草业学报 ›› 2021, Vol. 30 ›› Issue (3): 158-166.DOI: 10.11686/cyxb2020147
张迪1,2(), 任立飞1, 刘广彬3, 罗伏青4, 张文浩1, 王天佐1()
收稿日期:
2020-03-31
修回日期:
2020-06-04
出版日期:
2021-03-20
发布日期:
2021-03-09
通讯作者:
王天佐
作者简介:
Corresponding author. E-mail: tzwang@ibcas.ac.cn基金资助:
Di ZHANG1,2(), Li-fei REN1, Guang-bin LIU3, Fu-qing LUO4, Wen-hao ZHANG1, Tian-zuo WANG1()
Received:
2020-03-31
Revised:
2020-06-04
Online:
2021-03-20
Published:
2021-03-09
Contact:
Tian-zuo WANG
摘要:
以中科1号黄花苜蓿为材料,研究了不同干燥方式对苜蓿种子萌发率的影响;并采用非靶向代谢组学技术,利用高效液相色谱串联质谱的方法,分析了自然干燥、39 ℃干燥和65 ℃干燥3种干燥方式下苜蓿种子代谢物的变化。结果发现,39 ℃为不影响苜蓿种子萌发率的最高干燥温度,65 ℃干燥可使苜蓿种子萌发率下降50%;39 ℃干燥和自然干燥相对于新鲜种子产生的差异代谢物最相近,65 ℃干燥造成的代谢物差异较大;核苷、核苷酸及类似物是高温干燥造成的种子差异代谢物中最大的一类,其次为脂类及类脂分子和有机酸及其衍生物;高温干燥对种子嘌呤代谢途径影响最大。研究结果从代谢的角度阐明了高温干燥造成苜蓿种子萌发率降低的机理,为苜蓿种子干燥设备的设计提供了理论基础。
张迪, 任立飞, 刘广彬, 罗伏青, 张文浩, 王天佐. 不同干燥方式对苜蓿种子代谢物的影响[J]. 草业学报, 2021, 30(3): 158-166.
Di ZHANG, Li-fei REN, Guang-bin LIU, Fu-qing LUO, Wen-hao ZHANG, Tian-zuo WANG. Comparative metabolite profiling of alfalfa seeds dried at different temperatures[J]. Acta Prataculturae Sinica, 2021, 30(3): 158-166.
编号Codes | 比较组Comparison groups |
---|---|
A | 自然干燥/新鲜种子Natural drying/fresh seeds |
B | 39 ℃干燥/新鲜种子 39 ℃ drying/fresh seeds |
C | 65 ℃干燥/新鲜种子 65 ℃ drying/fresh seeds |
D | 39 ℃干燥/自然干燥 39 ℃ drying/natural drying |
E | 65 ℃干燥/自然干燥 65 ℃ drying/natural drying |
F | 65 ℃干燥/39 ℃干燥 65 ℃ drying/39 ℃ drying |
表1 比较组设置
Table 1 Comparison groups
编号Codes | 比较组Comparison groups |
---|---|
A | 自然干燥/新鲜种子Natural drying/fresh seeds |
B | 39 ℃干燥/新鲜种子 39 ℃ drying/fresh seeds |
C | 65 ℃干燥/新鲜种子 65 ℃ drying/fresh seeds |
D | 39 ℃干燥/自然干燥 39 ℃ drying/natural drying |
E | 65 ℃干燥/自然干燥 65 ℃ drying/natural drying |
F | 65 ℃干燥/39 ℃干燥 65 ℃ drying/39 ℃ drying |
图1 不同干燥方式对苜蓿种子萌发率的影响不同字母表示处理间差异显著(P<0.05)。Different letters indicate significant differences among different drying methods at the 0.05 level.
