草业学报 ›› 2021, Vol. 30 ›› Issue (5): 121-133.DOI: 10.11686/cyxb2020219
收稿日期:
2020-05-13
修回日期:
2020-09-21
出版日期:
2021-05-20
发布日期:
2021-04-16
通讯作者:
张吉宇
作者简介:
Corresponding author. E-mail: zhangjy@lzu.edu.cn基金资助:
Yi-meng WANG(), Tian-tian MA, Zi-feng OUYANG, Ji-yu ZHANG()
Received:
2020-05-13
Revised:
2020-09-21
Online:
2021-05-20
Published:
2021-04-16
Contact:
Ji-yu ZHANG
摘要:
LTR反转录转座子是植物基因组内大量可移动的遗传因子,是基因组的重要成分之一。无芒隐子草基因组大小为543 M,全基因组中共鉴定出了299079个LTR反转录转座子,占全基因组的26.54%,但是缺少无芒隐子草全长LTR反转录转座子的研究。基于无芒隐子草全基因组序列,筛选出具有潜在活性的全长LTR反转录转座子845个,其中有410个属于Gypsy超家族,435个属于Copia超家族。对这些序列进行了系统进化树的构建和插入时间的分析,发现全长LTR反转录转座子的大量转座发生在4百万年内,插入时间较近,插入高峰期是1~1.5百万年间。筛选出被全长LTR反转录转座子中断的基因有183个,145个被中断的基因得到了GO功能注释,分析了被中断基因在不同干旱胁迫处理下的基因表达模式。对反转录转座子的鉴定有助于深入了解无芒隐子草的进化过程,为无芒隐子草全长LTR反转录转座子与中断基因的后续研究奠定基础。
王艺蒙, 马甜甜, 欧阳子凤, 张吉宇. 无芒隐子草全基因组水平全长LTR反转录转座子鉴定及其中断基因分析[J]. 草业学报, 2021, 30(5): 121-133.
Yi-meng WANG, Tian-tian MA, Zi-feng OUYANG, Ji-yu ZHANG. Genome-wide identification of full-length long-terminal repeat retrotransposons and identification of interrupted genes in Cleistogenes songorica[J]. Acta Prataculturae Sinica, 2021, 30(5): 121-133.
超家族 Superfamily | Llorens等[ et al | 参考全长LTR-RTs序列 Reference full-length LTR-RTs | 宿主有机体 Host organism | 无芒隐子草中支系成员数量Number of family members in C. songorica |
---|---|---|---|---|
Copia | Sire | Endovir1 1 | 拟南芥Arabidopsis thaliana | 35 |
SIRE1 4 | 大豆Glycine max | |||
Opie 2 | 水稻Oryza sativa | |||
TSI 9 | 小米Setaria italica | |||
ToRTL 1 | 番茄Solanum lycopersicum | |||
Oryco | Araco | 拟南芥A. thaliana | 138 | |
Vitico1 1 | 葡萄Vitis vitivinifera | |||
Vitico1 2 | 葡萄V. vitivinifera | |||
Retrofit | Koala | 野生稻Oryza australiensis | 83 | |
Retrofit | 长雄野生稻Oryza longistaminata | |||
Hopscotch | 水稻O. sativa | |||
Tork | Sto 4 | 玉米Zea mays | 75 | |
Tnt 1 | 烟草Nicotiana tabacum | |||
V 12 | 葡萄V. vitivinifera | |||
Batata | 红薯Ipomoea batatas | |||
Tto1 | 烟草N. tabacum | |||
RTvr 2 | 绿豆Vigna radiata | |||
Tork 4 | 番茄S. lycopersicum | |||
Gypsy | Athila | Cyclops-2 | 豌豆Pisum sativum | 1 |
Calypso | 大豆G. max | |||
Bagy 2 | 大麦Hordeum vulgare | |||
Athila 4-1 | 拟南芥A. thaliana | |||
Diapsora | 大豆G. max | |||
Tat | Tat 4-1 | 拟南芥A. thaliana | 182 | |
Tf t2 | 拟南芥A. thaliana | |||
RetroSor 1 | 高粱Sorghum bicolor | |||
Cinful 1 | 玉米Z. mays | |||
RIRE 2 | 水稻O. sativa | |||
Ogre | 豌豆P. sativum | |||
Reina | Reina | 玉米Z. mays | 63 | |
Gloin | 拟南芥A. thaliana | |||
Ifg 7 | 辐射松Pinus radiata | |||
Gimli | 拟南芥A. thaliana | |||
CRM | Cereba | 大麦H. vulgare | 47 | |
CRM | 玉米Z. mays | |||
Beetle 1 | 甜菜Beta vulgaris | |||
Galadriel | Monkey | 芭蕉Musabasjoo | 0 | |
Galadriel | 番茄S. lycopersicum | |||
Tntom 1 | 油菜Nicotiana tomentosiformis | |||
Del/Tekay | Tma | 拟南芥A. thaliana | 10 | |
Legolas | 拟南芥A. thaliana | |||
Bagy 1 | 大麦H. vulgare | |||
Retrosat 2 | 水稻O. sativa | |||
Peabody | 豌豆P. sativum | |||
Del | 百合Lilium henryi |
表1 用作系统发育分析的参考全长LTR-RTs序列
Table 1 Reference full-length LTR-RTs sequences for phylogenetic analysis
超家族 Superfamily | Llorens等[ et al | 参考全长LTR-RTs序列 Reference full-length LTR-RTs | 宿主有机体 Host organism | 无芒隐子草中支系成员数量Number of family members in C. songorica |
---|---|---|---|---|
Copia | Sire | Endovir1 1 | 拟南芥Arabidopsis thaliana | 35 |
SIRE1 4 | 大豆Glycine max | |||
