草业学报 ›› 2021, Vol. 30 ›› Issue (4): 160-169.DOI: 10.11686/cyxb2020173
张小芳1,2,3(), 魏小红1,2,3(), 刘放1, 朱雪妹1
收稿日期:
2020-04-13
修回日期:
2020-07-13
出版日期:
2021-04-20
发布日期:
2021-03-16
通讯作者:
魏小红
作者简介:
Corresponding author. E-mail: weixh@gsau.edu.cn基金资助:
Xiao-fang ZHANG1,2,3(), Xiao-hong WEI1,2,3(), Fang LIU1, Xue-mei ZHU1
Received:
2020-04-13
Revised:
2020-07-13
Online:
2021-04-20
Published:
2021-03-16
Contact:
Xiao-hong WEI
摘要:
以紫花苜蓿幼苗为材料,采用聚乙二醇(PEG-6000)为渗透调节物质模拟干旱胁迫,通过外源喷施NO释放剂硝普钠(SNP)和清除剂(cPTIO),用液相色谱/质谱联用(LC/MS)法分析研究PEG胁迫下紫花苜蓿幼苗叶片和根系中4种内源激素脱落酸(ABA)、生长素(IAA)、水杨酸(SA)和赤霉素(GA3)对NO的响应。结果表明:1)PEG胁迫下施加外源NO能促进紫花苜蓿叶片和根中NO含量的增加,其清除剂明显降低了紫花苜蓿叶片中NO含量;2)随着处理时间的延长,叶片和根中的ABA和SA含量逐渐增加,而根系中ABA和SA含量的增加较叶片晚。在胁迫第8天,叶中外源NO处理的ABA含量比SA含量高6.68倍,而喷施NO清除剂的ABA含量比SA含量高77.22%,并且叶中外源NO处理的ABA含量明显高于根中;3)NO会在短期内诱导叶片和根系中IAA和GA3含量增加,在胁迫的第4天,叶片中外源NO处理的IAA含量高于其清除剂1.65倍,而根中喷施NO清除剂的IAA含量比NO处理高8.70%;叶片和根中NO处理的GA3含量在第2天达到最大值后降低,比喷施NO清除剂的GA3含量分别高54.49%和84.65%。综上所述,NO可通过诱导紫花苜蓿IAA、ABA、GA3和SA四种激素的代谢水平及根中的相互转化调控植物的生长与抗逆性,尤其是ABA和SA在紫花苜蓿中的调节。
张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169.
Xiao-fang ZHANG, Xiao-hong WEI, Fang LIU, Xue-mei ZHU. Endogenous hormone responses to nitric oxide in alfalfa seedlings under PEG stress[J]. Acta Prataculturae Sinica, 2021, 30(4): 160-169.
时间 Time (min) | 流速 Flow rate (μL·min-1) | A液 Solution A (%) | B液 Solution B (%) | 时间 Time (min) | 流速 Flow rate (μL·min-1) | A液 A solution (%) | B液 B solution (%) |
---|---|---|---|---|---|---|---|
0.0 | 300 | 90 | 10 | 5.0 | 300 | 20 | 45 |
1.0 | 300 | 60 | 10 | 5.1 | 300 | 90 | 80 |
2.5 | 300 | 55 | 40 | 7.1 | 300 | 90 | 10 |
表1 植物激素的液相洗脱条件
Table 1 Liquid phase elution conditions of plant hormones
时间 Time (min) | 流速 Flow rate (μL·min-1) | A液 Solution A (%) | B液 Solution B (%) | 时间 Time (min) | 流速 Flow rate (μL·min-1) | A液 A solution (%) | B液 B solution (%) |
---|---|---|---|---|---|---|---|
0.0 | 300 | 90 | 10 | 5.0 | 300 | 20 | 45 |
1.0 | 300 | 60 | 10 | 5.1 | 300 | 90 | 80 |
2.5 | 300 | 55 | 40 | 7.1 | 300 | 90 | 10 |
激素 Plant hormone | 保留时间 Retention time (s) | 母离子 Mother ion (m·z-1) | 子离子 Child ion (m·z-1) | 碎裂电压 Fragmentor voltage (V) | 碰撞能量 Collision energy (eV) |
---|---|---|---|---|---|
脱落酸ABA | 2.547 | 263.1 | 153.1 | 90 | 10 |
生长素IAA | 3.035 | 174.1 | 129.9 | 80 | 13 |
水杨酸SA | 3.389 | 136.9 | 93.0 | 70 | 22 |
赤霉素GA3 | 4.010 | 345.1 | 239.0 | 75 | 9 |
表2 不同内源激素在MRM模式下的MS参数
Table 2 MS parameters of different endogenous hormones in MRM mode
激素 Plant hormone | 保留时间 Retention time (s) | 母离子 Mother ion (m·z-1) | 子离子 Child ion (m·z-1) | 碎裂电压 Fragmentor voltage (V) | 碰撞能量 Collision energy (eV) |
---|---|---|---|---|---|
脱落酸ABA | 2.547 | 263.1 | 153.1 | 90 | 10 |
生长素IAA | 3.035 | 174.1 | 129.9 | 80 | 13 |
水杨酸SA | 3.389 | 136.9 | 93.0 | 70 | 22 |
赤霉素GA3 | 4.010 | 345.1 | 239.0 | 75 | 9 |
植物激素 Plant hormone | 线性方程 Linear equation | 相关系数 Correlation coefficient (r) | 线性范围 Linear range (μg·L-1) |
---|---|---|---|
脱落酸ABA | C=0.1204X+0.5550 | 0.9997 | 1~100 |
生长素IAA | C=0.6629X+0.9960 | 0.9990 | 1~100 |
