草业学报 ›› 2021, Vol. 30 ›› Issue (1): 189-196.DOI: 10.11686/cyxb2020297
收稿日期:
2020-06-29
修回日期:
2020-09-27
出版日期:
2021-01-20
发布日期:
2021-01-08
通讯作者:
万里强
作者简介:
Corresponding author. E-mail: wanliqiang@caas.cn基金资助:
Zhen-song LI(), Li-qiang WAN(), Shuo LI(), Xiang-lin LI
Received:
2020-06-29
Revised:
2020-09-27
Online:
2021-01-20
Published:
2021-01-08
Contact:
Li-qiang WAN
摘要:
为了研究苜蓿根系构型及生理特性对干旱复水后的响应,对肇东苜蓿进行盆栽控水试验。设置正常供水(CK)、轻度干旱(LS)、中度干旱(MS)和重度干旱(SS) 4个处理,在干旱处理4周后进行复水,研究各处理间根系构型及生理指标的差异。结果表明:干旱处理对根干重和根尖数有极显著影响(P<0.01),对比根长、根表面积、根体积和根密度有显著影响(P<0.05)。干旱胁迫抑制了根系的生长,降低了根干重、根长、根表面积、根体积、根密度和根尖数等形态指标,促进了比根长的增加。各处理间拓扑指数差异显著(P<0.05),干旱促进苜蓿根系从二分枝型向人字形结构转变。干旱胁迫极显著(P<0.01)增加了根系丙二醛(MDA)和超氧负离子(O2-)的含量,同时超氧化物歧化酶(SOD)活性和谷胱甘肽(GSH)含量也极显著增加(P<0.01),从而保持体内活性氧处于较低水平。脱落酸(ABA)含量在干旱胁迫下极显著(P<0.01)增加,通过其生理作用及信号传导途径提高苜蓿抗旱性。
李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196.
Zhen-song LI, Li-qiang WAN, Shuo LI, Xiang-lin LI. Response of alfalfa root architecture and physiological characteristics to drought and rehydration[J]. Acta Prataculturae Sinica, 2021, 30(1): 189-196.
处理 Treatment | 土壤含水量 Soil moisture | |||
---|---|---|---|---|
第1~4周 1st to 4th weeks | 第5周5th week | 第6周6th week | 第7周7th week | |
CK | 饱和含水量75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
LS | 饱和含水量60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
MS | 饱和含水量的45%~50% 45%-50% water holding capacity | 饱和含水量的60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
SS | 饱和含水量的30%~35% 30%-35% water holding capacity | 饱和含水量的45%~50% 45%-50% water holding capacity | 饱和含水量的60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
表1 不同处理土壤含水量及处理时间
Table 1 Different treatment soil moisture content and treatment time
处理 Treatment | 土壤含水量 Soil moisture | |||
---|---|---|---|---|
第1~4周 1st to 4th weeks | 第5周5th week | 第6周6th week | 第7周7th week | |
CK | 饱和含水量75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
LS | 饱和含水量60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
MS | 饱和含水量的45%~50% 45%-50% water holding capacity | 饱和含水量的60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
SS | 饱和含水量的30%~35% 30%-35% water holding capacity | 饱和含水量的45%~50% 45%-50% water holding capacity | 饱和含水量的60%~65% 60%-65% water holding capacity | 饱和含水量的75%~80% 75%-80% water holding capacity |
处理 Treatment | 根干重 Root dry weight (g·plant-1) | 根长 Root length (cm) | 比根长 Specific root length (cm·g-1) |
---|---|---|---|
CK | 0.79±0.09A | 618±178 | 957±64bc |
LS | 0.50±0.03B | 292±86 | 1126±224ab |
MS | 0.59±0.04B | 484±84 | 1392±71a |
SS | 0.74±0.02A | 356±162 | 641±227c |
表2 不同处理对根干重、根长和比根长的影响
Table 2 Effects of different treatments on root dry weight, root length and specific root length
处理 Treatment | 根干重 Root dry weight (g·plant-1) | 根长 Root length (cm) | 比根长 Specific root length (cm·g-1) |
---|---|---|---|
CK | 0.79±0.09A | 618±178 | 957±64bc |