Opie 2 | 水稻Oryza sativa | |||
TSI 9 | 小米Setaria italica | |||
ToRTL 1 | 番茄Solanum lycopersicum | |||
Oryco | Araco | 拟南芥A. thaliana | 138 | |
Vitico1 1 | 葡萄Vitis vitivinifera | |||
Vitico1 2 | 葡萄V. vitivinifera | |||
Retrofit | Koala | 野生稻Oryza australiensis | 83 | |
Retrofit | 长雄野生稻Oryza longistaminata | |||
Hopscotch | 水稻O. sativa | |||
Tork | Sto 4 | 玉米Zea mays | 75 | |
Tnt 1 | 烟草Nicotiana tabacum | |||
V 12 | 葡萄V. vitivinifera | |||
Batata | 红薯Ipomoea batatas | |||
Tto1 | 烟草N. tabacum | |||
RTvr 2 | 绿豆Vigna radiata | |||
Tork 4 | 番茄S. lycopersicum | |||
Gypsy | Athila | Cyclops-2 | 豌豆Pisum sativum | 1 |
Calypso | 大豆G. max | |||
Bagy 2 | 大麦Hordeum vulgare | |||
Athila 4-1 | 拟南芥A. thaliana | |||
Diapsora | 大豆G. max | |||
Tat | Tat 4-1 | 拟南芥A. thaliana | 182 | |
Tf t2 | 拟南芥A. thaliana | |||
RetroSor 1 | 高粱Sorghum bicolor | |||
Cinful 1 | 玉米Z. mays | |||
RIRE 2 | 水稻O. sativa | |||
Ogre | 豌豆P. sativum | |||
Reina | Reina | 玉米Z. mays | 63 | |
Gloin | 拟南芥A. thaliana | |||
Ifg 7 | 辐射松Pinus radiata | |||
Gimli | 拟南芥A. thaliana | |||
CRM | Cereba | 大麦H. vulgare | 47 | |
CRM | 玉米Z. mays | |||
Beetle 1 | 甜菜Beta vulgaris | |||
Galadriel | Monkey | 芭蕉Musabasjoo | 0 | |
Galadriel | 番茄S. lycopersicum | |||
Tntom 1 | 油菜Nicotiana tomentosiformis | |||
Del/Tekay | Tma | 拟南芥A. thaliana | 10 | |
Legolas | 拟南芥A. thaliana | |||
Bagy 1 | 大麦H. vulgare | |||
Retrosat 2 | 水稻O. sativa | |||
Peabody | 豌豆P. sativum | |||
Del | 百合Lilium henryi |
染色 Chromosome | 全长LTR-RTs数 Number of full-length LTR retrotransposons (Copia; Gypsy) | Copia∶Gypsy比率 Ratio of Copia∶Gypsy | 每千万碱基全长LTR-RTs密度 Density of LTR-RTs per 10 million base length (Copia/Gypsy) | 染色体大小 Chromosome size (bp) |
---|---|---|---|---|
Chr1 | 53 (26; 27) | 0.96 | 14.43 (7.08/7.35) | 36730093 |
Chr2 | 54 (26; 28) | 0.93 | 15.37 (7.40/7.97) | 35137460 |
Chr3 | 52 (21; 31) | 0.68 | 15.24 (6.15/9.08) | 34124666 |
Chr4 | 53 (27; 26) | 1.04 | 16.84 (8.58/8.26) | 31471377 |
Chr5 | 53 (24; 29) | 0.83 | 16.71 (7.56/9.14) | 31725061 |
Chr6 | 48 (29; 19) | 1.53 | 15.26 (9.22/2.86) | 31461567 |
Chr7 | 64 (38; 26) | 1.46 | 20.56 (12.21/8.35) | 31124980 |
Chr8 | 42 (30; 12) | 2.50 | 13.91 (9.94/3.98) | 30186489 |
Chr9 | 41 (21; 20) | 1.05 | 15.74 (8.06/7.68) | 26050788 |
Chr10 | 40 (26; 14) | 1.86 | 15.14 (9.84/5.30) | 26425489 |
Chr11 | 39 (17; 22) | 0.77 | 15.39 (6.71/8.68) | 25340727 |
Chr12 | 25 (12; 13) | 0.92 | 12.03 (5.78/6.26) | 20776520 |
Chr13 | 29 (15; 14) | 1.07 | 13.44 (6.95/6.49) | 21572208 |
Chr14 | 31 (20; 11) | 1.82 | 14.64 (9.45/5.20) | 21171528 |
Chr15 | 29 (12; 17) | 0.71 | 14.31 (5.92/8.39) | 20269367 |
Chr16 | 28 (11; 17) | 0.65 | 14.50 (5.70/8.81) | 19304776 |
Chr17 | 31 (14; 17) | 0.82 | 16.47 (7.44/9.03) | 18816966 |
Chr18 | 33 (20; 13) | 1.54 | 17.00 (10.30/6.70) | 19417082 |
Chr19 | 29 (12; 17) | 0.71 | 17.39 (7.20/10.19) | 16677740 |
Chr20 | 20 (12; 8) | 1.50 | 12.16 (7.29/4.86) | 16453899 |
表 2 鉴定出的全长LTR-RTs在无芒隐子草基因组20条染色体上的分布情况
Table 2 Distribution of the identified full-length LTR-RTs on the 20 chromosomes of the C. songorica genome
染色 Chromosome | 全长LTR-RTs数 Number of full-length LTR retrotransposons (Copia; Gypsy) | Copia∶Gypsy比率 Ratio of Copia∶Gypsy | 每千万碱基全长LTR-RTs密度 Density of LTR-RTs per 10 million base length (Copia/Gypsy) | 染色体大小 Chromosome size (bp) |