水杨酸SA | C=0.0557X-0.0379 | 0.9995 | 1~100 |
赤霉素GA3 | C=0.0624X+0.7897 | 0.9997 | 1~100 |
表3 植物激素的标准曲线
Table 3 Standard curve for plant hormones
植物激素 Plant hormone | 线性方程 Linear equation | 相关系数 Correlation coefficient (r) | 线性范围 Linear range (μg·L-1) |
---|---|---|---|
脱落酸ABA | C=0.1204X+0.5550 | 0.9997 | 1~100 |
生长素IAA | C=0.6629X+0.9960 | 0.9990 | 1~100 |
水杨酸SA | C=0.0557X-0.0379 | 0.9995 | 1~100 |
赤霉素GA3 | C=0.0624X+0.7897 | 0.9997 | 1~100 |
图1 不同处理下紫花苜蓿幼苗叶片和根系中NO含量的变化不同小写字母表示相同处理下不同处理天数间差异显著(P<0.05),不同大写字母表示相同处理天数下不同处理间差异极显著(P<0.01),下同。Different lowercase letters indicate significant differences among different treatment days under the same treatment (P<0.05), and different uppercase letters indicate extremely significant differences among different treatment in the same treatment days (P<0.01), the same below.
Fig.1 Changes of NO content in leaf and root of alfalfa seedlings under different treatments
1 | Yang P Z. Mechanism involved in drought/salt tolerance improvement in alfalfa due to symbiotic interaction with rhizobium.Xianyang: Northwest A & F University, 2012. |
杨培志. 紫花苜蓿根瘤菌共生对干旱及盐胁迫的响应机制研究. 咸阳: 西北农林科技大学, 2012. | |
2 | Zhang L Q, Zhang F Y, Hasi A. Research progress on alfalfa salt tolerance. Acta Prataculturae Sinica, 2012, 21(6): 296-305. |
张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展. 草业学报, 2012, 21(6): 296-305. | |
3 | Sun J J, Alamusi, Zhao J M, et al. Analysis of amino acid composition and six native alfalfa cultivars. Scientia Agricultura Sinica, 2019, 52(13): 2359-2367. |
孙娟娟, 阿拉木斯, 赵金梅, 等. 6个紫花苜蓿品种氨基酸组成分析及营养价值评价. 中国农业科学, 2019, 52(13): 2359-2367. | |
4 | Yu L Q, Wang H, Zhang X J, et al. Morphological characteristics and variation of three species of Medicago. Grassland and Turf, 2008(3): 29-33. |
于林清, 汪慧, 张旭婧, 等. 3种苜蓿形态特征及变异分析. 草原与草坪, 2008(3): 29-33. | |
5 | Wendehenne D, Pugin A, Klessing D F. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science, 2001, 6(4): 177-183. |
6 | Zhao Y, Wei X H, Ji X Z, et al. Endogenous NO-mediated transcripts involved in photosynthesis and carbohydrate metabolism in alfalfa (Medicago sativa L.) seedlings under drought stress. Plant Physiology and Biochemistry, 2019, 141: 456-465. |
7 | Zhao Y, Yi Q, Wei X H, et al. Role of NO-mediated Ca2+ signaling in regulation of photosynthesis and resistance to osmotic stress in alfalfa seedlings. Acta Prataculturae Sinica, 2018, 27(5): 130-140. |
赵颖, 弋钦, 魏小红, 等. NO介导的Ca2+信号对渗透胁迫下紫花苜蓿幼苗光合特征及抗性的影响. 草业学报, 2018, 27(5): 130-140. | |
8 | Sanz L, Albertos P, Mateos I, et al. Nitric oxide (NO) and phytohormones crosstalk during early plant development. Journal of Experimental Botany, 2015, 66(10): 2857-2868. |
9 | Campos R G, Osorio M P, Sánchez B R, et al. Plant hormone signaling in flowering: An epigenetic point of view. Journal of Plant Physiology, 2017, 214: 16-27. |
10 | Fang H, Wang C L, Liao W B, et al. NO is involved in ABA-regulated senescence of cut roses by maintaining water content and increasing antioxidant enzyme activities. Acta Horticulturae Sinica, 2019, 46(5): 901-909. |
