草业学报 ›› 2022, Vol. 31 ›› Issue (5): 156-168.DOI: 10.11686/cyxb2021105
• 研究论文 • 上一篇
蒋嘉瑜1,2(), 连学1, 唐希明3, 刘任涛1,2(), 张安宁1,2
收稿日期:
2021-03-23
修回日期:
2021-05-26
出版日期:
2022-05-20
发布日期:
2022-03-30
通讯作者:
刘任涛
作者简介:
Corresponding author. E-mail: nxuliu2012@126.com基金资助:
Jia-yu JIANG1,2(), Xue LIAN1, Xi-ming TANG3, Ren-tao LIU1,2(), An-ning ZHANG1,2
Received:
2021-03-23
Revised:
2021-05-26
Online:
2022-05-20
Published:
2022-03-30
Contact:
Ren-tao LIU
摘要:
选择宁夏盐池半干旱区和内蒙古乌拉特后旗干旱区荒漠草原为研究样地,以红砂枯落物为研究对象,利用网孔分解袋法,在灌丛内外微生境布设分解袋。通过调查分解袋中节肢动物群落组成与多样性分布特征,结合枯落物化学分析和土壤环境因子测定,研究灌丛微生境红砂枯落物分解初期节肢动物群落结构分布规律。结果表明:1)红砂枯落物节肢动物优势类群在盐池半干旱区灌丛中有3类,裸地中仅2类;而在乌拉特后旗干旱区表现为灌丛内外优势类群均有3类。常见类群在盐池半干旱区灌丛中有7类,而裸地中仅3类;而乌拉特后旗干旱区灌丛中有7类,裸地中有4类。稀有类群在盐池半干旱区表现为仅在裸地出现,而乌拉特后旗干旱区表现为仅在灌丛内出现。2)红砂枯落物节肢动物个体数和类群数在盐池半干旱区均表现为裸地显著高于灌丛,而在乌拉特后旗干旱区均表现为裸地显著低于灌丛(P<0.05)。红砂枯落物节肢动物Shannon-Wiener指数、Simpson指数、Margalef指数以及Pielou指数在盐池半干旱区和乌拉特后旗干旱区均表现为灌丛内外无显著差异(P>0.05)。3)红砂枯落物节肢动物个体数在盐池半干旱区仅与土壤pH值呈显著正相关性,而与土壤砂粒含量呈显著负相关性;类群数在盐池半干旱区仅与土壤砂粒呈显著负相关性(P<0.05)。在乌拉特后旗干旱区红砂枯落物节肢动物个体数和类群数与环境因子间均无相关性(P>0.05)。冗余分析(RDA)和偏RDA分析结果表明,枯落物K含量是影响干旱与半干旱区红砂枯落物节肢动物个体数分布的主要环境因子。4)综合表明,红砂枯落物节肢动物个体数和类群数受到灌丛微生境和气候因子的双重影响,但群落多样性受灌丛微生境和气候因子的影响均较小。并且,随干旱程度的加强,灌丛微生境对红砂枯落物节肢动物个体数和类群数分布的影响从溢出效应转变为聚集效应。
蒋嘉瑜, 连学, 唐希明, 刘任涛, 张安宁. 干旱与半干旱区红砂枯落物分解初期节肢动物群落结构特征[J]. 草业学报, 2022, 31(5): 156-168.
Jia-yu JIANG, Xue LIAN, Xi-ming TANG, Ren-tao LIU, An-ning ZHANG. The arthropod community structure in Reaumuria soongorica litter at the early stage of its decomposition in arid and semi-arid regions[J]. Acta Prataculturae Sinica, 2022, 31(5): 156-168.