LS | 0.50±0.03B | 292±86 | 1126±224ab |
MS | 0.59±0.04B | 484±84 | 1392±71a |
SS | 0.74±0.02A | 356±162 | 641±227c |
处理 Treatment | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根密度 Root density (cm·cm-3) |
---|---|---|---|
CK | 93.10±11.14a | 0.83±0.02a | 838.15±196.10a |
LS | 34.42±8.53b | 0.32±0.01c | 292.63±85.50b |
MS | 59.27±7.47b | 0.67±0.01ab | 577.79±49.61ab |
SS | 43.88±23.97b | 0.44±0.29bc | 356.23±151.61b |
表3 不同处理对根表面积、根体积和根密度的影响
Table 3 Effects of different treatments on root surface area, root volume and root density
处理 Treatment | 根表面积 Root surface area (cm2) | 根体积 Root volume (cm3) | 根密度 Root density (cm·cm-3) |
---|---|---|---|
CK | 93.10±11.14a | 0.83±0.02a | 838.15±196.10a |
LS | 34.42±8.53b | 0.32±0.01c | 292.63±85.50b |
MS | 59.27±7.47b | 0.67±0.01ab | 577.79±49.61ab |
SS | 43.88±23.97b | 0.44±0.29bc | 356.23±151.61b |
处理 Treatment | 根尖数 Number of root tip (No.) | 拓扑指数 Topological index |
---|---|---|
CK | 3948±764A | 0.5899±0.0068c |
LS | 1463±320B | 0.6386±0.0031a |
MS | 2298±424B | 0.6203±0.0079ab |
SS | 1520±562B | 0.6022±0.0227bc |
表4 不同处理对根尖数和拓扑指数的影响
Table 4 Effects of different treatments on the number of root tip and topological index
处理 Treatment | 根尖数 Number of root tip (No.) | 拓扑指数 Topological index |
---|---|---|
CK | 3948±764A | 0.5899±0.0068c |
LS | 1463±320B | 0.6386±0.0031a |
MS | 2298±424B | 0.6203±0.0079ab |
SS | 1520±562B | 0.6022±0.0227bc |
处理 Treatment | 丙二醛 MDA (nmol·g-1) | 过氧化氢 H2O2 (mol·g-1) | 超氧阴离子 O2- (U·g-1) |
---|---|---|---|
CK | 21.33±2.17C | 55.47±11.04 | 14.28±0.05C |
LS | 35.60±1.73B | 70.83±9.24 | 14.86±0.08B |
MS | 35.41±2.59B | 72.33±12.54 | 15.30±0.06A |
SS | 41.06±1.87A | 63.37±13.86 | 15.00±0.09B |
表5 不同处理对丙二醛、过氧化氢和超氧阴离子的影响
Table 5 Effects of different treatments on MDA, H2O2 and O2-
处理 Treatment | 丙二醛 MDA (nmol·g-1) | 过氧化氢 H2O2 (mol·g-1) | 超氧阴离子 O2- (U·g-1) |
---|---|---|---|
CK | 21.33±2.17C | 55.47±11.04 | 14.28±0.05C |
LS | 35.60±1.73B | 70.83±9.24 | 14.86±0.08B |
MS | 35.41±2.59B | 72.33±12.54 | 15.30±0.06A |
SS | 41.06±1.87A | 63.37±13.86 | 15.00±0.09B |
处理 Treatment | 超氧化物歧化酶 SOD (U·g-1) | 过氧化氢酶CAT (U·g-1) | 谷胱甘肽GSH (nmol·g-1) |
---|---|---|---|
CK | 2637±18C | 18.43±1.38A | 68.83±9.44C |
LS | 2697±12B | 18.16±1.53A | 125.00±7.22B |
MS | 2805±24A | 15.72±1.38A | 112.17±11.55B |
SS | 2785±26A | 9.49±1.67B | 169.00±9.91A |
表6 不同处理对超氧化物歧化酶、过氧化氢酶和谷胱甘肽的影响
Table 6 Effects of different treatments on SOD, CAT and GSH
处理 Treatment | 超氧化物歧化酶 SOD (U·g-1) | 过氧化氢酶CAT (U·g-1) | 谷胱甘肽GSH (nmol·g-1) |
---|---|---|---|
CK | 2637±18C | 18.43±1.38A | 68.83±9.44C |
LS | 2697±12B | 18.16±1.53A | 125.00±7.22B |
MS | 2805±24A | 15.72±1.38A | 112.17±11.55B |
SS | 2785±26A | 9.49±1.67B | 169.00±9.91A |
图1 不同处理对根系脱落酸含量的影响不同大写字母代表各处理间差异极显著(P<0.01)。The different capital letters represent extremely significant differences between treatments (P<0.01).