方华, 王春蕾, 廖伟彪, 等. 一氧化氮通过调控水分和抗氧化酶活性参与脱落酸延缓切花月季衰老. 园艺学报, 2019, 46(5): 901-909. | |
11 | Zhang S M, Wang L X, Chen Y H. Research progress on the interaction between nitric oxide and phytohormones. Journal of Southern Agricultural, 2011, 42(3): 261-266. |
张盛敏, 王罗霞, 陈银华. 一氧化氮与植物激素之间相互作用研究进展. 南方农业学报, 2011, 42(3): 261-266. | |
12 | Shan C J, Dai H F, Sun H L, et al. Study on nitric oxide involved in regulation of drought tolerance of maize seedling roots by salicylic acid. Jiangsu Agricultural Sciences, 2016, 44(8): 133-135. |
单长卷, 代海芳, 孙海丽, 等. 一氧化氮参与水杨酸对玉米幼苗根系抗旱性的调控. 江苏农业科学, 2016, 44(8): 133-135. | |
13 | Zhong D L, Ding M, Tang F B, et al. Determination of four endogenous phytohormones in bamboo shoots by liquid chromatography-tandem mass spectrometry. Chinese Journal of Analytical Chemistry, 2013, 41(11): 1739-1743. |
钟冬莲, 丁明, 汤富彬, 等. 高效液相色谱-串联质谱同时测定毛竹笋中4种内源性植物激素. 分析化学, 2013, 41(11): 1739-1743. | |
14 | Deng W H, Zhao X R, Zhang J Q, et al. Determination of plant hormones in plant tissues by UPLC-MS/MS. Journal of Beijing Forestry University, 2019, 41(8): 154-160. |
邓文红, 赵欣蕊, 张俊琦, 等. UPLC-MS/MS测定植物组织中植物激素的含量. 北京林业大学学报, 2019, 41(8): 154-160. | |
15 | Zhang L G, Deng X P. Advances in studies on physiology and biochemistry of wheat drought resistance. Agricultural Research in the Arid Areas, 2000, 18(3): 87-92. |
张林刚, 邓西平. 小麦抗旱性生理生化研究进展. 干旱地区农业研究, 2000, 18(3): 87-92. | |
16 | Zhao X, Wang Y L, Wang Y J, et al. Effects of exogenous Ca2+on stomatal movement and plasma membrane K+ channels of Vicia faba guard cell under salt stress. Acta Agronomica Sinica, 2008, 34(11): 1970-1976. |
赵翔, 汪延良, 王亚静, 等. 盐胁迫条件下外源Ca2+对蚕豆气孔运动及质膜K+通道的调控. 作物学报, 2008, 34(11): 1970-1976. | |
17 | Shao R X, Li L L, Zheng H F, et al. Effects of exogenous nitric oxide on photosynthesis of maize seedlings under drought stress. Scientia Agricultura Sinica, 2016, 49(2): 251-259. |
邵瑞鑫, 李蕾蕾, 郑会芳, 等. 外源一氧化氮对干旱胁迫下玉米幼苗光合作用的影响. 中国农业科学, 2016, 49(2): 251-259. | |
18 | Zhao L Q, Liu Y L, Sun B T, et al. Effect of nitric oxide on ions absorption in excised root tips of wheat seedlings under drought stress. Acta Agronomica Sinica, 2009, 35(3): 530-534. |
赵立群, 刘玉良, 孙宝腾, 等. 干旱胁迫下一氧化氮对小麦离体根尖离子吸收的影响. 作物学报, 2009, 35(3): 530-534. | |
19 | Zhou Y Q, Bu Q Y. Research on changing of endogenous hormones of fruit trees under drought stress. Northern Fruits, 2011(3): 1-4. |
周晏起, 卜庆雁. 干旱胁迫下果树内源激素变化规律研究进展. 北方果树, 2011(3): 1-4. | |
20 | Ruan H H, Shen W B, Xu L L. Nitric oxide is involved in the abscisic acid induced proline accumulation in wheat seedling leaves under salt stress. Acta Botanica Sinica, 2004, 46(11): 1307-1315. |
21 | García M C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001, 126(3): 1196-1204. |
22 | Desikan R, Cheung M K, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. Journal of Experimental Botany, 2004, 55: 205-212. |
