草业学报 ›› 2021, Vol. 30 ›› Issue (4): 80-89.DOI: 10.11686/cyxb2020350
罗巧玉1,2(), 王彦龙1, 杜雷2, 刘念2, 李丽2, 马玉寿1()
收稿日期:
2020-05-20
修回日期:
2020-10-10
出版日期:
2021-04-20
发布日期:
2021-03-16
通讯作者:
马玉寿
作者简介:
Corresponding author. E-mail: mayushou@sina.com基金资助:
Qiao-yu LUO1,2(), Yan-long WANG1, Lei DU2, Nian LIU2, Li LI2, Yu-shou MA1()
Received:
2020-05-20
Revised:
2020-10-10
Online:
2021-04-20
Published:
2021-03-16
Contact:
Yu-shou MA
摘要:
本研究以黄河源区发草作为研究对象,通过生境地植物群落物种结构组成、多样性分布、土壤理化特性等调查,采用相关分析和RDA排序法分析了黄河源区玛沁县5个发草适生地植物群落多样性特征和土壤影响因子及其关系,以期揭示影响发草种群在复杂多样高寒沼泽异质生境中适应性的关键环境因子。结果表明:1)不同发草适生地植物群落结构、组成和多样性指标明显不同,菊科、禾本科、莎草科、毛茛科、龙胆科和玄参科物种为发草适生地常见物种;2)不同发草适生地之间在土壤氮(N)、磷(P)、碳(C)、有机质(SOM)、土壤水分含量(W)和pH上也具有显著差异;3)发草适生地植物群落中发草的盖度、株高、生物量和重要值与群落物种丰富度、Simpson优势度指数、Shannon-Wiener指数、P和W呈显著负相关,与Alatalo均匀度指数、pH值呈显著正相关。研究结果表明发草更加适应低P、湿润偏中生的土壤环境,而随着群落中物种丰富度的增加发草在群落中的重要值显著下降则说明发草具有部分的先锋种特性,显示了利用发草修复和治理退化草地的可能潜力。
罗巧玉, 王彦龙, 杜雷, 刘念, 李丽, 马玉寿. 黄河源区发草适生地植物群落特征及其土壤因子解释[J]. 草业学报, 2021, 30(4): 80-89.
Qiao-yu LUO, Yan-long WANG, Lei DU, Nian LIU, Li LI, Yu-shou MA. Plant community diversity and soil factor interpretation of adaptive region of Deschampsia caespitosa in the source region of the Yellow River[J]. Acta Prataculturae Sinica, 2021, 30(4): 80-89.
群落序号 Community code | 群落类型 Community type | 日期 Date | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | 群落面积 Community area (m2) |
---|---|---|---|---|---|---|
Ⅰ | 发草群落D. caespitosa community | 2018-08-15 | 100°13′29″ | 34°28′14″ | 3730 | 1000 |
Ⅱ | 华扁穗草群落B. sinocompressus community | 2018-08-20 | 100°13′25″ | 34°27′58″ | 3650 | 800 |
Ⅲ | 华扁穗草+发草群落B. sinocompressus+D. caespitosa community | 2018-08-23 | 100°13′22″ | 34°27′57″ | 3646 | 900 |
Ⅳ | 藏嵩草群落K. Schoenoides community | 2018-08-22 | 100°13′28″ | 34°28′17″ | 3640 | 900 |
Ⅴ | 藏嵩草+发草群落K. Schoenoides+D. caespitosa community | 2018-08-21 | 100°13′24″ | 34°28′20″ | 3660 | 1000 |
表1 发草适生地植物群落类型及其结构组成
Table 1 The plant community type and its structure in D. caespitosa adaptive area
群落序号 Community code | 群落类型 Community type | 日期 Date | 经度 Longitude (E) | 纬度 Latitude (N) | 海拔 Altitude (m) | 群落面积 Community area (m2) |
---|---|---|---|---|---|---|
Ⅰ | 发草群落D. caespitosa community | 2018-08-15 | 100°13′29″ | 34°28′14″ | 3730 | 1000 |
Ⅱ | 华扁穗草群落B. sinocompressus community | 2018-08-20 | 100°13′25″ | 34°27′58″ | 3650 | 800 |
Ⅲ | 华扁穗草+发草群落B. sinocompressus+D. caespitosa community | 2018-08-23 | 100°13′22″ | 34°27′57″ | 3646 | 900 |
Ⅳ | 藏嵩草群落K. Schoenoides community | 2018-08-22 | 100°13′28″ | 34°28′17″ | 3640 | 900 |
Ⅴ | 藏嵩草+发草群落K. Schoenoides+D. caespitosa community | 2018-08-21 | 100°13′24″ | 34°28′20″ | 3660 | 1000 |
