草业学报 ›› 2022, Vol. 31 ›› Issue (1): 36-46.DOI: 10.11686/cyxb2021104
汪梦寒1(), 董利利2, 李富翠1(), 韩烈保1(), 王祥3
收稿日期:
2021-03-23
修回日期:
2021-07-05
出版日期:
2021-12-01
发布日期:
2021-12-01
通讯作者:
李富翠,韩烈保
作者简介:
Corresponding author. E-mail: hanliebao@163.com基金资助:
Meng-han WANG1(), Li-li DONG2, Fu-cui LI1(), Lie-bao HAN1(), Xiang WANG3
Received:
2021-03-23
Revised:
2021-07-05
Online:
2021-12-01
Published:
2021-12-01
Contact:
Fu-cui LI,Lie-bao HAN
摘要:
氮沉降增加已成为全球变化的重要现象之一,已显著影响草地土壤氮素循环。以内蒙古额尔古纳草甸草原为研究对象,进行了6年不同形式氮添加试验,设置无机氮和有机氮比例分别为:10∶0 (N1),7∶3 (N2),5∶5 (N3),3∶7 (N4),0∶10 (N5)和对照处理0∶0 (CK)。通过土壤有机质物理分组及室内矿化培养的方法,从氮素形态、氮素组分及氮素潜在矿化三方面研究不同比例有机、无机氮添加对草原土壤氮素分配和转化特征的影响。结果表明,土壤全氮含量未受氮素添加形式的影响;氮添加显著提高了0~20 cm土层矿质氮含量,尤其是土壤硝态氮,其中N4(无机氮∶有机氮=3∶7)混合氮肥处理下硝态氮含量增幅最大,较对照处理增加1332%。不同形式氮添加没有影响氮素在土壤颗粒态有机氮(轻组)及矿物结合态有机氮(重组)中的占比;N1(无机氮∶有机氮=10∶0)处理显著提高了0~10 cm土层颗粒态有机氮(轻组)及0~20 cm土层矿物结合态有机氮(重组)中的氮素相对含量,较对照分别增加了91%和44%。氮添加增加了10~20 cm次表层土壤硝化速率的同时降低了氨化速率,但土壤净氮矿化速率不受氮添加形式的影响。因此,有机/无机氮添加比例变化对草原土壤氮素形态和周转的影响也更加复杂。
汪梦寒, 董利利, 李富翠, 韩烈保, 王祥. 不同有机/无机氮添加对草原土壤氮素分配和转化特征的影响[J]. 草业学报, 2022, 31(1): 36-46.
Meng-han WANG, Li-li DONG, Fu-cui LI, Lie-bao HAN, Xiang WANG. Effects of different organic ∶inorganic nitrogen addition ratios on nitrogen distribution and transformation in a grassland soil[J]. Acta Prataculturae Sinica, 2022, 31(1): 36-46.
处理 Treatments | 深度 Depth (cm) | 氮素含量 Nitrogen content (g·kg-1) | ||
---|---|---|---|---|
风干土 Dry soil | 轻组 Light fractions | 重组 Heavy fractions | ||
CK | 0~10 | 2.23±0.11a | 0.91±0.07a | 4.79±0.08a |
10~20 | 1.96±0.24a | 0.47±0.07a | 3.72±0.06a | |
N1 | 0~10 | 3.43±0.42a | 1.47±0.18a | 5.18±0.33a |
10~20 | 2.82±0.41a | 0.67±0.11a | 4.23±0.17a | |
N2 | 0~10 | 2.49±0.45a | 1.43±0.34a | 4.99±0.61a |
10~20 | 2.27±0.14a | 0.68±0.09a | 4.18±0.45a | |
N3 | 0~10 | 2.75±0.37a | 1.16±0.07a | 4.99±0.20a |
10~20 | 2.14±0.09a | 0.58±0.08a | 3.97±0.15a | |
N4 | 0~10 | 2.70±0.23a | 1.07±0.09a | 4.93±0.14a |
10~20 | 2.13±0.24a | 0.58±0.10a | 3.96±0.10a | |
N5 | 0~10 | 2.81±0.16a | 1.40±0.17a | 4.74±0.33a |
10~20 | 2.17±0.16a | 0.87±0.17a | 4.00±0.14a |
表1 土壤氮素含量
Table 1 Soil nitrogen content
处理 Treatments | 深度 Depth (cm) | 氮素含量 Nitrogen content (g·kg-1) | ||
---|---|---|---|---|
风干土 Dry soil | 轻组 Light fractions | 重组 Heavy fractions | ||
CK | 0~10 | 2.23±0.11a | 0.91±0.07a | 4.79±0.08a |
10~20 | 1.96±0.24a | 0.47±0.07a | 3.72±0.06a | |
N1 | 0~10 | 3.43±0.42a | 1.47±0.18a | 5.18±0.33a |
10~20 | 2.82±0.41a | 0.67±0.11a | 4.23±0.17a | |
N2 | 0~10 | 2.49±0.45a | 1.43±0.34a | 4.99±0.61a |
10~20 | 2.27±0.14a | 0.68±0.09a | 4.18±0.45a | |
N3 | 0~10 | 2.75±0.37a | 1.16±0.07a | 4.99±0.20a |
10~20 | 2.14±0.09a | 0.58±0.08a | 3.97±0.15a | |
N4 | 0~10 | 2.70±0.23a | 1.07±0.09a | 4.93±0.14a |
10~20 | 2.13±0.24a | 0.58±0.10a | 3.96±0.10a | |
N5 | 0~10 | 2.81±0.16a | 1.40±0.17a | 4.74±0.33a |
10~20 | 2.17±0.16a | 0.87±0.17a | 4.00±0.14a |