---|---|---|---|---|
Chr1 | 53 (26; 27) | 0.96 | 14.43 (7.08/7.35) | 36730093 |
Chr2 | 54 (26; 28) | 0.93 | 15.37 (7.40/7.97) | 35137460 |
Chr3 | 52 (21; 31) | 0.68 | 15.24 (6.15/9.08) | 34124666 |
Chr4 | 53 (27; 26) | 1.04 | 16.84 (8.58/8.26) | 31471377 |
Chr5 | 53 (24; 29) | 0.83 | 16.71 (7.56/9.14) | 31725061 |
Chr6 | 48 (29; 19) | 1.53 | 15.26 (9.22/2.86) | 31461567 |
Chr7 | 64 (38; 26) | 1.46 | 20.56 (12.21/8.35) | 31124980 |
Chr8 | 42 (30; 12) | 2.50 | 13.91 (9.94/3.98) | 30186489 |
Chr9 | 41 (21; 20) | 1.05 | 15.74 (8.06/7.68) | 26050788 |
Chr10 | 40 (26; 14) | 1.86 | 15.14 (9.84/5.30) | 26425489 |
Chr11 | 39 (17; 22) | 0.77 | 15.39 (6.71/8.68) | 25340727 |
Chr12 | 25 (12; 13) | 0.92 | 12.03 (5.78/6.26) | 20776520 |
Chr13 | 29 (15; 14) | 1.07 | 13.44 (6.95/6.49) | 21572208 |
Chr14 | 31 (20; 11) | 1.82 | 14.64 (9.45/5.20) | 21171528 |
Chr15 | 29 (12; 17) | 0.71 | 14.31 (5.92/8.39) | 20269367 |
Chr16 | 28 (11; 17) | 0.65 | 14.50 (5.70/8.81) | 19304776 |
Chr17 | 31 (14; 17) | 0.82 | 16.47 (7.44/9.03) | 18816966 |
Chr18 | 33 (20; 13) | 1.54 | 17.00 (10.30/6.70) | 19417082 |
Chr19 | 29 (12; 17) | 0.71 | 17.39 (7.20/10.19) | 16677740 |
Chr20 | 20 (12; 8) | 1.50 | 12.16 (7.29/4.86) | 16453899 |
图3 无芒隐子草全长LTR-RTs插入时间分析A: 全长LTR-RTs筛选各阶段的序列插入时间Sequence insertion time of various stages full-length LTR-RTs screening; B: 全长LTR-RTs的Gypsy和Copia超家族成员插入时间Gypsy and Copia superfamily members insertion time of full-length LTR-RTs.
Fig.3 Analysis of insertion time of full-length LTR-RTs in C. songorica
插入时间 Insertion time (Million years) | 绝对频率 (相对频率) Absolute frequency (relative frequency) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Copia 超家族Superfamily | Gypsy超家族Superfamily | |||||||||
Retrofit | Tork | Sire | Oryco | No cluster | Tat | Reina | CRM | Del | No cluster | |
0~0.5 | 11 (0.13) | 1 (0.01) | 1 (0.03) | 17 (0.12) | 24 (0.23)* | 4 (0.02) | 10 (0.16) | 11 (0.23)* | 1 (0.10) | 37 (0.35)* |
0.5~1.0 | 17 (0.20)* | 6 (0.08) | 6 (0.17) | 24 (0.17) | 16 (0.25)* | 16 (0.09) | 19 (0.30)* | 10 (0.21)* | 1 (0.10) | 10 (0.10) |
1.0~1.5 | 24 (0.29)* | 8 (0.11) | 5 (0.14) | 36 (0.26)* | 25 (0.24)* | 36 (0.20)* | 17 (0.27)* | 10 (0.21)* | 0 (0.00) | 15 (0.14) |
1.5~2.0 | 16 (0.19) | 7 (0.09) | 9 (0.26)* | 30 (0.22)* | 13 (0.13) | 31 (0.17) | 9 (0.14) | 4 (0.09) | 2 (0.20)* | 11 (0.10) |
2.0~2.5 | 9 (0.11) | 14 (0.19) | 7 (0.20)* | 21 (0.15) | 7 (0.07) | 28 (0.15) | 1 (0.02) | 8 (0.17) | 2 (0.20)* | 12 (0.11) |
2.5~3.0 | 3 (0.04) | 13 (0.18) | 3 (0.09) | 5 (0.04) | 6 (0.06) | 24 (0.13) | 2 (0.03) | 2 (0.04) | 1 (0.10) | 8 (0.08) |
3.5~4.0 | 0 (0.00) | 5 (0.07) | 1 (0.03) | 1 (0.01) | 1 (0.01) | 2 (0.01) | 0 (0.00) | 1 (0.02) | 1 (0.10) | 5 (0.05) |
4.0~4.5 | 4 (0.05) | 8 (0.11) | 3 (0.09) | 3 (0.02) | 1 (0.01) | 24 (0.13) | 3 (0.05) | 0 (0.00) | 2 (0.20)* | 5 (0.05) |
4.5~5.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1 (0.01) | 0 (0.00) | 2 (0.01) | 1 (0.02) | 0 (0.00) | 0 (0.00) | 1 (0.01) |
5.0~5.5 | 0 (0.00) | 4 (0.05) | 0 (0.00) | 0 (0.00) | 1 (0.01) | 1 (0.01) | 1 (0.02) | 1 (0.02) | 0 (0.00) | 0 (0.00) |
5.5~6.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
6.0~6.5 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