Fig.1 Effect of different drying methods on germination rate of alfalfa seeds
分类Groups | 数目Number |
---|---|
脂类及类脂分子Lipids and lipid-like molecules | 188 |
有机酸及其衍生物Organic acids and derivatives | 106 |
苯丙酸和聚酮Phenylpropanoids and polyketides | 72 |
未分类Unclassed | 59 |
有机杂环化合物Organoheterocyclic compounds | 33 |
有机氧化合物Organic oxygen compounds | 28 |
苯环型化合物Benzenoids | 23 |
核苷、核苷酸及类似物Nucleosides, nucleotides, and analogues | 23 |
有机氮化合物Organic nitrogen compounds | 7 |
生物碱及其衍生物Alkaloids and derivatives | 5 |
磺胺嘧啶Sulfadiazine | 1 |
表2 识别到的代谢物分类
Table 2 Classification of identified metabolites
分类Groups | 数目Number |
---|---|
脂类及类脂分子Lipids and lipid-like molecules | 188 |
有机酸及其衍生物Organic acids and derivatives | 106 |
苯丙酸和聚酮Phenylpropanoids and polyketides | 72 |
未分类Unclassed | 59 |
有机杂环化合物Organoheterocyclic compounds | 33 |
有机氧化合物Organic oxygen compounds | 28 |
苯环型化合物Benzenoids | 23 |
核苷、核苷酸及类似物Nucleosides, nucleotides, and analogues | 23 |
有机氮化合物Organic nitrogen compounds | 7 |
生物碱及其衍生物Alkaloids and derivatives | 5 |
磺胺嘧啶Sulfadiazine | 1 |
比较组 Comparison groups | 代谢物 Metabolites | 含量变化 Content change | 分类 Groups |
---|---|---|---|
A、B和C三个比较组共有差异代谢物 The common differential metabolites among A, B and C comparison groups | 8-羟基鸟嘌呤8-Hydroxyguanine | 下调Down-regulation | 有机杂环化合物Organoheterocyclic compounds |
15-羟基二十碳-5Z,8Z,11Z,13E-四烯酸 5-Hydroperoxy-5Z,8Z,11Z,13E-Eicosatetraenoic acid | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules | |
槲皮素Quercetin | 下调Down-regulation | 苯丙酸和聚酮 Phenylpropanoids and polyketides | |
C、E和F三个比较组共有差异代谢物 The common differential metabolites among C, E and F comparison groups | 1,3,5-苯三酚1,3,5-Benzenetriol | 上调Up-regulation | 有机杂环化合物Organoheterocyclic compounds |
脱氧腺苷 Deoxyadenosine | 下调Down-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
3'-磷酸腺苷3'-Adenosine monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
2',3'-环磷酸腺苷 Adenosine 2',3'-cyclic phosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
2'-磷酸腺苷Adenosine 2'-Monophosphate | 上调Up-regulation | 有机氧化合物 Organic oxygen compounds | |
腺苷Adenosine | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
磷酸腺苷Adenosine phosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
2',3'-环磷酸鸟苷 Guanosine-2',3'-cyclic monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
戊草丹Esprocarb | 上调Up-regulation | 未分类Unclassed | |
鸟苷Guanosine | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
磷酸鸟苷 Guanosine monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
3'-磷酸鸟苷Guanosine 3'-Monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
3',5'-环磷酸鸟苷 Guanosine-3',5'-Cyclic monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
异亮氨酸-脯氨酸Ile-Pro | 上调Up-regulation | 有机酸及其衍生物 Organic acids and derivatives | |
苯丙氨酸-脯氨酸Phe-Pro | 上调Up-regulation | 有机酸及其衍生物 Organic acids and derivatives | |
尿苷5'-单磷酸Uridine 5'-Monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
缬氨酸-脯氨酸Val-Pro | 上调Up-regulation | 有机酸及其衍生物 Organic acids and derivatives | |
B和D两个比较组共有差异代谢物The common differential metabolites between B and D comparison groups | L-谷胱甘肽(氧化型)L-Glutathione (oxidized form) | 上调Up-regulation | 有机酸及其衍生物 Organic acids and derivatives |