图1 不同比例有机/无机氮添加对土壤无机态氮的影响不同小写字母表示同一土层不同处理间差异显著(P<0.05);平均值±标准误;下同。Different lowercase letters indicate significant difference among different treatments at the same soil layer (P<0.05); mean±SE; the same below.
Fig.1 Effect of different organic/inorganic nitrogen additions on soil inorganic nitrogen
1 | Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 2008, 320(5878): 889-892. |
2 | Sun T, Li X H, Liu R P, et al. Dynamic changes of atmospheric nitrogen wet deposition during growing seasons in Maoershan area in Northeast China. Bulletin of Botanical Research, 2015, 35(4): 554-558. |
孙涛, 李兴欢, 刘瑞鹏, 等. 东北帽儿山地区生长季大气氮湿沉降动态变化. 植物研究, 2015, 35(4): 554-558. | |
3 | Cornell S E. Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component. Environmental Pollution, 2011, 159(10): 2214-2222. |
4 | Zhang Y, Song L, Liu X J, et al. Atmospheric organic nitrogen deposition in China. Atmospheric Environment, 2012, 46: 195-204. |
5 | Zhao Z F, Tobias R, Håkan P, et al. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Global Change Biology, 2015, 21(8): 3152-3168. |
6 | Li G H, Ye X L, Lv Z G, et al. Comparison of element analyzer (Dumas Combustion) and automated Kjeldahl analyzer (Kjeldahl methods) for determining total nitrogen content in soils. Soil and Fertilizer Sciences in China, 2015(3): 111-115. |
李桂花, 叶小兰, 吕子古, 等. 元素分析仪和全自动凯氏定氮仪测定土壤全氮之比较. 中国土壤与肥料, 2015(3): 111-115. | |
7 | Xiao Z G, Rasmann S, Yue L, et al. The effect of biochar amendment on N-cycling genes in soils: A meta-analysis. Science of the Total Environment, 2019, 696: 1-10. |
8 | Liu H M, Zhang H F, Huangpu C H, et al. Effects of different long-term nitrogen addition on soil microbial diversity of Stipa baicalensis steppe in Inner Mongolia, China. Journal of Agro-Environment Science, 2017, 36(4): 709-717. |
刘红梅, 张海芳, 皇甫超河, 等. 长期氮添加对贝加尔针茅草原土壤微生物群落多样性的影响. 农业环境科学学报, 2017, 36(4): 709-717. | |
9 | Wallenstein M D, McNulty S, Fernandez I J, et al. Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, 2005, 222(1): 459-468. |
10 | Lovell R D, Jarvis S C, Bardgett R D. Soil microbial biomass and activity in long-term grassland: Effects of management changes. Soil Biology and Biochemistry, 1995, 27(7): 969-975. |
11 | LeBauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 2008, 89(2): 371-379. |
12 | Zhou Z H, Xiao H Y, Liu C Q. Research status and progress of soil nitrogen biogeochemical cycle. Earth and Environment, 2004(Z1): 21-26. |
周志华, 肖化云, 刘丛强. 土壤氮素生物地球化学循环的研究现状与进展. 地球与环境, 2004(Z1): 21-26. | |
13 | Li Y, Xu X H, Sun W, et al. Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Inner Mongolia, China. Chinese Journal of Plant Ecology, 2019, 43(2): 174-184. |
李阳, 徐小惠, 孙伟, 等. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 2019, 43(2): 174-184. | |
14 | Han M Q, Pan Z L, Jin Y X, et al. Response of soil nitrogen mineralization to different stocking rates on the Stipa breviflora desert steppe. Acta Prataculturae Sinica, 2017, 26(9): 27-35. |