23 | Chang L, Xue J P. Advances in study of polar auxin transport. Journal of Biology, 2008, 25(6): 9-13. |
常莉, 薛建平. 生长素极性运输研究进展. 生物学杂志, 2008, 25(6): 9-13. | |
24 | Saini S, Sharma I, Kaur N, et al. Auxin: A master regulator in plant root development. Plant Cell Reports, 2013, 32(6): 741-757. |
25 | Shi H, Chen L, Ye T, et al. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiology and Biochemistry, 2014, 82: 209-217. |
26 | Shen H W, Zhang S, Li J B, et al. Effect of exogenous nitric oxide on plant hormones and enzyme content of Acanthopanax senticosus seeds. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(3): 137-142. |
沈宏伟, 张爽, 李佳宾, 等. 不同浓度的外源NO对刺五加种子激素及酶含量变化的影响. 中国实验方剂学杂志, 2019, 25(3): 137-142. | |
27 | Peto A, Lehotai N, Lozano J J, et al. Involvement of nitric oxide and auxin in signal transduction of copper induced morphological responses in Arabidopsis seedlings. Annals of Botany, 2011, 108: 449-457. |
28 | Chen W W, Yang J L, Qin C. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiology, 2010, 154(2): 810-819. |
29 | Yan Z P. Effect of drought stress on IAA oxidase of wheat. Inner Mongolia Agricultural Science and Technology, 2005(4): 16-17. |
闫志佩. 干旱胁迫对小麦吲哚乙酸氧化酶的影响. 内蒙古农业科技, 2005(4): 16-17. | |
30 | Pagnussat G C, Simontacchi M, Puntarulo S, et al. Nitric oxide is required for root organogenesis. Plant Physiology, 2002, 129(3): 954-956. |
31 | Correa A N, Graziano M, Lamattina L. Nitric oxide plays a central role in determining lateral root development in tomato. Planta, 2004, 218(6): 900-905. |
32 | Meng X J, Di K, Ding G H. Progress of study on the physiological role of salicylic acid in plant. Chinese Agricultural Science Bulletin, 2010, 26(15): 207-214. |
孟雪娇, 邸昆, 丁国华. 水杨酸在植物体内的生理作用研究进展. 中国农学通报, 2010, 26(15): 207-214. | |
33 | Wang D H, Li X X, Su Z K, et al. The role of salicylic acid in response of two rice cultivars to chilling stress. Biologia Plantarum, 2009, 53(3): 545-552. |
34 | Mahdavian K, Kalantai K M, Ghorbanli M, et al. The effects of salicylic acid on pigment contents in ultraviolet radiation stressed pepper plants. Biologia Plantarum, 2008, 52(1): 170-172. |
35 | Gautam S, Singh P K. Salicylic acid-induced salinity tolerance in corn grown under NaCl stress. Acta Physiologiae Plantarum, 2009, 31(6): 1185-1190. |
36 | Sun D Z, Yang H S, Peng J, et al. Effects of exogenous salicylic acid and nitric oxide on growth, photosynthesis, and ion distribution in tomato seedlings under NaCl stress. Acta Ecologica Sinica, 2014, 34(13): 3519-3528. |
孙德智, 杨恒山, 彭靖, 等. 外源SA和NO对NaCl胁迫下番茄幼苗生长、光合及离子分布的影响. 生态学报, 2014, 34(13): 3519-3528. | |
37 | Shan C J, Zhang F Y. Effects of salicylic acid on antioxidant properties of maize “Xindan 29” seedling roots under drought stress. Jiangsu Agricultural Sciences, 2015, 43(2): 102-104. |
单长卷, 张飞扬. 水杨酸对干旱下新单29玉米幼苗根系抗氧化特性的影响. 江苏农业科学, 2015, 43(2): 102-104. | |
38 | Azooz M M, Youssef M M. Evaluation of heat shock and salicylic acid treatments as inducers of drought stress tolerance in Hassawi wheat. American Journal of Plant Physiology, 2010, 5(2): 56-70. |