荒漠草原 Desert steppe | 干湿状况 Wet and dry condition | AT (℃) | AP (mm) | IE(mm) | ≥10 ℃ AAT (℃·d-1) | WS (m·s-1) | 土壤类型Soil type | |
---|---|---|---|---|---|---|---|---|
地带性Zonality | 非地带性Non-zonality | |||||||
盐池Yanchi | 半干旱区Semi-arid zone | 8.5 | 281.7 | 2136 | 2949 | 2.8 | 灰钙土Limestone | 风沙土Aeolian sand |
乌拉特后旗 Urat Rear Banner | 干旱区Arid zone | 5.7 | 184.5 | 3447 | 2500 | 5.0 | 灰棕漠土Grey brown desert soil | 风沙土Aeolian sand |
表1 研究样地基本气候条件和土壤类型情况
Table 1 Basic climatic conditions and soil types of the study sites
荒漠草原 Desert steppe | 干湿状况 Wet and dry condition | AT (℃) | AP (mm) | IE(mm) | ≥10 ℃ AAT (℃·d-1) | WS (m·s-1) | 土壤类型Soil type | |
---|---|---|---|---|---|---|---|---|
地带性Zonality | 非地带性Non-zonality | |||||||
盐池Yanchi | 半干旱区Semi-arid zone | 8.5 | 281.7 | 2136 | 2949 | 2.8 | 灰钙土Limestone | 风沙土Aeolian sand |
乌拉特后旗 Urat Rear Banner | 干旱区Arid zone | 5.7 | 184.5 | 3447 | 2500 | 5.0 | 灰棕漠土Grey brown desert soil | 风沙土Aeolian sand |
地区 Area | 微生境 Microhabitat | 枯落物残留量 Litter residue (g) | 纤维素含量 Cellulose content (%) | 木质素含量 Lignin content (%) | N含量 N content (%) | P含量 P content (%) | K含量 K content (%) |
---|---|---|---|---|---|---|---|
半干旱区(盐池) Semi-arid zone (Yanchi) | 灌丛Shrub | 4.70±0.15a | 13.08±1.34a | 15.03±1.42a | 0.85±0.05a | 0.29±0.04a | 0.24±0.03a |
裸地Open space | 4.86±0.19a | 10.01±0.56a | 12.32±0.85a | 0.69±0.01b | 0.14±0.02b | 0.16±0.02b | |
干旱区(乌拉特后旗) Arid zone (Urat Rear Banner) | 灌丛Shrub | 5.34±0.28a | 6.67±0.51a | 7.46±0.48a | 0.66±0.04a | 0.35±0.04a | 0.38±0.03a |
裸地Open space | 5.39±0.27a | 7.41±1.16a | 9.57±1.07a | 0.68±0.05a | 0.20±0.02b | 0.42±0.02a |
表2 干旱与半干旱区不同微生境红砂枯落物化学特征
Table 2 Chemical content of R. soongorica litter between different microhabitats in arid and semi-arid regions
地区 Area | 微生境 Microhabitat | 枯落物残留量 Litter residue (g) | 纤维素含量 Cellulose content (%) | 木质素含量 Lignin content (%) | N含量 N content (%) | P含量 P content (%) | K含量 K content (%) |
---|---|---|---|---|---|---|---|
半干旱区(盐池) Semi-arid zone (Yanchi) | 灌丛Shrub | 4.70±0.15a | 13.08±1.34a | 15.03±1.42a | 0.85±0.05a | 0.29±0.04a | 0.24±0.03a |
裸地Open space | 4.86±0.19a | 10.01±0.56a | 12.32±0.85a | 0.69±0.01b | 0.14±0.02b | 0.16±0.02b | |
干旱区(乌拉特后旗) Arid zone (Urat Rear Banner) | 灌丛Shrub | 5.34±0.28a | 6.67±0.51a | 7.46±0.48a | 0.66±0.04a | 0.35±0.04a | 0.38±0.03a |
裸地Open space | 5.39±0.27a | 7.41±1.16a | 9.57±1.07a | 0.68±0.05a | 0.20±0.02b | 0.42±0.02a |
地区 Area | 微生境 Microhabitat | 土壤全氮 TN (%) | 土壤全碳 TC (%) | 土壤碳氮 比C/N | 土壤含水量 SM (%) | pH |
---|---|---|---|---|---|---|
半干旱区(盐池) Semi-arid zone (Yanchi) | 灌丛Shrub | 0.08±0.01a | 1.54±0.08b | 18.92±0.74b | 2.26±0.30b | 7.74±0.01b |