6.5~7.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
7.0~7.5 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
7.5~8.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
3.0~3.5 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1 (0.01) |
表3 无芒隐子草中Copia和Gypsy超家族成员在不同支系中的插入时间估计
Table 3 Estimated insertion times of different lineages of full-length Copia and Gypsy superfamily members in C. songorica
插入时间 Insertion time (Million years) | 绝对频率 (相对频率) Absolute frequency (relative frequency) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Copia 超家族Superfamily | Gypsy超家族Superfamily | |||||||||
Retrofit | Tork | Sire | Oryco | No cluster | Tat | Reina | CRM | Del | No cluster | |
0~0.5 | 11 (0.13) | 1 (0.01) | 1 (0.03) | 17 (0.12) | 24 (0.23)* | 4 (0.02) | 10 (0.16) | 11 (0.23)* | 1 (0.10) | 37 (0.35)* |
0.5~1.0 | 17 (0.20)* | 6 (0.08) | 6 (0.17) | 24 (0.17) | 16 (0.25)* | 16 (0.09) | 19 (0.30)* | 10 (0.21)* | 1 (0.10) | 10 (0.10) |
1.0~1.5 | 24 (0.29)* | 8 (0.11) | 5 (0.14) | 36 (0.26)* | 25 (0.24)* | 36 (0.20)* | 17 (0.27)* | 10 (0.21)* | 0 (0.00) | 15 (0.14) |
1.5~2.0 | 16 (0.19) | 7 (0.09) | 9 (0.26)* | 30 (0.22)* | 13 (0.13) | 31 (0.17) | 9 (0.14) | 4 (0.09) | 2 (0.20)* | 11 (0.10) |
2.0~2.5 | 9 (0.11) | 14 (0.19) | 7 (0.20)* | 21 (0.15) | 7 (0.07) | 28 (0.15) | 1 (0.02) | 8 (0.17) | 2 (0.20)* | 12 (0.11) |
2.5~3.0 | 3 (0.04) | 13 (0.18) | 3 (0.09) | 5 (0.04) | 6 (0.06) | 24 (0.13) | 2 (0.03) | 2 (0.04) | 1 (0.10) | 8 (0.08) |
3.5~4.0 | 0 (0.00) | 5 (0.07) | 1 (0.03) | 1 (0.01) | 1 (0.01) | 2 (0.01) | 0 (0.00) | 1 (0.02) | 1 (0.10) | 5 (0.05) |
4.0~4.5 | 4 (0.05) | 8 (0.11) | 3 (0.09) | 3 (0.02) | 1 (0.01) | 24 (0.13) | 3 (0.05) | 0 (0.00) | 2 (0.20)* | 5 (0.05) |
4.5~5.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1 (0.01) | 0 (0.00) | 2 (0.01) | 1 (0.02) | 0 (0.00) | 0 (0.00) | 1 (0.01) |
5.0~5.5 | 0 (0.00) | 4 (0.05) | 0 (0.00) | 0 (0.00) | 1 (0.01) | 1 (0.01) | 1 (0.02) | 1 (0.02) | 0 (0.00) | 0 (0.00) |
5.5~6.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
6.0~6.5 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
6.5~7.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
7.0~7.5 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
7.5~8.0 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) |
3.0~3.5 | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 0 (0.00) | 1 (0.01) |
图4 全长LTR-RTs及被全长LTR-RTs中断的基因的关系LTR: 全长反转录转座子Long terminal repeat retrotransposon. LTR两侧红色三角表示二核苷酸回文基序以及两端的5 bp靶位点重复(TSD)A pair of dinucleotide palindromic motifs flanking each LTR (red triangles), and a 5 bp target site duplication (TSD). A: 全长LTR-RTs与被中断基因在LTR区间产生交互Full-length LTR-RTs interact with the interrupted gene in the LTR interval; B: 全长LTR-RTs与中断基因在编码区产生交互Full-length LTR-RTs interact with the interrupted gene in the coding region; C: 全长LTR-RTs位于被中断基因的内含子区间内The intron interval of the interrupted gene contains full-length LTR -RTs; D: 全长LTR-RTs位于被中断基因的外显子区间内The exon interval of the interrupted gene contains full-length LTR-RTs; E: 被中断基因位于全长LTR-RTs的LTR区间内The LTR interval of the full-length LTR-RTs contains the interrupted gene; F: 被中断基因位于全长LTR-RTs的编码区内The coding region of the full-length LTR-RTs contains the gene disruption.