Fig.1 Effects of different treatments on ABA content of roots
1 | Akhtar J, Galloway A F, Nikolopoulos G, et al. A quantitative method for the high throughput screening for the soil adhesion properties of plant and microbial polysaccharides and exudates. Plant Soil, 2018, 428: 57-65. |
2 | Richards J H, Caldwell M M. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentate roots. Oecologia, 1987, 73(4): 486-489. |
3 | Hu X, Li X Y, Wang P, et al. Influence of exclosure on CT-measured soil macropores and root architecture in a shrub-encroached grassland in Northern China. Soil and Tillage Research, 2019, 187: 21-30. |
4 | Li W R, Zhang S Q, Ding S Y, et al. Root morphological variation and water use in alfalfa under drought stress. Acta Ecologica Sinica, 2010, 30(19): 5140-5150. |
李文娆, 张岁岐, 丁圣彦, 等. 干旱胁迫下紫花苜蓿根系形态变化及与水分利用的关系. 生态学报, 2010, 30(19): 5140-5150. | |
5 | Zhang X D, Wang Z W, Han Q F, et al.Effects of water stress on the root structure and physiological characteristics of early-stage maize. Acta Ecologica Sinica, 2016, 36(10): 2969-2977. |
张旭东, 王智威, 韩清芳, 等. 玉米早期根系构型及其生理特性对土壤水分的响应. 生态学报, 2016, 36(10): 2969-2977. | |
6 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89 |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
7 | Li S, Wan L Q, Nie Z N, et al. Fractal and topological analyses and antioxidant defense systems of alfalfa (Medicago sativa L.) root system under drought and rehydration regimes. Agronomy, 2020, 10(6): 805. |
8 | Xu X N, Yi J, Yu L Q, et al. Advances on drought resistance of alfalfa. Chinese Agricultural Science Bulletin, 2009, 25(21): 180-184. |
徐向南, 易津, 于林清, 等. 紫花苜蓿抗旱性研究进展. 中国农学通报, 2009, 25(21): 180-184. | |
9 | Liu J X, Wang X, Wang F Q. Effect of water stress on osmotic adjustment and activity of protective enzymes in alfalfa seedlings. Pratacultural Science, 2005, 22(3): 18-21. |
刘建新, 王鑫, 王凤琴. 水分胁迫对苜蓿幼苗渗透调节物质积累和保护酶活性的影响. 草业科学, 2005, 22(3): 18-21. | |
10 | Khalloufi F, Oufdou K, Lahrouni M, et al. Physiological and antioxidant responses of Medicago sativa-rhizobia symbiosis to cyanobacterial toxins (Microcystins) exposure. Toxicon, 2013(76): 167-177. |
11 | Wang Y, Ma F, Li M, et al. Physiological responses of kiwifruit plants to exogenous ABA under drought conditions. Plant Growth Regulation, 2011, 64(1): 63-74. |
12 | Wang J Q, Li H, Liu Q, et al. Effects of exogenous plant hormones on physiological characteristics and yield of sweet potato under drought stress. Chinese Journal of Applied Ecology, 2020, 31(1): 189-198. |
王金强, 李欢, 刘庆, 等. 干旱胁迫下喷施外源植物激素对甘薯生理特性和产量的影响. 应用生态学报, 2020, 31(1): 189-198. | |
13 | Lynch J. Root architecture and plant productivity. Plant Physiology, 1995, 109(1): 7-13. |
14 | Fitter A H, Stickland T R, Harvey M L, et al. Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytologist, 1991, 118(3): 375-382. |
15 | Fitter A H, Stickland T R. Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytologist, 1991, 118(3): 383-389. |
16 | Berntson G M. Topological scaling and plant root system architecture: Developmental and functional hierarchies. New Phytologist, 1997, 135(4): 621-634. |