裸地Open space | 0.08±0.01a | 1.91±0.14a | 23.84±1.44a | 4.94±0.74a | 7.86±0.01a | |
干旱区(乌拉特后旗) Arid zone (Urat Rear Banner) | 灌丛Shrub | 0.06±0.01a | 0.89±0.03a | 14.53±0.49a | 3.08±0.53a | 7.91±0.03a |
裸地Open space | 0.07±0.01a | 0.95±0.08a | 12.69±0.16b | 2.57±0.56a | 7.97±0.03a | |
地区 Area | 微生境 Microhabitat | 土壤电导率 EC (μs·cm-1) | 土壤黏粒含量 SC (%) | 土壤粉粒含量 SP (%) | 土壤砂粒含量 SS (%) | |
半干旱区(盐池) Semi-arid zone (Yanchi) | 灌丛Shrub | 155.53±4.22a | 17.33±0.60b | 28.05±0.57a | 54.62±0.91a | |
裸地Open space | 115.20±2.28b | 26.67±1.00a | 28.07±0.65a | 45.26±0.46b | ||
干旱区(乌拉特后旗) Arid zone (Urat Rear Banner) | 灌丛Shrub | 125.55±5.56a | 23.94±0.87a | 19.00±0.68a | 57.06±1.03a | |
裸地Open space | 117.42±4.25a | 24.58±1.80a | 18.45±1.19a | 56.96±2.54a |
表3 干旱与半干旱区不同微生境枯落物袋下土壤理化性质
Table 3 Physical and chemical properties of soils beneath litter bags between different microhabitats in arid and semi-arid regions
地区 Area | 微生境 Microhabitat | 土壤全氮 TN (%) | 土壤全碳 TC (%) | 土壤碳氮 比C/N | 土壤含水量 SM (%) | pH |
---|---|---|---|---|---|---|
半干旱区(盐池) Semi-arid zone (Yanchi) | 灌丛Shrub | 0.08±0.01a | 1.54±0.08b | 18.92±0.74b | 2.26±0.30b | 7.74±0.01b |
裸地Open space | 0.08±0.01a | 1.91±0.14a | 23.84±1.44a | 4.94±0.74a | 7.86±0.01a | |
干旱区(乌拉特后旗) Arid zone (Urat Rear Banner) | 灌丛Shrub | 0.06±0.01a | 0.89±0.03a | 14.53±0.49a | 3.08±0.53a | 7.91±0.03a |
裸地Open space | 0.07±0.01a | 0.95±0.08a | 12.69±0.16b | 2.57±0.56a | 7.97±0.03a | |
地区 Area | 微生境 Microhabitat | 土壤电导率 EC (μs·cm-1) | 土壤黏粒含量 SC (%) | 土壤粉粒含量 SP (%) | 土壤砂粒含量 SS (%) | |
半干旱区(盐池) Semi-arid zone (Yanchi) | 灌丛Shrub | 155.53±4.22a | 17.33±0.60b | 28.05±0.57a | 54.62±0.91a | |
裸地Open space | 115.20±2.28b | 26.67±1.00a | 28.07±0.65a | 45.26±0.46b | ||
干旱区(乌拉特后旗) Arid zone (Urat Rear Banner) | 灌丛Shrub | 125.55±5.56a | 23.94±0.87a | 19.00±0.68a | 57.06±1.03a | |
裸地Open space | 117.42±4.25a | 24.58±1.80a | 18.45±1.19a | 56.96±2.54a |
类群 Group | 半干旱区(盐池) Semi-arid zone (Yanchi) | 干旱区(乌拉特后旗) Arid zone (Urat Rear Banner) | 总计 Total | ||
---|---|---|---|---|---|
灌丛Shrub | 裸地Open space | 灌丛Shrub | 裸地Open space | ||
垂盾甲螨属Scutovertex | 1.50(11.84) | 5.83(13.67) | 6.83(31.06) | 2.67(43.24) | 4.20(20.16) |
盖头甲螨属Tectocepheus | 0.00 | 0.00 | 0.50(2.27) | 0.00 | 0.13(0.60) |
小真古螨科Eupalopsellidae | 0.33(2.63) | 0.00 | 0.50(2.27) | 0.50(8.11) | 0.33(1.60) |
矮蒲螨科Pygmephoridae | 2.00(15.79) | 4.17(9.77) | 7.33(33.33) | 1.50(24.32) | 3.75(17.96) |
绒螨科Trombidiidae | 0.17(1.32) | 3.50(8.20) | 0.00 | 0.00 | 0.92(4.39) |
鳞啮科Lepidopsocidae | 0.00 | 0.00 | 0.17(0.76) | 0.00 | 0.04(0.20) |
揺蚊科Chironomidae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
巨须螨科Cunaxidae | 0.00 | 0.00 | 3.00(13.64) | 0.83(13.51) | 0.96(4.59) |