群落 Community code | 物种丰富度 Species richness (S) | Simpson优势度指数 Simpson dominance index (D) | Shannon-Wiener指数 Shannon-Wiene index (H) | Alatalo均匀度指数 Alatalo evenness index (Ea) | Pielou均匀度指数 Pielou uniformity index(Jsi) |
---|---|---|---|---|---|
Ⅰ | 4±0.00c | 0.69±0.01e | 1.27±0.01e | 0.86±0.01a | 0.92±0.01b |
Ⅱ | 24±0.58b | 0.83±0.01d | 2.51±0.05d | 0.43±0.01d | 0.87±0.01d |
Ⅲ | 23±1.00b | 0.92±0.00a | 2.82±0.03a | 0.77±0.04b | 0.97±0.00a |
Ⅳ | 27±1.15a | 0.86±0.00c | 2.69±0.03b | 0.46±0.01d | 0.90±0.00c |
Ⅴ | 23±0.58b | 0.88±0.01b | 2.62±0.05c | 0.58±0.01c | 0.92±0.01b |
平均Mean | 20±8.40 | 0.84±0.08 | 2.38±0.58 | 0.62±0.18 | 0.91±0.03 |
群落 Community code | Pielou均匀度指数Pielou uniformity index (Jsw) | 发草盖度 Coverage of D. caespitosa (Cd, %) | 发草株高 Height of D. caespitosa (Hd, cm) | 发草生物量 Biomass of D. caespitosa (Bd, g·m-2) | 发草重要值 Value of D. caespitosa (Valued) |
Ⅰ | 0.92±0.01a | 91.67±1.53a | 75.40±2.36a | 681.78±76.93a | 0.453±0.014a |
Ⅱ | 0.80±0.01d | 1.33±0.29d | 37.08±4.91c | 11.33±4.48c | 0.029±0.005c |
Ⅲ | 0.90±0.01b | 20.33±1.53c | 43.87±3.63c | 93.06±14.88b | 0.129±0.017b |
Ⅳ | 0.82±0.00cd | 2.50±1.32d | 56.42±11.43b | 15.68±9.01c | 0.039±0.007c |
Ⅴ | 0.83±0.01c | 30.67±3.79b | 60.40±5.57b | 105.62±15.40b | 0.128±0.003b |
平均Mean | 0.85±0.05 | 29.30±34.29 | 54.63±14.84 | 181.50±263.75 | 0.156±0.160 |
表2 发草适生地植物群落物种多样性特征
Table 2 Diversity indexes of plant community in D. caespitosa adaptive area (Mean±SD)
群落 Community code | 物种丰富度 Species richness (S) | Simpson优势度指数 Simpson dominance index (D) | Shannon-Wiener指数 Shannon-Wiene index (H) | Alatalo均匀度指数 Alatalo evenness index (Ea) | Pielou均匀度指数 Pielou uniformity index(Jsi) |
---|---|---|---|---|---|
Ⅰ | 4±0.00c | 0.69±0.01e | 1.27±0.01e | 0.86±0.01a | 0.92±0.01b |
Ⅱ | 24±0.58b | 0.83±0.01d | 2.51±0.05d | 0.43±0.01d | 0.87±0.01d |
Ⅲ | 23±1.00b | 0.92±0.00a | 2.82±0.03a | 0.77±0.04b | 0.97±0.00a |
Ⅳ | 27±1.15a | 0.86±0.00c | 2.69±0.03b | 0.46±0.01d | 0.90±0.00c |
Ⅴ | 23±0.58b | 0.88±0.01b | 2.62±0.05c | 0.58±0.01c | 0.92±0.01b |
平均Mean | 20±8.40 | 0.84±0.08 | 2.38±0.58 | 0.62±0.18 | 0.91±0.03 |
群落 Community code | Pielou均匀度指数Pielou uniformity index (Jsw) | 发草盖度 Coverage of D. caespitosa (Cd, %) | 发草株高 Height of D. caespitosa (Hd, cm) | 发草生物量 Biomass of D. caespitosa (Bd, g·m-2) | 发草重要值 Value of D. caespitosa (Valued) |
Ⅰ | 0.92±0.01a | 91.67±1.53a | 75.40±2.36a | 681.78±76.93a | 0.453±0.014a |
Ⅱ | 0.80±0.01d | 1.33±0.29d | 37.08±4.91c | 11.33±4.48c | 0.029±0.005c |
Ⅲ | 0.90±0.01b | 20.33±1.53c | 43.87±3.63c | 93.06±14.88b | 0.129±0.017b |
Ⅳ | 0.82±0.00cd | 2.50±1.32d | 56.42±11.43b | 15.68±9.01c | 0.039±0.007c |
Ⅴ | 0.83±0.01c | 30.67±3.79b | 60.40±5.57b | 105.62±15.40b | 0.128±0.003b |
平均Mean | 0.85±0.05 | 29.30±34.29 | 54.63±14.84 | 181.50±263.75 | 0.156±0.160 |
