichiometry and nutrient resorption of Metasequoia glyptostroboides along the eastern coastline of China. Science of the Total Environment, 2018, 618: 1-6. [38] Lu J Y, He S B, Wang Z N, et al. Carbon, nitrogen and phosphorus stoichiometry in differently aged lucerne stands during flowering. Legume Research, 2016, 39(4): 595-600. [39] He J S, Fang J Y, Wang Z H, et al. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 2006, 149(1): 115-122. [40] Rong Q Q, Liu J T, Cai Y P, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China. Ecological Engineering, 2015, 76(3): 57-65. [41] Sardans J, Peñuelas J. Drought changes nutrient sources, content and stoichiometry in the bryophyte Hypnum cupressiforme Hedw. growing in a Mediterranean forest. Journal of Bryology, 2008, 30(1): 59-65. [42] Fan B, He G X, Shi L T, et al. Differences in nutrient content and nutrient resorption efficiencies of grass leaves among different species in arid-hot valley. Southwest China Journal of Agricultural Sciences, 2017, 30(9): 2053-2059. 樊博, 何光熊, 史亮涛, 等. 干热河谷草本植物叶片养分含量与养分再吸收效率的种间差异. 西南农业学报, 2017, 30(9): 2053-2059. [43] Wang Z N, Zhao M, Yang Y, et al. Relationships between alfalfa leaf nutrient resorption and stoichiometric ratios of nitrogen, phosphorus, and potassium. Acta Prataculturae Sinica, 2019, 28(11): 177-183. 王振南, 赵梅, 杨燕, 等. 苜蓿叶片氮、磷和钾养分重吸收与化学计量比的偶联关系. 草业学报, 2019, 28(11): 177-183. [44] Zhang J R. Effects of fertilization on leaf N and P resorption in an alpine meadow of Tibetan Plateau. Lanzhou: Lanzhou University, 2016. 张晶然. 施肥对青藏高原高寒草甸植物叶片氮磷重吸收的影响. 兰州: 兰州大学, 2016. [45] Yuan Z Y, Chen H Y H. Global trends in senesced-leaf nitrogen and phosphorus. Global Ecology and Biogeography, 2009, 18(5): 532-542. [46] Sterner R W, Elser J J. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton: Princeton University Press, 2002. [47] Elser J J, Dobberfuhl D R, MacKay N A, et al. Organism size, life history, and N∶P stoichiometry. BioScience, 1996, 46(9): 674-684. [48] Güsewell S. N∶P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 2004, 164(2): 243-266. [49] Cordell S, Goldstein G, Meinzer F C, et al. Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia, 2001, 127(2): 198-206. [50] Fan J W, Harris W, Zhong H P. Stoichiometry of leaf nitrogen and phosphorus of grasslands of the Inner Mongolian and Qinghai-Tibet Plateaus in relation to climatic variables and vegetation organization levels. Ecological Research, 2016, 31(6): 821-829. |