巨螯螨科Macrochelidae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
蕈柄蚊科Bolitophilidae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
隐颚螨科Cryptognathidea | 0.00 | 0.17(0.39) | 0.67(3.03) | 0.00 | 0.21(1.00) |
腾岛螨科Teneriffidae | 0.00 | 0.33(0.78) | 0.33(1.52) | 0.17(2.70) | 0.21(1.00) |
吸螨科Bdellidae | 0.00 | 0.00 | 0.67(3.03) | 0.00 | 0.17(0.80) |
球角?科Hypogastruridae | 7.83(61.84) | 26.50(62.11) | 1.67(7.58) | 0.00 | 9.00(43.11) |
棘?科Onychiuridae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
疣?科Neanuridae | 0.00 | 1.83(4.30) | 0.00 | 0.00 | 0.45(2.20) |
虱啮科Liposcelididae | 0.00 | 0.17(0.39) | 0.00 | 0.17(2.70) | 0.04(0.40) |
步甲科幼虫Carabidae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
蝽科幼虫Pentatomidae | 0.00 | 0.17(0.39) | 0.33(1.52) | 0.33(5.41) | 0.21(1.00) |
表4 干旱与半干旱区不同微生境枯落物节肢动物平均个体数(百分比)
Table 4 The average abundance (percentage %) of litter arthropods between different microhabitats in arid and semi-arid regions
类群 Group | 半干旱区(盐池) Semi-arid zone (Yanchi) | 干旱区(乌拉特后旗) Arid zone (Urat Rear Banner) | 总计 Total | ||
---|---|---|---|---|---|
灌丛Shrub | 裸地Open space | 灌丛Shrub | 裸地Open space | ||
垂盾甲螨属Scutovertex | 1.50(11.84) | 5.83(13.67) | 6.83(31.06) | 2.67(43.24) | 4.20(20.16) |
盖头甲螨属Tectocepheus | 0.00 | 0.00 | 0.50(2.27) | 0.00 | 0.13(0.60) |
小真古螨科Eupalopsellidae | 0.33(2.63) | 0.00 | 0.50(2.27) | 0.50(8.11) | 0.33(1.60) |
矮蒲螨科Pygmephoridae | 2.00(15.79) | 4.17(9.77) | 7.33(33.33) | 1.50(24.32) | 3.75(17.96) |
绒螨科Trombidiidae | 0.17(1.32) | 3.50(8.20) | 0.00 | 0.00 | 0.92(4.39) |
鳞啮科Lepidopsocidae | 0.00 | 0.00 | 0.17(0.76) | 0.00 | 0.04(0.20) |
揺蚊科Chironomidae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
巨须螨科Cunaxidae | 0.00 | 0.00 | 3.00(13.64) | 0.83(13.51) | 0.96(4.59) |
巨螯螨科Macrochelidae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
蕈柄蚊科Bolitophilidae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
隐颚螨科Cryptognathidea | 0.00 | 0.17(0.39) | 0.67(3.03) | 0.00 | 0.21(1.00) |
腾岛螨科Teneriffidae | 0.00 | 0.33(0.78) | 0.33(1.52) | 0.17(2.70) | 0.21(1.00) |
吸螨科Bdellidae | 0.00 | 0.00 | 0.67(3.03) | 0.00 | 0.17(0.80) |
球角?科Hypogastruridae | 7.83(61.84) | 26.50(62.11) | 1.67(7.58) | 0.00 | 9.00(43.11) |
棘?科Onychiuridae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
疣?科Neanuridae | 0.00 | 1.83(4.30) | 0.00 | 0.00 | 0.45(2.20) |
虱啮科Liposcelididae | 0.00 | 0.17(0.39) | 0.00 | 0.17(2.70) | 0.04(0.40) |
步甲科幼虫Carabidae | 0.17(1.32) | 0.00 | 0.00 | 0.00 | 0.04(0.20) |
蝽科幼虫Pentatomidae | 0.00 | 0.17(0.39) | 0.33(1.52) | 0.33(5.41) | 0.21(1.00) |
图2 干旱与半干旱区不同微生境枯落物节肢动物个体数、类群数和群落多样性指数*表示不同微生境间差异显著(P<0.05)。* indicates significant differences between different microhabitats (P<0.05).