土层 Soil layer (cm) | 群落 Community code | 全N Total N (%) | 全P Total P (mg·g-1) | 全K Total K (mg·g-1) | 全C Total C (%) | 有机质 SOM (%) | pH | 土壤含水量 W (%) |
---|---|---|---|---|---|---|---|---|
0~10 | Ⅰ | 0.25±0.04b | 0.24±0.02c | 6.50±1.55ab | 3.43±0.21b | 3.88±1.25b | 7.14±0.10a | 31.45±0.53c |
Ⅱ | 0.34±0.06b | 0.46±0.03b | 2.76±1.30b | 4.30±0.60b | 3.45±1.42b | 6.66±0.24b | 42.57±6.45b | |
Ⅲ | 0.33±0.11b | 0.48±0.03b | 6.99±5.11ab | 5.54±0.79b | 5.48±1.45b | 7.22±0.27a | 44.29±4.41b | |
Ⅳ | 1.17±0.32a | 0.60±0.06a | 11.53±3.68a | 15.07±4.13a | 19.64±2.70a | 6.80±0.12b | 64.92±1.81a | |
Ⅴ | 1.13±0.13a | 0.55±0.08ab | 5.62±2.84ab | 13.42±1.38a | 20.29±2.73a | 6.76±0.07b | 59.87±2.74a | |
平均Mean | 0.64±0.45 | 0.46±0.13 | 6.68±4.00 | 8.35±5.33 | 10.55±8.17 | 6.92±0.28 | 48.62±13.01 | |
10~20 | Ⅰ | 0.27±0.04b | 0.17±0.02c | 6.55±4.89b | 3.28±0.39c | 2.99±1.40c | 7.14±0.12b | 35.51±4.83b |
Ⅱ | 0.23±0.03b | 0.39±0.03b | 6.59±1.90b | 3.70±0.28bc | 4.04±1.71c | 6.85±0.10c | 39.43±6.02ab | |
Ⅲ | 0.40±0.24b | 0.41±0.03b | 17.00±2.36a | 5.64±2.42bc | 9.78±2.70b | 7.41±0.13a | 43.51±19.72ab | |
Ⅳ | 0.48±0.24b | 0.53±0.06a | 9.10±0.56b | 7.48±3.59b | 11.96±1.13ab | 6.83±0.04c | 49.68±4.27ab | |
Ⅴ | 0.80±0.12a | 0.48±0.08ab | 4.88±4.37b | 11.23±1.08a | 14.85±3.92a | 6.77±0.06c | 59.07±6.63a | |
平均Mean | 0.44±0.25 | 0.39±0.13 | 8.82±5.23 | 6.27±3.45 | 8.73±5.14 | 7.00±0.26 | 45.44±12.09 |
表3 发草适生地植物群落土壤特征
Table 3 The general situation of plant community soil factors in D. caespitosa adaptive area (Mean±SD)
土层 Soil layer (cm) | 群落 Community code | 全N Total N (%) | 全P Total P (mg·g-1) | 全K Total K (mg·g-1) | 全C Total C (%) | 有机质 SOM (%) | pH | 土壤含水量 W (%) |
---|---|---|---|---|---|---|---|---|
0~10 | Ⅰ | 0.25±0.04b | 0.24±0.02c | 6.50±1.55ab | 3.43±0.21b | 3.88±1.25b | 7.14±0.10a | 31.45±0.53c |
Ⅱ | 0.34±0.06b | 0.46±0.03b | 2.76±1.30b | 4.30±0.60b | 3.45±1.42b | 6.66±0.24b | 42.57±6.45b | |
Ⅲ | 0.33±0.11b | 0.48±0.03b | 6.99±5.11ab | 5.54±0.79b | 5.48±1.45b | 7.22±0.27a | 44.29±4.41b | |
Ⅳ | 1.17±0.32a | 0.60±0.06a | 11.53±3.68a | 15.07±4.13a | 19.64±2.70a | 6.80±0.12b | 64.92±1.81a | |
Ⅴ | 1.13±0.13a | 0.55±0.08ab | 5.62±2.84ab | 13.42±1.38a | 20.29±2.73a | 6.76±0.07b | 59.87±2.74a | |
平均Mean | 0.64±0.45 | 0.46±0.13 | 6.68±4.00 | 8.35±5.33 | 10.55±8.17 | 6.92±0.28 | 48.62±13.01 | |
10~20 | Ⅰ | 0.27±0.04b | 0.17±0.02c | 6.55±4.89b | 3.28±0.39c | 2.99±1.40c | 7.14±0.12b | 35.51±4.83b |
Ⅱ | 0.23±0.03b | 0.39±0.03b | 6.59±1.90b | 3.70±0.28bc | 4.04±1.71c | 6.85±0.10c | 39.43±6.02ab | |
Ⅲ | 0.40±0.24b | 0.41±0.03b | 17.00±2.36a | 5.64±2.42bc | 9.78±2.70b | 7.41±0.13a | 43.51±19.72ab | |
Ⅳ | 0.48±0.24b | 0.53±0.06a | 9.10±0.56b | 7.48±3.59b | 11.96±1.13ab | 6.83±0.04c | 49.68±4.27ab | |