C和E两个比较组共有差异代谢物 The common differential metabolites between C and E comparison groups | 3-恶辛酸3-Oxooctadecanoic acid | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules |
13-羟基亚油酸13-Hydroxylinoleic acid | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules | |
溶血磷脂酰乙醇胺 LysoPE 18:2 | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules | |
C和F两个比较组共有差异代谢物 The common differential metabolites between C and F comparison groups | 5'-磷酸胞苷 Cytidine-5'-Monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues |
5'-磷酸胸腺嘧啶 Thymidine-5'-Monophosphate | 下调Down-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
E和F两个比较组共有差异代谢物 The common differential metabolites between E and F comparison groups | 3'-磷酸胞苷 Cytidine-3'-Monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物Nucleosides, nucleotides, and analogues |
鸟嘌呤Guanine | 上调Up-regulation | 有机杂环化合物Organoheterocyclic compounds | |
A比较组特有差异代谢物 The specific differential metabolite in A comparison group | 儿茶素Catechin | 下调Down-regulation | 苯丙酸和聚酮 Phenylpropanoids and polyketides |
C比较组特有差异代谢物 The specific differential metabolites in C comparison group | 桦木酸Betulinic acid | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules |
虫草素Cordycepin | 下调Down-regulation | 未分类Unclassed | |
3-羟基十二酸乙酯Ethyl 3-Hydroxydodecanoate | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules | |
苏氨酸-γ-谷氨酸盐Threoninyl-Gamma-Glutamate | 下调Down-regulation | 有机酸及其衍生物 Organic acids and derivatives | |
反式玉米素核糖 Trans-Zeatin riboside | 下调Down-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues |
表3 不同比较组共有和特异的差异代谢物
Table 3 The common and specific differential metabolites among comparison groups
比较组 Comparison groups | 代谢物 Metabolites | 含量变化 Content change | 分类 Groups |
---|---|---|---|
A、B和C三个比较组共有差异代谢物 The common differential metabolites among A, B and C comparison groups | 8-羟基鸟嘌呤8-Hydroxyguanine | 下调Down-regulation | 有机杂环化合物Organoheterocyclic compounds |
15-羟基二十碳-5Z,8Z,11Z,13E-四烯酸 5-Hydroperoxy-5Z,8Z,11Z,13E-Eicosatetraenoic acid | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules | |
槲皮素Quercetin | 下调Down-regulation | 苯丙酸和聚酮 Phenylpropanoids and polyketides | |
C、E和F三个比较组共有差异代谢物 The common differential metabolites among C, E and F comparison groups | 1,3,5-苯三酚1,3,5-Benzenetriol | 上调Up-regulation | 有机杂环化合物Organoheterocyclic compounds |
脱氧腺苷 Deoxyadenosine | 下调Down-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
3'-磷酸腺苷3'-Adenosine monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
2',3'-环磷酸腺苷 Adenosine 2',3'-cyclic phosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
2'-磷酸腺苷Adenosine 2'-Monophosphate | 上调Up-regulation | 有机氧化合物 Organic oxygen compounds | |
腺苷Adenosine | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
磷酸腺苷Adenosine phosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
2',3'-环磷酸鸟苷 Guanosine-2',3'-cyclic monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
戊草丹Esprocarb | 上调Up-regulation | 未分类Unclassed | |
鸟苷Guanosine | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
磷酸鸟苷 Guanosine monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
3'-磷酸鸟苷Guanosine 3'-Monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
3',5'-环磷酸鸟苷 Guanosine-3',5'-Cyclic monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