Fig.4 Relationship between full-length LTR-RTs and genes interrupted by full-length LTR-RTs
图5 被LTR-RTs中断基因的GO注释ML:代谢过程Metabolic process; CP:细胞转化Cellular process; SP:单一有机体过程Single-organism process; RS:对刺激的反应 Response to stimulus; BR:生物调节Biological regulation; LO:定位Localization; LB:细胞成分组织或生物组分Cellular component organization or biogenesis; DP:发育过程Developmental process; MO:多有机体过程Multi-organism process; RD:繁殖Reproduction; RP:生殖过程Reproductive process; SI:信号Signaling; MI:多细胞有机体过程Multicellular organismal process; GR:生长Growth; IP:免疫系统过程Immune system process; DX:解毒Detoxification; BP:生物相Biological phase; RY:节律过程Rhythmic process; LM:运动Locomotion; CK:细胞凋零Cell killing; BH:表达量Behavior; CL:细胞单元格部件Cell part; CE:细胞Cell; OG:细胞器Organelle; CL:器官部分Organelle part; EM:细胞外基质Extracellular matrix; OP:器官部分organelle part; MP:大分子复合物Macromolecular complex; MC:膜部分membrane part; ER:细胞外区域Extracellular region; ML:膜封闭腔Membrane-enclosed lumen; CJ:细胞结Cell junction; SC:超分子复合物Supramolecular complex; EP: 细胞外区域部分Extracellular region part; ND:核Nucleoid; VN:病毒Virion; VP:病毒部分Virion part; CA:催化活性Catalytic activity; BD:结合Binding; TA:运输器活性Transporter activity; CR:核苷酸交换因子活性Guanyl-nucleotide exchange factor activity; EA:电子载流子活性Electron carrier activity; SA:信号转导活性Signal transducer activity; AA:抗氧化活性Antioxidant activity; MR:结构分子活性Structural molecule activity; ST: 受体活性Receptor activity; MT: 分子传感器活性Molecular transducer activity; TB:转录因子活性Transcription factor activity ; NA:营养积累活性Nutrient reservoir activity; TR:翻译调节活动Translation regulator activity; PT:蛋白质标签Protein tag.
Fig.5 GO functional of genes interrupted by LTR-RTs in C. songorica
基因ID Gene ID | GO功能 GO function | LR | LS | HR | HS | RR | RS | NS | NR |
---|---|---|---|---|---|---|---|---|---|
CCG009101 | 蛋白泛素化参与泛素依赖性蛋白的分解代谢过程Protein ubiquitination involved in ubiquitin-dependent protein catabolic process | 2.67 | 2.11 | 0.99 | 0.72 | 0.93 | 1.86 | 3.215205 | 3.137421 |
CCG009854 | 激活脱落酸的信号通路Abscisic acid-activated signaling pathway | 0.28 | 1.20 | 0.34 | 0.14 | 0.31 | 0.15 | 3.195202 | 8.035544 |
CCG016150 | 光周期Photoperiodism | 0.03 | 0.93 | 0.03 | 0.07 | 0.08 | 0.05 | 4.634620 | 6.481022 |
CCG020579 | DNA复制DNA replication | 3.37 | 1.98 | 3.37 | 8.45 | 11.06 | 1.40 | 0.649759 | 3.584700 |
CCG031250 | 肽酶活性Peptidase activity | 0.72 | 0.66 | 0.04 | 0.10 | 0.24 | 0.10 | 0.016040 | 0.059849 |
CCG032101 | 刺激应答Response to stimulus | 0.19 | 0.76 | 0.72 | 0.66 | 0.04 | 0.10 | 3.645388 | 4.949373 |
CCG035285 | 氧化还原酶活性Oxidoreductase activity | 0.62 | 0.26 | 0.03 | 0.19 | 0.25 | 0.23 | 0.111286 | 0.333672 |
CCG041800 | 内质网到高尔基囊泡的转运ER to Golgi vesicle-mediated transport | 0.23 | 0.64 | 0.15 | 0.13 | 0.20 | 0.20 | 6.572815 | 12.440860 |
CCG048604 | 甘油代谢过程Glycerol metabolic process | 1.99 | 0.95 | 4.11 | 2.95 | 4.75 | 0.80 | 3.265621 | 4.571146 |
CCG052980 | 核质运输Nucleocytoplasmic transport | 1.28 | 0.27 | 0.58 | 0.25 | 0.64 | 0.32 | 0.170547 | 0.517852 |
表4 无芒隐子草中10个被中断基因的GO功能和在干旱胁迫处理下的表达量
Table 4 GO functions of 10 interrupted genes and expression under drought stress and rehydration in C. songorica (FPKM)
基因ID Gene ID | GO功能 GO function | LR | LS | HR | HS | RR | RS | NS | NR |
---|---|---|---|---|---|---|---|---|---|
CCG009101 | 蛋白泛素化参与泛素依赖性蛋白的分解代谢过程Protein ubiquitination involved in ubiquitin-dependent protein catabolic process | 2.67 | 2.11 | 0.99 | 0.72 | 0.93 | 1.86 | 3.215205 | 3.137421 |
CCG009854 | 激活脱落酸的信号通路Abscisic acid-activated signaling pathway | 0.28 | 1.20 | 0.34 | 0.14 | 0.31 | 0.15 | 3.195202 | 8.035544 |
CCG016150 | 光周期Photoperiodism | 0.03 | 0.93 | 0.03 | 0.07 | 0.08 | 0.05 | 4.634620 | 6.481022 |
CCG020579 | DNA复制DNA replication | 3.37 | 1.98 | 3.37 | 8.45 | 11.06 | 1.40 | 0.649759 | 3.584700 |
CCG031250 | 肽酶活性Peptidase activity | 0.72 | 0.66 | 0.04 | 0.10 | 0.24 | 0.10 | 0.016040 | 0.059849 |