Ⅴ | 0.80±0.12a | 0.48±0.08ab | 4.88±4.37b | 11.23±1.08a | 14.85±3.92a | 6.77±0.06c | 59.07±6.63a | |
平均Mean | 0.44±0.25 | 0.39±0.13 | 8.82±5.23 | 6.27±3.45 | 8.73±5.14 | 7.00±0.26 | 45.44±12.09 |
多样性指数 Diversity index | 盖度 Coverage (Cd) | 株高 Height (Hd) | 生物量 Biomass (Bd) | 重要值 Valued |
---|---|---|---|---|
S | -0.946*** | -0.653** | -0.974*** | -0.960*** |
D | -0.784** | -0.617* | -0.864*** | -0.797*** |
H | -0.907*** | -0.693** | -0.954*** | -0.917*** |
Ea | 0.827*** | 0.518* | 0.779** | 0.849*** |
Jsi | 0.291 | 0.160 | 0.178 | 0.300 |
Jsw | 0.764** | 0.464 | 0.736** | 0.800*** |
表4 发草种群特征与群落物种多样性间相关性
Table 4 Correlation analysis of population characteristics of D. caespitosa and community species diversity
多样性指数 Diversity index | 盖度 Coverage (Cd) | 株高 Height (Hd) | 生物量 Biomass (Bd) | 重要值 Valued |
---|---|---|---|---|
S | -0.946*** | -0.653** | -0.974*** | -0.960*** |
D | -0.784** | -0.617* | -0.864*** | -0.797*** |
H | -0.907*** | -0.693** | -0.954*** | -0.917*** |
Ea | 0.827*** | 0.518* | 0.779** | 0.849*** |
Jsi | 0.291 | 0.160 | 0.178 | 0.300 |
Jsw | 0.764** | 0.464 | 0.736** | 0.800*** |
土层 Soil layer (cm) | 土壤指标 Soil indicator | 盖度 Coverage (Cd) | 株高 Height (Hd) | 生物量 Biomass (Bd) | 重要值 Valued |
---|---|---|---|---|---|
0~10 | N | -0.373 | 0.119 | -0.442 | -0.436 |
P | -0.816*** | -0.330 | -0.863*** | -0.837*** | |
K | -0.072 | 0.133 | -0.029 | -0.051 | |
C | -0.403 | 0.090 | -0.466 | -0.455 | |
SOM | -0.314 | 0.200 | -0.401 | -0.381 | |
pH | 0.491 | 0.304 | 0.482 | 0.545* | |
W | -0.615* | -0.106 | -0.668** | -0.660** | |
10~20 | N | -0.127 | 0.306 | -0.258 | -0.184 |
P | -0.816** | -0.330 | -0.863** | -0.837** | |
K | -0.208 | -0.280 | -0.240 | -0.154 | |
C | -0.251 | 0.185 | -0.375 | -0.313 | |
SOM | -0.388 | 0.067 | -0.509 | -0.434 | |
pH | 0.328 | -0.001 | 0.312 | 0.392 | |
W | -0.260 | 0.094 | -0.349 | -0.304 |
表5 发草种群特征与土壤因子间相关性
Table 5 Correlation analysis of population characteristics of D. caespitosa and soil factors
土层 Soil layer (cm) | 土壤指标 Soil indicator | 盖度 Coverage (Cd) | 株高 Height (Hd) | 生物量 Biomass (Bd) | 重要值 Valued |
---|---|---|---|---|---|
0~10 | N | -0.373 | 0.119 | -0.442 | -0.436 |
P | -0.816*** | -0.330 | -0.863*** | -0.837*** | |
K | -0.072 | 0.133 | -0.029 | -0.051 | |
C | -0.403 | 0.090 | -0.466 | -0.455 | |
SOM | -0.314 | 0.200 | -0.401 | -0.381 | |
pH | 0.491 | 0.304 | 0.482 | 0.545* | |
W | -0.615* | -0.106 | -0.668** | -0.660** | |
10~20 | N | -0.127 | 0.306 | -0.258 | -0.184 |
P | -0.816** | -0.330 | -0.863** | -0.837** | |
K | -0.208 | -0.280 | -0.240 | -0.154 | |
C | -0.251 | 0.185 | -0.375 | -0.313 | |
SOM | -0.388 | 0.067 | -0.509 | -0.434 | |
pH | 0.328 | -0.001 | 0.312 | 0.392 | |