韩梦琪, 潘占磊, 靳宇曦, 等. 短花针茅荒漠草原土壤氮素矿化对载畜率的响应. 草业学报, 2017, 26(9): 27-35. | |
15 | Cambardella C A, Elliott E T. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 1992, 56(3): 777-783. |
16 | Santos E R S, Dubeux J C B, Menezes R C, et al. Particulate soil organic matter in Bahiagrass-Rhizoma Peanut mixtures and their monocultures. Soil Science Society of America Journal, 2019, 83(3): 658-665. |
17 | Cotrufo M F, Ranalli M G, Haddix M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter. Nature Geoscience, 2019, 12(12): 989-994. |
18 | Poirier N, Sohi S P, Gaunt J L, et al. The chemical composition of measurable soil organic matter pools. Organic Geochemistry, 2005, 36(8): 1174-1189. |
19 | Dijkstra F A, Dana B, Morgan J A, et al. Contrasting effects of elevated CO2 and warming on nitrogen cycling in a semiarid grassland. The New Phytologist, 2010, 187(2): 426-437. |
20 | Matson P, Lohse K A, Hall S J. The globalization of nitrogen deposition: Consequences for terrestrial ecosystems. AMBIO: A Journal of the Human Environment, 2002, 31(2): 113-119. |
21 | Liu H M, Zhang H F, Qin J, et al. Characteristics and coupling relationship of soil carbon and nitrogen transformation during in-situ mineralization cultivation in Stipa baicalensis steppe. Agricultural Research in the Arid Areas, 2020, 38(2): 232-242. |
刘红梅, 张海芳, 秦洁, 等. 贝加尔针茅草原土壤原位矿化过程中碳氮转化耦合特征. 干旱地区农业研究, 2020, 38(2): 232-242. | |
22 | Department of Animal Husbandry and Veterinary Medicine, Ministry of Agriculture And Rural Affairs of the People’s Republic of China. Grassland resources in China. Beijing: China Science and Technology Press, 1996. |
全国畜牧兽医总站中华人民共和国农业农村部畜牧兽医司. 中国草地资源. 北京: 中国科学技术出版社, 1996. | |
23 | Su J Q, Li X R, Bao J T. Effects of nitrogen addition on soil physico-chemical properties and enzyme activities in desertified steppe. Chinese Journal of Applied Ecology, 2014, 25(3): 664-670. |
苏洁琼, 李新荣, 鲍婧婷. 施氮对荒漠化草原土壤理化性质及酶活性的影响. 应用生态学报, 2014, 25(3): 664-670. | |
24 | Borges B M M N, Bordonal R D O, Silveira M L, et al. Short-term impacts of high levels of nitrogen fertilization on soil carbon dynamics in a tropical pasture. Catena, 2019, 174: 413-416. |
25 | Li L, Wang Y, Hu S Y, et al. Responses of soil potential carbon/nitrogen mineralization and microbial activities to extreme droughts in a meadow steppe. Chinese Journal of Applied Ecology, 2020, 31(3): 814-820. |
李磊, 王岩, 胡姝娅, 等. 草甸草原土壤碳/氮矿化潜力及土壤微生物水分敏感性对极端干旱的响应. 应用生态学报, 2020, 31(3): 814-820. | |
26 | Li J. Response of soil organic carbon and microbial properties within aggregates to high-input fertilizer practices under an intensive agricultural system. Beijing: China Agricultural University, 2018. |
李景. 高碳氮投入农田生态系统土壤团聚体有机碳及微生物特性研究. 北京: 中国农业大学, 2018. | |
27 | Hadas A, Portnoy R. Nitrogen and carbon mineralization rates of composted manures incubated in soil. Journal of Environmental Quality, 1994, 23(6): 1184-1189. |