异亮氨酸-脯氨酸Ile-Pro | 上调Up-regulation | 有机酸及其衍生物 Organic acids and derivatives | |
苯丙氨酸-脯氨酸Phe-Pro | 上调Up-regulation | 有机酸及其衍生物 Organic acids and derivatives | |
尿苷5'-单磷酸Uridine 5'-Monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
缬氨酸-脯氨酸Val-Pro | 上调Up-regulation | 有机酸及其衍生物 Organic acids and derivatives | |
B和D两个比较组共有差异代谢物The common differential metabolites between B and D comparison groups | L-谷胱甘肽(氧化型)L-Glutathione (oxidized form) | 上调Up-regulation | 有机酸及其衍生物 Organic acids and derivatives |
C和E两个比较组共有差异代谢物 The common differential metabolites between C and E comparison groups | 3-恶辛酸3-Oxooctadecanoic acid | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules |
13-羟基亚油酸13-Hydroxylinoleic acid | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules | |
溶血磷脂酰乙醇胺 LysoPE 18:2 | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules | |
C和F两个比较组共有差异代谢物 The common differential metabolites between C and F comparison groups | 5'-磷酸胞苷 Cytidine-5'-Monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues |
5'-磷酸胸腺嘧啶 Thymidine-5'-Monophosphate | 下调Down-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues | |
E和F两个比较组共有差异代谢物 The common differential metabolites between E and F comparison groups | 3'-磷酸胞苷 Cytidine-3'-Monophosphate | 上调Up-regulation | 核苷、核苷酸及类似物Nucleosides, nucleotides, and analogues |
鸟嘌呤Guanine | 上调Up-regulation | 有机杂环化合物Organoheterocyclic compounds | |
A比较组特有差异代谢物 The specific differential metabolite in A comparison group | 儿茶素Catechin | 下调Down-regulation | 苯丙酸和聚酮 Phenylpropanoids and polyketides |
C比较组特有差异代谢物 The specific differential metabolites in C comparison group | 桦木酸Betulinic acid | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules |
虫草素Cordycepin | 下调Down-regulation | 未分类Unclassed | |
3-羟基十二酸乙酯Ethyl 3-Hydroxydodecanoate | 下调Down-regulation | 脂类及类脂分子 Lipids and lipid-like molecules | |
苏氨酸-γ-谷氨酸盐Threoninyl-Gamma-Glutamate | 下调Down-regulation | 有机酸及其衍生物 Organic acids and derivatives | |
反式玉米素核糖 Trans-Zeatin riboside | 下调Down-regulation | 核苷、核苷酸及类似物 Nucleosides, nucleotides, and analogues |
1 | Zhang W H, Hou L Y, Yang J, et al. Establishment and management of alfalfa pasture in cold regions of China. Chinese Science Bulletin, 2018, 63(17): 1651-1663. |
张文浩, 侯龙鱼, 杨杰, 等. 高寒地区苜蓿人工草地建植技术. 科学通报, 2018, 63(17): 1651-1663. | |
2 | Lv H G. Study on the seed production key technology of alfalfa (Medicago sativa L.). Beijing: Chinese Academy of Agricultural Sciences, 2006. |
吕会刚. 紫花苜蓿种子生产关键技术研究. 北京: 中国农业科学院, 2006. | |
3 | Xu P, Chang G Z, Shi S L. Production and processing of Medicago sativa seeds from Zhonglan NO. 1, Gannong NO. 1, 2 and 3. Gansu Agriculture, 2003(12): 42-43. |
徐苹, 常根柱, 师尚礼. 中兰1号和甘农1、2、3号苜蓿种子生产、加工新技术. 甘肃农业, 2003(12): 42-43. | |
4 | Wang X, Yang H P. Breeding technology and storage management of alfalfa seeds in Longdong. China Seed Industry, 2003(7): 37. |
王鑫, 杨会平. 陇东紫花苜蓿种子繁育生产技术与贮藏管理. 中国种业, 2003(7): 37. | |
5 | Wu Y G, Zhang R R, Wang D M, et al. Quality appraisal of the seed grain dryer. Journal of Mechanical & Electrical Engineering, 2017, 34(5): 504-508, 546. |
吴云舸, 张蓉蓉, 王栋明, 等. 谷物干燥机烘干温度对种子发芽率的影响分析. 机电工程, 2017, 34(5): 504-508, 546. | |
6 | Zhou Z Y, Li X C. Internal and external factors affecting seed drying and solutions. Heilongjiang Science and Technology Information, 2009(5): 106. |