W | -0.260 | 0.094 | -0.349 | -0.304 |
1 | Klanderud K, Vandvik V, Goldberg D. The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One, 2015, 10(6): e0130205. |
2 | Xu M H, Zhang S X, Wen J, et al. Multiscale spatial patterns of species diversity and biomass together with their correlations along geographical gradients in subalpine meadows. PLoS One, 2019, 14(2): e0211560. |
3 | Qiao B, Huang W, He T H, et al. Analysis on the diversity of halophyte plant community and soil salinity in beach-wetland of Zhen-Lake of Ningxia. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(2): 324-331. |
乔斌, 黄维, 何彤慧, 等. 宁夏震湖滩涂湿地盐生植物群落多样性与土壤盐碱度分析. 西北植物学报, 2018, 38(2): 324-331. | |
4 | Guo C X, Ma J M, He F L, et al. Structural features of Lycium ruthenicum communities and associated soil characteristics on different types of desert rangeland in the lower reaches of the Shiyang River. Acta Prataculturae Sinica, 2018, 27(9): 14-24. |
郭春秀, 马俊梅, 何芳兰, 等. 石羊河下游不同类型荒漠草地黑果枸杞群落结构特征及土壤特性研究. 草业学报, 2018, 27(9): 14-24. | |
5 | Li J, Hong M, Yan J, et al. The response of vegetation community structure and biomass in Stipa brevifora desert steppe to water and nitrogen. Acta Prataculturae Sinica, 2020, 29(9): 38-48. |
李静, 红梅, 闫瑾, 等. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应. 草业学报, 2020, 29(9): 38-48. | |
6 | He Z Y, Wang Y, Su Z A, et al. Differences in vegetation community structure in hot-dry valleys in Yunnan Province related to valley stability. Acta Prataculturae Sinica, 2020, 29(9): 28-37. |
何周窈, 王勇, 苏正安, 等. 干热河谷冲沟沟头活跃度对植物群落结构的影响. 草业学报, 2020, 29(9): 28-37. | |
7 | Gu W Y. Study on seed propagation technology of Deschampsia cespitosa (L.) Beauv. Qinghai Science and Technology, 2007, 14(4): 30-31. |
顾文毅. 发草种子繁殖技术研究. 青海科技, 2007, 14(4): 30-31. | |
8 | Sun M D, Sun L S, Lv J B. Deschampsia cespitosa is a good forage in alpine region. Qinghai Grass Industry, 1994, 3(3): 7-12. |
孙明德, 孙连生, 吕金博. 发草是高寒地区的优良牧草. 青海草业, 1994, 3(3): 7-12. | |
9 | Zuo Y, Li S C,Yang Z R, et al. Growth of rock plant Pogonatherum paniceum under different soil moisture content. Journal of Sichuan University (Natural Science Edition), 2006, 43(5): 1142-1145. |
左宇, 李绍才, 杨志荣, 等. 岩生植物金发草生长发育对水分的响应. 四川大学学报(自然科学版), 2006, 43(5): 1142-1145. | |
10 | Meharg A A, Macnair M R. The mechanisms of arsenate tolerance in Deschampsia cespitosa (L.) Beauv. and Agrostis capillaris L. New Phytologist, 1991, 119(2): 291-297. |
11 | Lei S H, Xu L, Bai X M. Effect of temperature and salt stresses on germination of 7 wild ornamental grasses. Grassland and Turf, 2017, 37(2): 20-28. |
雷舒涵, 许蕾, 白小明. 温度及盐胁迫对7个野生观赏草种子萌发特性的影响. 草原与草坪, 2017, 37(2): 20-28. | |