28 | Wang R, Filley T R, Xu Z, et al. Coupled response of soil carbon and nitrogen pools and enzyme activities to nitrogen and water addition in a semi-arid grassland of Inner Mongolia. Plant and Soil, 2014, 381: 323-336. |
29 | Ren Y J, Liu X L, Wang H L, et al. Response of soil net nitrogen mineralization rates to different grazing intensities in Leymus secalinus communities of the agro-pastoral ecotone of Northern China. Acta Agrestia Sinica, 2020, 28(2): 328-337. |
任雨佳, 刘夏琳, 王惠玲, 等. 北方农牧交错带赖草草地土壤氮矿化对不同放牧强度的响应. 草地学报, 2020, 28(2): 328-337. | |
30 | Zhang H Y, Zhang X D, Li J, et al. Outline of soil microbial biomass measurement methods. Journal of Microbiology, 2005, 4: 95-99. |
张海燕, 张旭东, 李军, 等. 土壤微生物量测定方法概述. 微生物学杂志, 2005, 4: 95-99. | |
31 | Cai Y T, Huang Y F, Zhang T P, et al. Effects of simulated nitrogen deposition on the vertical distribution of soil nitrogen, carbon and microbial biomass in young Schima superb plantation. Ecology and Environmental Sciences, 2013, 22(5): 755-760. |
蔡玉婷, 黄永芳, 张太平, 等. 模拟氮沉降对木荷人工幼林地土壤氮素、碳素和微生物量垂直分布的影响. 生态环境学报, 2013, 22(5): 755-760. | |
32 | Yu Z Y, Zeng D H, Ai G Y, et al. Effects of nitrogen addition on soil nitrogen availability in sandy grassland. Chinese Journal of Ecology, 2007, 26(11): 1894-1897. |
于占源, 曾德慧, 艾桂艳, 等. 添加氮素对沙质草地土壤氮素有效性的影响. 生态学杂志, 2007, 26(11): 1894-1897. | |
33 | Chen Y, Liu X, Hou Y, et al. Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic carbon in soil of an alpine meadow. Plant and Soil, 2019, 458(1/2): 93-103. |
34 | Chen L X, Duan W B. Effects of simulated nitrogen deposition on soil available nitrogen forms and their contents in typical temperate forest stands. Chinese Journal of Applied Ecology, 2011, 22(8): 2005-2012. |
陈立新, 段文标. 模拟氮沉降对温带典型森林土壤有效氮形态和含量的影响. 应用生态学报, 2011, 22(8): 2005-2012. | |
35 | Chen J, Xiao W, Zheng C, et al. Nitrogen addition has contrasting effects on particulate and mineral-associated soil organic carbon in a subtropical forest. Soil Biology and Biochemistry, 2020, 142: 1-8. |
36 | Zhang G, Cao Z P, Hu C J. Soil organic carbon fractionation methods and their applications in farmland ecosystem research: A review. Chinese Journal of Applied Ecology, 2011, 22(7): 1921-1930. |
张国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用. 应用生态学报, 2011, 22(7): 1921-1930. | |
37 | Schuman G E, Janzen H H, Herrick J E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution, 2002, 116(3): 391-396. |
38 | Geng J, Cheng S, Fang H, et al. Different molecular characterization of soil particulate fractions under N deposition in a subtropical forest. Forests, 2019, 10(10): 914-932. |
39 | Gao S J. Effect of simulated nitrogen deposition on carbon and nitrogen in soil of Xishan artificial forest, Beijing. Beijing: Beijing Forestry University, 2020. |
高士杰. 模拟氮沉降对北京西山人工林土壤碳氮动态影响研究. 北京: 北京林业大学, 2020. | |