CCG032101 | 刺激应答Response to stimulus | 0.19 | 0.76 | 0.72 | 0.66 | 0.04 | 0.10 | 3.645388 | 4.949373 |
CCG035285 | 氧化还原酶活性Oxidoreductase activity | 0.62 | 0.26 | 0.03 | 0.19 | 0.25 | 0.23 | 0.111286 | 0.333672 |
CCG041800 | 内质网到高尔基囊泡的转运ER to Golgi vesicle-mediated transport | 0.23 | 0.64 | 0.15 | 0.13 | 0.20 | 0.20 | 6.572815 | 12.440860 |
CCG048604 | 甘油代谢过程Glycerol metabolic process | 1.99 | 0.95 | 4.11 | 2.95 | 4.75 | 0.80 | 3.265621 | 4.571146 |
CCG052980 | 核质运输Nucleocytoplasmic transport | 1.28 | 0.27 | 0.58 | 0.25 | 0.64 | 0.32 | 0.170547 | 0.517852 |
1 | Niu X L. Prilimary study on root characteristics and ecologic function of Cleistogenes songorica. Lanzhou: Lanzhou University, 2017. |
牛学礼. 无芒隐子草根系特征及生态功能的初步研究. 兰州: 兰州大学, 2017. | |
2 | Zhang K. Plant slection and evaluation of Cleistogenes songorica. Lanzhou: Lanzhou University, 2014. |
章恺. 无芒隐子草优良株系选育. 兰州: 兰州大学, 2014. | |
3 | Tao Q B, Jia C Z, Wang Y R, et al. An evaluation of smallholder seed threshing and cleaning technologies in seedproduction of Cleistogenes songorica cv ‘Tenggeli’. Acta Prataculturae Sinica, 2019, 28(2): 51-60. |
陶奇波, 贾存智, 王彦荣, 等. 农户生产水平的“腾格里”无芒隐子草种子脱粒与清选技术研究. 草业学报, 2019, 28(2): 51-60. | |
4 | Li X Y, Xu W K, Harrison P H, et al. Research progress of repetitive DNA sequences in plant genomes. Yangzhou: Journal of Yangzhou University (Agricultural and Life Science Edition), 2019, 40(5): 9-19. |
李晓宇, 徐文魁, Harrison P H, 等. 植物基因组重复序列研究进展. 扬州: 扬州大学学报(农业与生命科学版), 2019, 40(5): 9-19. | |
5 | Wei B. Identification and characteristic analysis of new transposon of genomic resequencing crop. Chengdu: Sichuan Agricultural University, 2014. |
魏彬. 基因组重测序作物的新转座子鉴定及特征分析. 成都: 四川农业大学, 2014. | |
6 | Jiang S. Studies of genetic relation of Pyrus species and cultivars based on retrotransposon markers. Hangzhou: Zhejiang University, 2015. |
蒋爽. 基于反转录转座子标记的梨属植物亲缘关系研究. 杭州: 浙江大学, 2015. | |
7 | Kong L F, Zhang J Y, Wang Y R, et al. Cloning of a S-adenosyl methionine synthetase gene from Cleistogenes songorica and its expression under drought stress. Acta Prataculturae Sinica, 2013, 22(1): 268-275. |
孔令芳, 张吉宇, 王彦荣, 等. 无芒隐子草SAMS1基因的克隆及干旱胁迫下的表达分析. 草业学报, 2013, 22(1): 268-275. | |
8 | Zhang J Y. Germplasm evaluation, cDNA library construction, genes cloning and identification of drought resistance in Cleistogenes songorica. Lanzhou: Lanzhou University, 2008. |
张吉宇. 无芒隐子草(Cleistogenes songorica)种质抗旱评价、cDNA文库构建及相关基因克隆与鉴定. 兰州: 兰州大学, 2008. | |
9 | Zheng H, Ji H, Jiang Z Q, et al. Identification and transcription activity analysis of a full-length LTR retrotransposon of PHRE9 in Moso bamboo (Phyllostachys edulis). Journal of Agricultural Biotechnology, 2019, 27(4): 645-655. |
郑浩, 季航, 蒋政勤,等. 一个毛竹LTR转座子PHRE9的全长鉴定与转录活性分析. 农业生物技术学报, 2019, 27(4): 645-655. | |
10 | Duan Z, Zhang J Y, Di H Y, et al. Clone and expression characterization of CsPEAMT gene in Cleistogenes songorica. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(12): 2367-2373. |
段珍, 张吉宇, 狄红艳, 等. 无芒隐子草CsPEAMT基因克隆及表达特性分析. 西北植物学报, 2014, 34(12): 2367-2373. | |
11 | Ellinghaus D, Kurtz S, Willhoeft U. LTR harvest, an efficient and flexible software for denovo detection of LTR retrotransposons. BMC Bioinformatics, 2008, 9(1): 10-18. |
12 | Yan Q, Zong X F, Wu F, et al. Integrated analysis of co-expression, conserved genes and gene families reveal core regulatory network of heat stress response in Cleistogenes songorica, a xerophyte perennial desert plant. BMC Genomics, 2020, 21: 715. |
13 | Zhang Y F. Genomewide identification and utilization of intron-length polymorphic (ILP) markers in Cleistogenes songorica. Lanzhou: Lanzhou University, 2019. |
张宇飞. 无芒隐子草全基因组水平内含子长度多态性(ILP)分子标记的开发和应用. 兰州: 兰州大学, 2019. | |