12 | Wang Y L, Ma Y S, Shi J J, et al. Study on cultivation and domestication of Deschampsia caespitosa. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2019, 49(2): 21-24. |
王彦龙, 马玉寿, 施建军, 等. 发草栽培驯化研究初报. 青海畜牧兽医杂志, 2019, 49(2): 21-24. | |
13 | Jin L, Chen Z. Effects of different treatment methods on germination of Blysmus sinocompressus seeds in Qinghai Qilian Wetland. Seed, 2014, 33(4): 1-2. |
金兰, 陈志. 不同处理方法对青海祁连湿地华扁穗草种子发芽的影响. 种子, 2014, 33(4): 1-2. | |
14 | Yu X J, Xu C L, Jing Y Y, et al. Effects of stratification in the winter on the seed germination characteristics of 5 alpine meadow plant species. Pratacultural Science, 2015, 32(3): 427-432. |
鱼小军, 徐长林, 景媛媛, 等. 冬季层积处理对5种高寒草甸植物种子萌发特性的影响. 草业科学, 2015, 32(3): 427-432. | |
15 | Li H L, Li X L, Zhou X L. Trait means predict performance under water limitation better than plasticity for seedlings of Poaceae species on the eastern Tibetan Plateau. Ecology and Evolution, 2020, 10: 2944-2955. |
16 | Wang H X. The study of vegetation community characteristics and evaluation of LUCC in the semi-arid wetland. Beijing: Beijing Forestry University, 2012. |
王海星. 西北半干旱区湿地植被群落特征研究及其LUCC评价体系构建. 北京: 北京林业大学, 2012. | |
17 | Zhang Y X, Fan J W, Cao W, et al. Spatial and temporal dynamics of grassland yield and its response to precipitation in the Three River Head Water Region from 2006 to 2013. Acta Prataculturae Sinica, 2017, 26(10): 10-19. |
张雅娴, 樊江文, 曹巍, 等. 2006-2013年三江源草地产草量的时空动态变化及其对降水的响应. 草业学报, 2017, 26(10): 10-19. | |
18 | Chen G C, Lu X F, Peng M, et al. Basic characteristics and protection of ecosystem in Sanjiang-source area of Qinghai Province. Qinghai Science and Technology, 2003(4): 14-17. |
陈桂琛, 卢学峰, 彭敏, 等. 青海省三江源区生态系统基本特征及其保护. 青海科技, 2003(4): 14-17. | |
19 | Liu S W. Flora of Qinghai (Vol. 1). Xining: Qinghai People’s Publishing House, 1997. |
刘尚武. 青海植物志(第1卷). 西宁: 青海人民出版社, 1997. | |
20 | Shannon C E. A mathematical theory of communication. Bell System Technical Journal, 1948, 27: 379-423. |
21 | Fuiman L A, Magurran A E. Development of predator defences in fishes. Reviews in Fish Biology & Fisheries, 1994, 4(2): 145-183. |
22 | Lu R K. Soil agricultural chemical analysis methods. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000. | |
23 | Zhang G L, Gong Z T. Soil survey laboratory methods. Beijing: Science Press, 2012: 38-80. |
张甘霖, 龚子同. 土壤调查实验室分析方法. 北京: 科学出版社, 2012: 38-80. | |
24 | Break C J F, Smilaue R P. CANOCO reference manual and CanoDraw for Windows user’s guide: Software for canonical community ordination (Version 4.5). New York, USA: Microcomputer Power Press, 2002. |
25 | Zhou D M. RDA: From theory to practice. Beijing: Ocean Press, 2014. |
周德明. RDA: 从理论到实践. 北京: 海洋出版社, 2014. | |