17 | Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Beijing: Academic Press, 1968, 125(1): 189-198. |
18 | Willekens H, Chamnongpol S, Davey M, et al. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal, 1997, 16(16): 4806-4816. |
19 | Elstner E F, Heupel A. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta, 1976, 130(3): 175-180. |
20 | Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 1977, 59(2): 309-314. |
21 | Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22(5): 867-880. |
22 | Griffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Beijing: Academic Press, 1980, 106(1): 207-212. |
23 | Zhang X H, Wang W R, Xu X F, et al. Determination of the content of gibberellin and abscisic acid in soybean by high performance liquid chromatography. Chinese Journal of Health Laboratory Technology, 2012, 22(12): 2825-2826. |
张秀红, 王文瑞, 徐晓枫, 等. 高效液相色谱测定大豆中赤霉素和脱落酸含量方法的建立. 中国卫生检验杂志, 2012, 22(12): 2825-2826. | |
24 | Zhao L Y, Deng X P, Shan L. A review on types and mechanisms of compensation effect of crops under water deficit. Chinese Journal of Applied Ecology, 2004, 15(3): 523-526. |
赵丽英, 邓西平, 山仑. 水分亏缺下作物补偿效应类型及机制研究概述. 应用生态学报, 2004, 15(3): 523-526. | |
25 | Zhou L, Gan Y, Ou X B, et al. Progress in molecular and physiological mechanisms of water-saving by compensation for water deficit of crop and how they relate to crop production. Chinese Journal of Eco-Agriculture, 2011, 19(1): 217-225. |
周磊, 甘毅, 欧晓彬, 等. 作物缺水补偿节水的分子生理机制研究进展. 中国生态农业学报, 2011, 19(1): 217-225. | |
26 | Dorlodot S D, Forster B, Pagès L, et al. Root system architecture: Opportunities and constraints for genetic improvement of crops. Trends in Plant Science, 2007, 12(10): 474-481. |
27 | Jongrungklang N, Toomsan B, Vorasoot N, et al. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress. Field Crop Research, 2010, 120(1): 265-270. |
28 | Shan L S, Li Y, Duan Y N, et al. Response of root morphology and water use efficiency of Reaumuria soongoricato soil water change. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1198-1205. |
单立山, 李毅, 段雅楠, 等. 红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应. 西北植物学报, 2014, 34(6): 1198-1205. | |
29 | Oppelt A L, Kurth W, Godbold D L. Topology, scaling relations and Leonardo’s rule in root systems from African tree species. Tree Physiology, 2001, 21(2): 117-128. |
30 | Li W T, Ning P, Wang F, et al. Effects of exogenous abscisic acid (ABA) on growth and physiological characteristics of Machilus yunnanensis seedlings under drought stress. Chinese Journal of Applied Ecology, 2020, 31(5): 1543-1550. |
李琬婷, 宁朋, 王菲, 等. 外源脱落酸对干旱胁迫下滇润楠幼苗生长及生理特性的影响. 应用生态学报, 2020, 31(5): 1543-1550. | |
31 | Choudhury F K, Rivero R M, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination. The Plant Journal, 2017, 90(5): 856-867. |
32 | Li H, Li B, Ma H, et al. Effects on antioxidative enzymes of alfalfa seedlings under simulated drought. Grassland and Turf, 2016, 36(4): 54-58. |
李红, 李波, 马赫, 等. 模拟干旱胁迫对苜蓿幼苗抗氧化酶系统的影响. 草原与草坪, 2016, 36(4): 54-58. | |