14 | Jurka J, Kapitonov V V, Pavlicek A, et al. Repbase update, adatabase of eukaryotic repetitive elements. Cytogenetic & Genome Research, 2005, 110 (1/2/3/4): 462-467. |
15 | Zhao X, Hao W. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research, 2007, 35(2): 265-268. |
16 | Price A L, Jones N C, Pevzner P A. De novo identification of repeat families in large genomes. Bioinformatics, 2005, 21(1): 351-358. |
17 | Marcon H S, Domingnes D S, Silva J C, et al. Transcriptionally active LTR retrotransposons in eucalyptus genus are differentially expressed and insertionally polymorphic. BMC Plant Biology. 2015, 15: 198. |
18 | Ou S, Jiang N. LTR_retriever: A highly accurate and sensitive program for identification of long terminal-repeat retrotransposons. Plant Physiology, 2018, 176: 1410-1422. |
19 | Cui Y, Barampuram S, Stacey M G, et al. Tnt1 retrotransposon mutagenesis: A tool for soybean functional genomics. Plant Physiology, 2013, 161(1): 36-47. |
20 | Ma J, Devos K M, Bennetzen J L. Analyses of LTR-Retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Research, 2004, 14(5): 860. |
21 | Du X Y, Zhang Q L, Huang J M, et al. Applification of SSAP retrotransposon-based molecular marker for genetic analysis of Diospyros spp. Journal of Agricultural Biotechnology, 2010, 18: 682-688. |
杜晓云, 张青林, 黄建明, 等. SSAP逆转座子分子标记在柿属植物遗传分析中的应用. 农业生物技术学报, 2010, 18: 682-688. | |
22 | Pan F X, Tang D Q, Zhou M B. Identification and expression pattern analysis of a Moso bamboo LTR retrotransposon. Chinese Journal of Biotechnology, 2019, 35(3): 445-457. |
潘飞翔, 汤定钦, 周明兵. 一个毛竹LTR反转录转座子结构鉴定及表达模式分析. 生物工程学报, 2019, 35(3): 445-457. | |
23 | Huang Z X, Ke C H, Chen J. Bioinformatics procedure of large-scale GO annotation. Journal of Xiamen University (Natural Science), 2012, 51(1): 139-143. |
黄子夏, 柯才焕, 陈军. 大规模GO注释的生物信息学流程. 厦门大学学报(自然科学版), 2012, 51(1): 139-143. | |
24 | Yan Q, Wu F, Yan Z, et al. Differential co-expression networks of long non-coding RNAs and mRNAs in Cleistogenes songorica under water stress and during recovery. BMC Plant Biology, 2019, 19(1): 72-79. |
25 | Llorens C, Futami R, Covelli L, et al. The Gypsy database (GyDB) of mobile genetic elements: Release. Nucleic Acids Research, 2011, 39: 70-74. |
26 | Wang H. Annotation and comparative studies on LTR retrotransposons of plant genome. Shanghai: Fudan University, 2008. |
汪浩. 植物基因组LTR反转录转座子注释和比较研究. 上海: 复旦大学, 2008. | |
27 | Wang S, Liu N, Peng K, et al. The distribution and copy number of Copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice. Proceedings of the National Academy of Sciences of the United States, 1996(12): 6824-6828. |
28 | Kumar A, Bennetzen J L. Plant retrotransposons. Annual Review of Genetics, 1999, 33(1): 479-532. |
29 | Evanno G S, Regnaut S J, Goudet J. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 2005, 14(8): 2611-2620. |
30 | Tang Y M, Ma Y Z. Characteristics of plant retrotransposons and their applications in functional genomics. Journal of Plant Genetic Resources, 2006(2): 221-225. |
唐益苗, 马有志. 植物反转录转座子及其在功能基因组学中的应用. 植物遗传资源学报, 2006(2): 221-225. | |
31 | Wu Z Y, Yang S, Qian W, et al. Cloning and characterisation of reverse transcriptase sequences of Ty1-copia retrotransposon in Saccharum robustum. Journal of Plant Genetic Resources, 2020, 21(2): 466-476. |
吴子莺, 杨善, 钱旺,等. 甘蔗属大茎野生种 Ty1-copia 反转录转座子逆转录酶序列克隆与特点分析. 植物遗传资源学报, 2020, 21(2): 466-476. | |
32 | Xia Z R, Wang W Y, Liu Y Q, et al. Cloning and expression analysis of the K+ channel gene AvAKT1 in Apocynum venetum. Acta Prataculturae Sinica, 2019, 28(8): 180-189. |
夏曾润, 王文颖, 刘亚琪, 等. 罗布麻K+通道编码基因AvAKT1的克隆与表达分析. 草业学报, 2019, 28(8): 180-189. | |
33 | Voytas D F, Konieczny A, Cummings M P, et al. The structure, distribution and evolution of the Ta1 retrotransposable element amily of Arabidopsis thaliana. Genetics, 1990, 126(3): 713-721. |