26 | Xu M, Ma L, Jia Y, et al. Integrating the effects of latitude and altitude on the spatial differentiation of plant community diversity in a mountainous ecosystem in China. PLoS One, 2017, 12(3): e0174231. |
27 | Litza K, Diekmann M. The effect of hedgerow density on habitat quality distorts species-area relationships and the analysis of extinction debts in hedgerows. Landscape Ecology, 2020, 35: 1187-1198. |
28 | Barker C A, Turley N E, Orrock J L, et al. Agricultural land-use history does not reduce woodland under story herb establishment. Oecologia, 2019, 189: 1049-1060. |
29 | Lu H, Cong J, Liu X, et al. Plant diversity patterns along altitudinal gradients in alpine meadows in the Three River Headwater Region, China. Acta Prataculturae Sinica, 2015, 24(7): 197-204. |
卢慧, 丛静, 刘晓, 等. 三江源区高寒草甸植物多样性的海拔分布格局. 草业学报, 2015, 24(7): 197-204. | |
30 | Albrecht M A, Becknell R E, Long Q. Habitat change in insular grasslands: Woody encroachment alters the population dynamics of a rare ecotonal plant. Biological Conservation, 2016, 196: 93-102. |
31 | Chatanga P, Kotze D C, Janks M, et al. Classification, description and environmental factors of montane wetland vegetation of the Maloti-Drakensberg region and the surrounding areas. South African Journal of Botany, 2019, 125: 221-233. |
32 | Xia X M, Wang J, Peng P H, et al. Relationship of population structure of Paeonia szechuanica with environmental factors in Sichuan Province. Journal of Zhejiang Forestry Science & Technology, 2017, 37(2): 30-35. |
夏小梅, 王娟, 彭培好, 等. 大渡河干旱河谷四川牡丹种群结构特征及与环境因子的关系. 浙江林业科技, 2017, 37(2): 30-35. | |
33 | Liu M T, Wang Z X, Wang Y P, et al. Plant communities pattern of Picea tianschanica forest and their interrelations with environmental factors in Tianshan area. Forest Research, 2019, 32(6): 90-98. |
刘梦婷, 王振锡, 王雅佩, 等. 新疆天山云杉林群落分布格局及环境解释. 林业科学研究, 2019, 32(6): 90-98. | |
34 | Chang F, Liu B, Liu R K, et al. Plant community diversity and environmental interpretation of adaptive region of Gentianella turkestanorum in Kuche Mountain area. Acta Agrestia Sinica, 2018, 26(5): 1084-1090. |
常凤, 刘彬, 刘若坤, 等. 库车山区新疆假龙胆适生地植物群落多样性及其环境解释. 草地学报, 2018, 26(5): 1084-1090. | |
35 | Li C E, Zhang L J. Relationship between Artemisia songarica communities and environmental factors in the Western part of Karamori Mountain Nature Reserve, China. Hubei Agricultural Sciences, 2015, 54(21): 5266-5271. |
李春娥, 张丽君. 卡拉麦里山自然保护区西部准噶尔沙蒿群落与环境的关系. 湖北农业科学, 2015, 54(21): 5266-5271. | |
36 | Zhao Y K, Zhang W S, Wang Y N, et al. Research progress in physiology and molecular biology of plant responses to high pH. Chinese Journal of Eco-Agriculture, 2008, 16(3): 783-787. |
赵彦坤, 张文胜, 王幼宁, 等. 高pH对植物生长发育的影响及其分子生物学研究进展. 中国生态农业学报, 2008, 16(3): 783-787. | |