周作宇, 李新春. 影响种子烘干内外因素及解决办法. 黑龙江科技信息, 2009(5): 106. | |
7 | Wang D C, Xiao Z W, Wang Y J, et al. Effects of drying on germination characteristics and vigor of maize seeds. China Seed Industry, 2016(10): 47-49. |
王多成, 肖占文, 王永健, 等. 干燥方式对玉米种子发芽特性及活力的影响. 中国种业, 2016(10): 47-49. | |
8 | Ma J X, Tu D P, Kou J C, et al. Effects of drying temperature on water loss and germination rates of leguminous forage seeds. Acta Prataculturae Sinica, 2016, 25(8): 56-64. |
马金星, 屠德鹏, 寇建村, 等. 干燥温度对豆科牧草种子脱水速率和发芽率的影响. 草业学报, 2016, 25(8): 56-64. | |
9 | Yang J C, Bai H S. Application technology of rice seed drying machine. Journal of Zhejiang Agricultural Sciences, 2014(10): 1590-1591, 1595. |
杨建春, 白和盛. 水稻种子烘干机械的应用技术. 浙江农业科学, 2014(10): 1590-1591, 1595. | |
10 | Sumner L W, Mendes P, Dixon R A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 2003, 62(6): 817-836. |
11 | Fiehn O, Kopka J, Dörmann P, et al. Metabolite profiling for plant functional genomics. Nature Biotechnology, 2000, 18(11): 1157-1161. |
12 | Kim S W, Chung H I, Liu J R. Advances in plant metabolomics. Journal of Korea Information & Communications Society, 2006, 33(3): 161-169. |
13 | Xu Q F, Yu Z, Han J G, et al. Determining organic acid in alfalfa silage by HPLC. Grassland and Turf, 2007(2): 63-65, 67. |
许庆方, 玉柱, 韩建国, 等. 高效液相色谱法测定紫花苜蓿青贮中的有机酸. 草原与草坪, 2007(2): 63-65, 67. | |
14 | Zhang J J, Lu Y C, Yang H. Chemical modification and degradation of atrazine in Medicago sativa through multiple pathways. Journal of Agricultural & Food Chemistry, 2014, 62(40): 9657-9668. |
15 | Fan W Q, Ge G T, Cheng Q M, et al. Metabolomics analysis of Medicago sativa L. leaves at different growth stages. Chinese Journal of Grassland, 2018, 40(2): 8-13. |
范文强, 格根图, 成启明, 等. 不同生育时期苜蓿叶片的代谢组学分析. 中国草地学报, 2018, 40(2): 8-13. | |
16 | Dunn W B, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nature Protocols, 2011, 6(7): 1060-1083. |
17 | Wang Y L, Chen H Z, Zhang Y P, et al. Effects of different drying method on drying rate and seed quality of rice. China Rice, 2018, 24(5): 31-33, 38. |
王亚梁, 陈惠哲, 张玉屏, 等. 不同干燥方式对水稻种子干燥速率及种子质量的影响. 中国稻米, 2018, 24(5): 31-33, 38. | |
18 | Zhang Y. The effect of hot air on paddy drying and germinating rate. Nanjing: Nanjing Agricultural University, 2004. |
张银. 热风温度对种子稻谷干燥速率与发芽率的影响. 南京: 南京农业大学, 2004. | |
19 | Guo Y L. Effect of drying at different temperatures on germination rate of cotton seeds. Seed Science & Technology, 2008(4): 47. |
郭艳丽. 不同温度烘干对棉花种子发芽率的影响. 种子科技, 2008(4): 47. | |
20 | Wang L C, Qiao C H, Shi Y, et al. Effects of different treatments on seed germination of Cyclobalanopsis glauca. Practical Forestry Technology, 2015(5): 36-38. |
王立超, 乔春华, 石燕, 等. 不同处理对青冈栎种子发芽的影响. 林业科技通讯, 2015(5): 36-38. | |
21 | Wang P. Thermodynamic analysis and damage mechanism of rice seed during drying process. Beijing: China Agricultural University, 2017. |
王攀. 水稻种子干燥热动力学分析及损伤机理研究. 北京: 中国农业大学, 2017. | |
22 | Vertucci C W, Roos E E. Theoretical basis of protocols for seed storage. Plant Physiology, 1990, 94(3): 1019-1023. |
23 | Jiang Y B, Yang Y R, Wang C Z, et al. Study the characters of physiological and biochemical index of the alfalfa in high temperature stress. Science Technology and Engineering, 2007, 7(5): 820-823. |