34 | Qiu F, Ungerer M C. Genomic abundance and transcriptional activity of diverse gypsy and copia long terminal repeat retrotransposons in three wild sunflower species. BioMed Central, 2018, 18(1): 147-152. |
35 | Kumar A, Pearce S R, McLean K, et al. The Ty1-copia group of retrotransposons in plants: Genomic organisation, evolution, and use as molecular markers . Genetica, 1997, 100(1/2/3): 205-217. |
36 | Tian Z, Rizzon C, Du J, et al. Do genetic recombination and gene density shape the pattern of DNA elimination in rice long terminal repeat retrotransposons. Genome Research, 2019(12): 2221-2230. |
37 | Natali L, Cossu R M, Mascagni F, et al. A survey of Gypsy and Copia LTR-retrotransposon superfamilies and lineages and their distinct dynamics in the Populus trichocarpa (L.) genome. Tree Genetics & Genomes, 2015(11): 107. |
38 | Li M M. Identification of retrotransposons and developmentof molecular markers in Chrysanthemum morifolium. Kaifeng: Henan University, 2019. |
李茫茫. 菊花反转录转座子鉴定及分子标记开发. 开封: 河南大学, 2019. | |
39 | Lin Y L, Xiao K Z, Lian L, et al. Functional progress of retrotransposons in plants. Chinese Science Bulletin, 2019, 64(1): 41-54. |
林悦龙, 肖开转, 连玲, 等. 植物反转录转座子功能研究进展. 科学通报, 2019, 64(1): 41-54. | |
40 | Kobayashi S. Retrotransposon-induced mutations in grape skin color. Science, 2004, 304(5673): 982. |
41 | Das R, Shelke R G, Rangan L, et al. Estimation of nuclear genome size and characterization of Ty1-copia like LTR retrotransposon in Mesua ferrea L. Journal of Plant Biochemistry and Biotechnology, 2018, 27(4): 214-219. |
42 | Cristina P R, Eliana K M, Guillermo R H, et al. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica, 2017, 145(4/5): 1-14. |
43 | Ji H, Zhou M B, Jiang Z Q. Identification and transcription-pattern analysis of PHRE8 Moso bamboo LTR retrotransposon. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 705-713. |
季航, 周明兵, 蒋政勤, 等. 毛竹LTR反转录转座子PHRE8的鉴定与转录模式分析. 核农学报, 2020, 34(4): 705-713. | |
44 | Peng L. Cloning and activation analysis of reverse transcriptase of Ty3-gypsy retrotransposon in Pitaya. Guiyang: Guizhou University, 2017. |
彭磊. 火龙果Ty3-gypsy类反转录转座子序列克隆及表达分析. 贵阳: 贵州大学, 2017. | |
45 | Wang S S. Indentfication of novel LTR-retrotransposons their transcription activation analysis in Foxtail millet. Shengyang: Liaoning University, 2015. |
王姗姗. 谷子基因组中几类LTR反转座子的定义及其表达特性的研究. 沈阳: 辽宁大学, 2015. |
[1] | 纪会, 官久强, 王会, 周建旭, 阿农呷, 何宗伟, 樊珍详, 邱龙康, 曹诗晓, 安添午, 柏琴, 钟金城, 罗晓林. 亚丁牦牛和拉日马牦牛遗传多样性及遗传结构分析[J]. 草业学报, 2021, 30(5): 134-145. |
[2] | 李淑洁, 张金文, 裴怀弟, 王红梅, 罗俊杰, 林玉红. 兰州百合同源四倍体诱导及其基因组大小估算[J]. 草业学报, 2020, 29(3): 190-196. |
[3] | 刘淑娟, 张晓军, 李欣, 刘成, 白建荣, 任永康, 郑军, 李世姣, 郭慧娟, 梅超, 张树伟, 畅志坚, 乔麟轶. 中间偃麦草第6同源群特异STS标记开发[J]. 草业学报, 2019, 28(4): 139-145. |
[4] | 陶奇波, 贾存智, 王彦荣, 李欣勇, 韩云华, 白梦杰. 农户生产水平的“腾格里”无芒隐子草种子脱粒与清选技术研究[J]. 草业学报, 2019, 28(2): 51-60. |
[5] | 田沛, 张光明, 南志标. 禾草内生真菌研究及应用进展[J]. 草业学报, 2016, 25(12): 206-220. |
[6] | 李欣勇,王彦荣,贾存智. 施尿素对无芒隐子草草坪生长特性的影响[J]. 草业学报, 2014, 23(6): 136-141. |
[7] | 康俊梅,张铁军,王梦颖,张怡,杨青川. 紫花苜蓿QTL与全基因组选择研究进展及其应用[J]. 草业学报, 2014, 23(6): 304-312. |
[8] | 姜格格,宋丽莉,郭东林,蔡洪生,郭长虹,束永俊. 蒺藜苜蓿耐酸铝性状的全基因组关联分析[J]. 草业学报, 2013, 22(4): 170-178. |
[9] | 孔令芳,张吉宇,刘志鹏,王彦荣. 无芒隐子草SAMS1基因的克隆及干旱胁迫下的表达分析[J]. 草业学报, 2013, 22(1): 268-275. |
[10] | 邰建辉,王彦荣,李晓霞,魏学,陈谷. 不同覆盖物对无芒隐子草建植的影响[J]. 草业学报, 2011, 20(3): 287-291. |
[11] | 王晓丽,凡星,张春3,沙莉娜,张海琴,周永红. 用nrDNA ITS序列探讨小麦族含StH基因组物种的系统发育[J]. 草业学报, 2009, 18(6): 82-90. |
[12] | 魏学,王彦荣*,胡小文,武艳培. 无芒隐子草不同节间部位的种子休眠对高温处理的响应[J]. 草业学报, 2009, 18(6): 169-173. |
[13] | 黄文达,王彦荣,胡小文. 三种荒漠植物种子萌发的水热响应[J]. 草业学报, 2009, 18(3): 171-177. |
[14] | 郑轶琦,刘建秀. 草坪草分子遗传图谱的构建与应用研究进展[J]. 草业学报, 2009, 18(1): 155-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||