37 | Hou Z W, Zhou B, Yang J M, et al. Effects of soil pH on growth and dry matter accumulation of tobacco plants. Agricultural Science & Technology, 2017, 18(8): 1443-1447. |
38 | Guo C J, Sun J G, Su F L, et al. Effects of soil bulk density on soil nutrient loss from meadow soil slope. Journal of Soil and Water Conservation, 2012, 26(6): 27-30. |
郭成久, 孙景刚, 苏芳莉, 等. 土壤容重对草甸土坡面养分流失特征的影响. 水土保持学报, 2012, 26(6): 27-30. | |
39 | Wang W Y, Zhou H K, Yang L, et al. The uptake strategy of soil nitrogen nutrients by different plant species in alpine Kobresia tibetica meadow on the Qinghai-Tibet Plateau. Journal of Natural Resources, 2014, 29(2): 249-255. |
王文颖, 周华坤, 杨莉, 等. 高寒藏嵩草(Kobresia tibetica)草甸植物对土壤氮素利用的多元化特征. 自然资源学报, 2014, 29(2): 249-255. | |
40 | Cui L J, Ma Q F, Hao Y Q, et al. Relationships between main plant communities and environment in Zoige marsh. Ecology and Environmental Science, 2013, 22(11): 1749-1756. |
崔丽娟, 马琼芳, 郝云庆, 等. 若尔盖高寒沼泽植物群落与环境因子的关系. 生态环境学报, 2013, 22(11): 1749-1756. | |
41 | Ren Q J, Li H L, Bu H Y. Comparison of physiological and leaf morphological traits for photosynthesis of the 51 plant species in the Maqu alpine swamp meadow. Chinese Journal of Plant Ecology, 2015, 39(6): 593-603. |
任青吉, 李宏林, 卜海燕. 玛曲高寒沼泽化草甸51种植物光合生理和叶片形态特征的比较. 植物生态学报, 2015, 39(6): 593-603. |
[1] | 李洁, 潘攀, 王长庭, 胡雷, 陈科宇, 杨文高. 三江源区不同建植年限人工草地根系动态特征[J]. 草业学报, 2021, 30(3): 28-40. |
[2] | 韩福贵, 满多清, 郑庆钟, 赵艳丽, 张裕年, 肖斌, 付贵全, 杜娟. 青土湖典型湿地白刺灌丛沙堆群落物种多样性及土壤养分变化特征研究[J]. 草业学报, 2021, 30(1): 36-45. |
[3] | 王婷, 张永超, 赵之重. 青藏高原退化高寒湿地植被群落结构和土壤养分变化特征[J]. 草业学报, 2020, 29(4): 9-18. |
[4] | 车力木格, 刘新平, 何玉惠, 孙姗姗, 王明明. 半干旱沙地草本植物群落特征对短期降水变化的响应[J]. 草业学报, 2020, 29(4): 19-28. |
[5] | 吴昊, 张辰, 代文魁. 气候变暖和物种多样性交互效应对空心莲子草入侵的影响[J]. 草业学报, 2020, 29(3): 38-48. |
[6] | 杨鼎, 齐昊昊, 王倩, 徐海鹏, 张静, 张红艳, 郭正刚. 青藏高原高原鼢鼠鼠丘植被恢复过程中植物群落特征的变化[J]. 草业学报, 2020, 29(2): 114-122. |
[7] | 崔雨萱, 孙宗玖, 刘慧霞, 董乙强. 短期封育对蒿类荒漠草地现存生物量及植物群落多样性的影响[J]. 草业学报, 2020, 29(12): 17-26. |
[8] | 聂莹莹, 徐丽君, 辛晓平, 陈宝瑞, 张保辉. 围栏封育对温性草甸草原植物群落构成及生态位特征的影响[J]. 草业学报, 2020, 29(11): 11-22. |
[9] | 朱湾湾, 王攀, 樊瑾, 牛玉斌, 余海龙, 黄菊莹. 降水量及N添加对宁夏荒漠草原土壤C∶N∶P生态化学计量特征和植被群落组成的影响[J]. 草业学报, 2019, 28(9): 33-44. |
[10] | 官惠玲, 樊江文, 李愈哲. 不同人工草地对青藏高原温性草原群落生物量组成及物种多样性的影响[J]. 草业学报, 2019, 28(9): 192-201. |
[11] | 李国旗, 赵盼盼, 邵文山, 靳长青. 围封条件下荒漠草原两种植物群落土壤理化性状与酶活性的研究[J]. 草业学报, 2019, 28(7): 49-59. |
[12] | 苟小林, 刘文辉, 陈有军, 周蓉, 周青平. 植物沙障不同种植模式对川西北沙地的恢复效应[J]. 草业学报, 2019, 28(6): 33-44. |
[13] | 张建贵, 王理德, 姚拓, 李海云, 高亚敏, 杨晓玫, 李昌宁, 李琦, 冯影, 胡彦婷. 祁连山高寒草地不同退化程度植物群落结构与物种多样性研究[J]. 草业学报, 2019, 28(5): 15-25. |
[14] | 徐海鹏, 于成, 舒朝成, 金少红, 庞晓攀, 郭正刚. 高原鼠兔干扰对高寒草甸植物群落多样性和稳定性的影响[J]. 草业学报, 2019, 28(5): 90-99. |
[15] | 王晓芳, 马红彬, 沈艳, 许冬梅, 谢应忠, 李建平, 李小伟. 不同轮牧方式对荒漠草原植物群落特征的影响[J]. 草业学报, 2019, 28(4): 23-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||