姜义宝, 杨玉荣, 王成章, 等. 高温胁迫下苜蓿生理生化特性研究. 科学技术与工程, 2007, 7(5): 820-823. | |
24 | Ma X D, Peng H R, Wang M, et al. Evaluation of heat tolerance in crop. Chinese Bulletin of Botany, 2004, 21(4): 411-418. |
马晓娣, 彭惠茹, 汪矛, 等. 作物耐热性的评价. 植物学报, 2004, 21(4): 411-418. | |
25 | Wu Y, Tian Y, Zhang H X, et al. Effects of salinity, alkalinity, temperature and their interactions on seed germination of Medicago falcata. Pratacultural Science, 2015, 32(11): 1847-1853. |
武祎, 田雨, 张红香, 等. 盐、碱胁迫与温度对黄花苜蓿种子发芽的影响. 草业科学, 2015, 32(11): 1847-1853. | |
26 | Sun M L. Characterization of mRNA splicing related SUN66 and purine nucleotide metabolism pathway genes in Fusarium graminearum. Yangling: Northwest A & F University, 2019. |
孙蔓莉. 禾谷镰刀菌mRNA剪接基因SNU66和嘌呤核苷酸代谢途径基因的功能研究. 杨凌: 西北农林科技大学, 2019. | |
27 | Mittler R, Finka A, Goloubinoff P. How do plants feel the heat? Trends in Biochemical Sciences, 2012, 37(3): 118-125. |
28 | Zhu C Y, Wang Y Q. Effect of heat stress on Karelinia caspica macromolecular structure of desert plants. Journal of Tarim University, 2019, 31(3): 7-11. |
朱传应, 王彦芹. 高温胁迫对荒漠植物花花柴大分子结构的影响. 塔里木大学学报, 2019, 31(3): 7-11. | |
29 | Na H Y. Effect of heat stress on physiology metabolism and aging of rape, oat and soybean seeds. Hohhot: Inner Mongolia Agricultural University, 2008. |
娜荷雅. 高温对油菜、燕麦和大豆种子生理代谢及衰老的影响. 呼和浩特: 内蒙古农业大学, 2008. | |
30 | Valliyodan B, Nguyen H T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Plant Biology, 2006, 9(2): 189-195. |
31 | Zheng T. Study on the metabolites of Allium macrostemon Bunge using NMR-based metabonomics. Wuhan: Central China Normal University, 2014. |
郑婷. 利用基于核磁共振的代谢组学方法对植物药薤白的研究. 武汉: 华中师范大学, 2014. | |
32 | Zhou Z L, Bao M Z, Wang W E. Effect of high temperature stress on physiological indexes of six lines of tall fescue. Pratacultural Science, 2011, 28(7): 1284-1290. |
周中亮, 包满珠, 王文恩. 高温胁迫对6个高羊茅株系生理指标的影响. 草业科学, 2011, 28(7): 1284-1290. |
[1] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[2] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[3] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[4] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[5] | 刘爽, 惠富平. 明清时期苜蓿的地域分布及其影响因素[J]. 草业学报, 2021, 30(2): 178-189. |
[6] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
[7] | 吴勇, 刘晓静, 蔺芳, 童长春. 河西荒漠灌区紫花苜蓿施肥效应及其基于数据包络分析法的经济效益研究[J]. 草业学报, 2020, 29(9): 94-105. |
[8] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[9] | 覃凤飞, 李志华, 刘信宝, 渠晖, 平措卓玛, 洛松群措, 苏梦涵. 外源2,4表油菜素内酯对越夏期高温与弱光胁迫下紫花苜蓿生长和光合性能的影响[J]. 草业学报, 2020, 29(9): 146-160. |
[10] | 童长春, 刘晓静, 蔺芳, 于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究[J]. 草业学报, 2020, 29(8): 70-80. |
[11] | 陆姣云, 熊军波, 张鹤山, 田宏, 杨惠敏, 刘洋. 水分胁迫对紫花苜蓿产量、品质和微量元素的影响[J]. 草业学报, 2020, 29(8): 126-133. |
[12] | 才璐, 王林林, 罗珠珠, 李玲玲, 牛伊宁, 蔡立群, 谢军红. 中国苜蓿产量及水分利用效率对种植年限响应的Meta分析[J]. 草业学报, 2020, 29(6): 27-38. |
[13] | 张梨梨, 史敏, 李彦忠. 炭疽病对沙尔沁地区苜蓿产量和品质的影响[J]. 草业学报, 2020, 29(6): 117-126. |
[14] | 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响[J]. 草业学报, 2020, 29(5): 109-120. |
[15] | 刘文文, 崔会婷, 尉春雪, 龙瑞才, 康俊梅, 杨青川, 王珍. 蒺藜苜蓿叶绿素酸酯a加氧酶(MtCAO)基因的克隆与功能分析[J]. 草业学报, 2020, 29(5): 171-181. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||