40 | Cheng M M. Effect of different nitrogen addition on soil net nitrogen mineralization in grassland ecosystem of northern agro-pastoral transitional zone. Jinzhong: Shanxi Agricultural University, 2019. |
程苗苗. 不同梯度氮添加对北方农牧交错带草地生态系统土壤净氮矿化的影响. 晋中: 山西农业大学, 2019. | |
41 | Zhang J B, Zhu T B, Cai Z C, et al. Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations. European Journal of Soil Science, 2012, 63(1): 75-85. |
42 | Yang H, Hu Z M, Guo Q, et al. Influences of precipitation increase and N addition on soil potential N mineralization in Inner Mongolia grassland. Journal of Natural Resources, 2017, 32(12): 2034-2042. |
杨浩, 胡中民, 郭群, 等. 增雨和氮添加对内蒙古草原土壤氮矿化潜力的影响. 自然资源学报, 2017, 32(12): 2034-2042. | |
43 | Sirulnik A G, Allen E B, Meixner T, et al. Changes in N cycling and microbial N with elevated N in exotic annual grasslands of Southern California. Applied Soil Ecology, 2006, 36(1): 1-9. |
44 | Vourlitis G L, Zorba G, Pasquini S C, et al. Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Science Society of America Journal, 2007, 71(3): 836-842. |
45 | Pietri J C A, Brookes P C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biology and Biochemistry, 2008, 40(7): 1856-1861. |
46 | Fisk M C, Schmidt S K. Microbial responses to nitrogen additions in alpine tundra soil. Soil Biology and Biochemistry, 1996, 28(6): 751-755. |
47 | Luo Y, Wang C, Shen Y, et al. The interactive effects of mowing and N addition did not weaken soil net N mineralization rates in semi-arid grassland of Northern China. Scientific Reports, 2019, 9(6): 424-429. |
[1] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[2] | 张静静, 刘尊驰, 鄢创, 王云霞, 刘凯, 时新荣, 袁志友. 土壤pH值变化对3种草原类型土壤碳氮磷生态化学计量特征的影响[J]. 草业学报, 2021, 30(2): 69-81. |
[3] | 聂莹莹, 陈金强, 辛晓平, 徐丽君, 杨桂霞, 王旭. 呼伦贝尔草甸草原区主要植物种群生态位特征与物种多样性对封育年限响应[J]. 草业学报, 2021, 30(10): 15-25. |
[4] | 刘红梅, 张海芳, 赵建宁, 王慧, 秦洁, 杨殿林, 张乃芹. 氮添加对贝加尔针茅草原土壤活性有机碳和碳库管理指数的影响[J]. 草业学报, 2020, 29(8): 18-26. |
[5] | 王洪义, 丁睿, 王智慧, 杨凤军. 氮、磷添加对草地不同冠层植物叶片和根系生态化学计量特征的影响[J]. 草业学报, 2020, 29(8): 37-45. |
[6] | 岳可欣, 龚吉蕊, 于上媛, 宝音陶格涛, 杨波, 王彪, 朱趁趁, 张子荷, 矢佳昱. 氮添加下典型草原凋落物质量和土壤酶活性对凋落物分解速率的影响[J]. 草业学报, 2020, 29(6): 71-82. |
[7] | 聂莹莹, 徐丽君, 辛晓平, 陈宝瑞, 张保辉. 围栏封育对温性草甸草原植物群落构成及生态位特征的影响[J]. 草业学报, 2020, 29(11): 11-22. |
[8] | 刘红梅, 杨殿林, 张海芳, 赵建宁, 王慧, 张乃琴. 氮添加对贝加尔针茅草原土壤细菌群落结构的影响[J]. 草业学报, 2019, 28(9): 23-32. |
[9] | 王丽娜, 罗久富, 杨梅香, 张利, 刘学敏, 邓东周, 周金星. 氮添加对退化高寒草地土壤微生物量碳氮的影响[J]. 草业学报, 2019, 28(7): 38-48. |
[10] | 刘红梅, 李洁, 王丽丽, 赵建宁, 王慧, 杨殿林. 氮添加对贝加尔针茅草原植物和土壤化学计量特征的影响[J]. 草业学报, 2018, 27(7): 25-35. |
[11] | 那亚, 孙启忠, 王红梅. 呼伦贝尔草甸草原牧草青贮饲料脂肪酸成分研究[J]. 草业学报, 2017, 26(2): 215-223. |
[12] | 李小龙, 曹文侠, 李文, 张晓燕, 徐长林, 韦应莉, 师尚礼. 划破草皮对不同地形高寒草甸草原土壤特征及地下生物量的影响[J]. 草业学报, 2016, 25(6): 26-33. |
[13] | 胡飞龙, 闫妍, 卢晓强, 吴军, 丁晖, 刘志民. 内蒙古草甸草原生物量碳分配格局[J]. 草业学报, 2016, 25(4): 36-44. |
[14] | 刘红梅, 李洁, 皇甫超河, 陈新微, 杨殿林. 贝加尔针茅光合特征与叶片功能特性对长期氮添加的响应[J]. 草业学报, 2016, 25(11): 76-85. |
[15] | 李惠霞, 彭焕, 彭德良, 朱锐东, 徐鹏刚, 李建荣. 甘肃省高寒草原牧草孢囊线虫的鉴定[J]. 草业学报, 2015, 24(8): 174-180. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||