33 | Zhang L X, Li S X. Effects of nitrogen, potassium and glycine betaine on the lipid peroxidation and protective enzymes activities in water-stressed summer maize. Acta Agronomica Sinica, 2007, 33(3): 482-490. |
张立新, 李生秀. 氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜脂过氧化和保护酶活性的影响. 作物学报, 2007, 33(3): 482-490. | |
34 | Li C Y, Tian X R, Chen J, et al. Physiological response of Plagiomniumacutum during desiccation and rehydration process. Guihaia, 2009, 29(1): 139-142. |
李朝阳, 田向荣, 陈军, 等. 脱水与复水过程中湿地匍灯藓的生理生化响应. 广西植物, 2009, 29(1): 139-142. | |
35 | Wang H Z, Ma J, Li X Y, et al. Effects of water stress on active oxygen generation and protection system in rice during grain filling stage. Scientia Agricultura Sinica, 2007, 7: 1379-1387. |
王贺正, 马均, 李旭毅, 等. 水分胁迫对水稻结实期活性氧产生和保护系统的影响. 中国农业科学, 2007, 7: 1379-1387. | |
36 | Cui Y Y, Pandey D M, Hahn E J, et al.Effect of drought on physiological aspects of crassulacean acid metabolism in Doritaenopsis. Plant Science, 2004, 167(6): 1219-1226. |
37 | Guerrero F, Mullet J E. Increased abscisic acid biosynthesis during plant dehydration requires transcription. Plant Physiology, 1986, 80(2): 588-591. |
38 | Zhang J H, Jia W S, Yang J C, et al. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Research, 2006, 97(1): 111-119. |
39 | Shen Y Y, Huang C L, Zhang X H, et al. Plant drought tolerance molecular mechanism. Chinese Journal of Eco-Agriculture, 2002, 10(1): 30-34. |
沈元月, 黄丛林, 张秀海, 等. 植物抗旱的分子机制研究. 中国生态农业学报, 2002, 10(1): 30-34. | |
40 | Jia W S, Xing Y, Lu C M, et al. Signal transduction from water stress perception to ABA accumulation. Acta Botanica Sinica, 2002, 44(10): 1135-1141. |
41 | Li J, Li C Y. Seventy-year major research progress in plant hormones by Chinese scholars. Science Sinica, 2019, 49(10): 1227-1281. |
黎家, 李传友. 新中国成立70年来植物激素研究进展. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
[1] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[2] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[3] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[4] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[5] | 项洪涛, 郑殿峰, 何宁, 李琬, 王曼力, 王诗雅. 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展[J]. 草业学报, 2021, 30(1): 208-219. |
[6] | 吴勇, 刘晓静, 蔺芳, 童长春. 河西荒漠灌区紫花苜蓿施肥效应及其基于数据包络分析法的经济效益研究[J]. 草业学报, 2020, 29(9): 94-105. |
[7] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[8] | 覃凤飞, 李志华, 刘信宝, 渠晖, 平措卓玛, 洛松群措, 苏梦涵. 外源2,4表油菜素内酯对越夏期高温与弱光胁迫下紫花苜蓿生长和光合性能的影响[J]. 草业学报, 2020, 29(9): 146-160. |
[9] | 童长春, 刘晓静, 蔺芳, 于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究[J]. 草业学报, 2020, 29(8): 70-80. |
[10] | 崔雪莲, 夏超. 外源脱落酸对醉马草内生真菌共生体幼苗建植过程的影响[J]. 草业学报, 2020, 29(7): 70-80. |
[11] | 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响[J]. 草业学报, 2020, 29(5): 109-120. |
[12] | 陈有军, 董全民, 周青平. 不同水分和土壤处理对糙毛以礼草苗期根系构型和根鞘形成的影响[J]. 草业学报, 2020, 29(3): 60-69. |
[13] | 于浩然, 格根图, 王志军, 贾玉山, 连植, 贾鹏飞. 甲酸添加剂及青贮时间对紫花苜蓿青贮品质的影响[J]. 草业学报, 2020, 29(3): 89-95. |
[14] | 高丽敏, 苏晶, 田倩, 沈益新. 施氮对不同水分条件下紫花苜蓿氮素吸收及根系固氮酶活性的影响[J]. 草业学报, 2020, 29(3): 130-136. |
[15] | 钱志豪, 韩丙芳, 刘自婷, 蔡伟, 伏兵哲, 马红彬. 渗灌对宁夏引黄灌区苜蓿生长性状及水分利用率的影响[J]. 草业学报, 2020, 29(3): 147-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||