39 | Loutfy N, El T M A, Hassanen A M, et al. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum). Journal of Plant Research, 2012, 125(1): 173-184. |
40 | Klessig D F, Durner J, Noad R, et al. Nitric oxide and salicylic acid signaling in plant defense. Proceedings of the National Academy of Sciences, 2000, 97(16): 8849-8855. |
41 | Zottini M, Costa A, De Michele R, et al. Salicylic acid activates nitric oxide synthesis in Arabidopsis. Journal of Experimental Botany, 2007, 58(6): 1397-1405. |
42 | Gémes K, Poór P, Horváth E, et al. Cross-talk between salicylic acid and NaCl-generated reactive oxygen species and nitric oxide in tomato during acclimation to high salinity. Physiologia Plantarum, 2011, 142(2): 179-192. |
43 | Liu X, Zhang S Q, Lou C H. Nitric oxide is involved in the regulation of stomatal movement of broad bean by salicylic acid. Chinese Science Bulletin, 2003, 48(1): 60-63. |
刘新, 张蜀秋, 娄成后. 一氧化氮参与水杨酸对蚕豆气孔运动的调控. 科学通报, 2003, 48(1): 60-63. | |
44 | Wang D, Pan Y, Zhao X, et al. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC Genomics, 2011, 12: 149-163. |
45 | Bai T H, Yin R, Li C Y, et al. Comparative analysis of endogenous hormones in leaves and roots of two contrasting malus species in response to hypoxia stress. Journal of Plant Growth Regulation, 2011, 30(2): 119-127. |
46 | Beligni M V, Fath A, Bethke P C, et al. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiology, 2002, 129(4): 1642-1650. |
[1] | 候怡谣, 李霄, 龙瑞才, 杨青川, 康俊梅, 郭长虹. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响[J]. 草业学报, 2021, 30(4): 170-179. |
[2] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[3] | 沙栢平, 谢应忠, 高雪芹, 蔡伟, 伏兵哲. 地下滴灌水肥耦合对紫花苜蓿草产量及品质的影响[J]. 草业学报, 2021, 30(2): 102-114. |
[4] | 李冬, 申洪涛, 王艳芳, 王悦华, 王丽君, 赵世民, 刘领. 外源褪黑素对干旱胁迫下烟草幼苗光合碳同化和内源激素的影响[J]. 草业学报, 2021, 30(1): 130-139. |
[5] | 李振松, 万里强, 李硕, 李向林. 苜蓿根系构型及生理特性对干旱复水的响应[J]. 草业学报, 2021, 30(1): 189-196. |
[6] | 吴勇, 刘晓静, 蔺芳, 童长春. 河西荒漠灌区紫花苜蓿施肥效应及其基于数据包络分析法的经济效益研究[J]. 草业学报, 2020, 29(9): 94-105. |
[7] | 邢易梅, 蕫理, 战力峰, 才华, 杨圣秋, 孙娜. 混合接种摩西球囊霉和根瘤菌对紫花苜蓿耐碱能力的影响[J]. 草业学报, 2020, 29(9): 136-145. |
[8] | 覃凤飞, 李志华, 刘信宝, 渠晖, 平措卓玛, 洛松群措, 苏梦涵. 外源2,4表油菜素内酯对越夏期高温与弱光胁迫下紫花苜蓿生长和光合性能的影响[J]. 草业学报, 2020, 29(9): 146-160. |
[9] | 童长春, 刘晓静, 蔺芳, 于铁峰. 基于平衡施肥的紫花苜蓿光合特性及光合因子的产量效应研究[J]. 草业学报, 2020, 29(8): 70-80. |
[10] | 刘燕, 于美玲, 张然, 牛奎举, 李玉珠, 张金青, 马晖玲. 甘肃野生草地早熟禾内源激素含量的变化与无融合生殖率的关系研究[J]. 草业学报, 2020, 29(7): 99-111. |
[11] | 何国兴, 宋建超, 温雅洁, 刘彩婷, 祁娟. 不同根瘤菌肥对紫花苜蓿生产力及土壤肥力的综合影响[J]. 草业学报, 2020, 29(5): 109-120. |
[12] | 赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(4): 92-101. |
[13] | 鲍根生, 宋梅玲, 王玉琴, 刘静, 王宏生. 不同密度甘肃马先蒿寄生和内生真菌互作对紫花针茅内源激素及生物碱含量的影响[J]. 草业学报, 2020, 29(4): 147-156. |
[14] | 于浩然, 格根图, 王志军, 贾玉山, 连植, 贾鹏飞. 甲酸添加剂及青贮时间对紫花苜蓿青贮品质的影响[J]. 草业学报, 2020, 29(3): 89-95. |
[15] | 高丽敏, 苏晶, 田倩, 沈益新. 施氮对不同水分条件下紫花苜蓿氮素吸收及根系固氮酶活性的影响[J]. 草业学报, 2020, 29(3): 130-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||