Fig.2 The abundance, group richness, and community diversity index of litter arthropods between different microhabitats in arid and semi-arid regions
图3 干旱与半干旱枯落物节肢动物群落指数与环境因子间的相关系数a: 盐池半干旱区Semi-arid area of Yanchi; b: 乌拉特后旗干旱区Arid area in Urat Rear Banner. 蓝色表示正相关,红色表示负相关,并且颜色越深相关系数越大。Blue means positive correlation, red means negative correlation, and the darker the color, the greater the correlation coefficient. *P<0.05; **P<0.01. I: 个体数Abundance; R: 类群数Groups richness; H: Shannon-Wiener指数Shannon-Wiener index; C: Simpson指数Simpson index; D: Margalef指数Margalef index; J: Pielou指数Pielou index; ADC: 枯落物酸性洗涤纤维素Acid detergent cellulose in litter; ADL: 枯落物酸性洗涤木质素Acid detergent lignin in litter; N: 枯落物N含量N content in litter; P: 枯落物P含量P content in litter; K: 枯落物K含量K content in litter; G: 枯落物残留量Litter residue; SM: 土壤含水量Soil moisture; TC: 土壤全碳Soil total carbon; TN: 土壤全氮Soil total nitrogen; C/N: 土壤碳氮比Soil carbon to nitrogen ratio; pH: 土壤pH Soil pH; EC: 电导率Electrical conductivity; SC: 土壤黏粒Soil clay content; SP: 土壤粉粒Soil silt content; SS: 土壤砂粒Soil sand content. 下同The same below.
Fig.3 Correlation coefficients between litter arthropod community index and environmental factors in arid and semi-arid regions
图4 枯落物节肢动物群落分布与土壤因子关系的RDA二维排序1: 小真古螨科Eupalopsellidae; 2: 垂盾甲螨属Scutovertex; 3: 盖头甲螨属Tectocepheus; 4: 球角?科Hypogastruridae; 5: 矮蒲螨科Pygmephoridae; 6: 绒螨科Trombidiidae; 7: 鳞啮科Lepidopsocidae; 8: 摇蚊科Chironomidae; 9: 巨螯螨科Macrochelidae; 10: 蕈柄蚊科Bolitophilidae; 11: 棘?科Onychiuridae; 12: 隐颚螨科Cryptognathidea; 13: 腾岛螨科Teneriffidae; 14: 吸螨科Bdellidae; 15: 疣?科Neanuridae; 16: 虱啮科Liposcelididae; 17: 步甲科幼虫Carabidae; 18: 蝽科幼虫Pentatomidae; 19: 巨须螨科Cunaxidae; ●盐池半干旱区灌丛Yanchi semi-arid area shrub; ■乌拉特后旗干旱区灌丛Arid area shrubs in Urat Rear Banner;○盐池半干旱区裸地Open space in Yanchi semi-arid area; □乌拉特后旗干旱区裸地Open space in arid area of Urat Rear Banner.
Fig.4 RDA two-dimensional ordination diagram of the relationship between litter arthropod community distribution and soil factors
变量 Variable | 贡献率 Contribution rate (%) | P | F | 变量 Variable | 贡献率 Contribution rate (%) | P | F |
---|---|---|---|---|---|---|---|
K | 27 | 0.002 | 8.00 | TC | 3 | 0.444 | 0.98 |
pH | 5 | 0.062 | 1.78 | ADL | 3 | 0.364 | 1.03 |
SS | 6 | 0.066 | 1.80 | EC | 3 | 0.558 | 0.82 |
SM | 5 | 0.086 | 1.67 | P | 2 | 0.566 | 0.79 |
ADC | 3 | 0.294 | 1.16 | TN | 2 | 0.574 | 0.85 |
N | 4 | 0.228 | 1.27 | SC | 3 | 0.594 | 0.72 |
G | 4 | 0.232 | 1.37 | SP | 0 | 1.000 | 0.03 |
C/N | 3 | 0.344 | 1.18 |
表5 环境因子对枯落物节肢动物个体数分布的相对贡献偏RDA分析
Table 5 The relative contribution of environmental factors to the abundance distribution of litter arthropods via partial RDA
变量 Variable | 贡献率 Contribution rate (%) | P | F | 变量 Variable | 贡献率 Contribution rate (%) | P | F |
---|---|---|---|---|---|---|---|
K | 27 | 0.002 | 8.00 | TC | 3 | 0.444 | 0.98 |
pH | 5 | 0.062 | 1.78 | ADL | 3 | 0.364 | 1.03 |
SS | 6 | 0.066 | 1.80 | EC | 3 | 0.558 | 0.82 |
SM | 5 | 0.086 | 1.67 | P | 2 | 0.566 | 0.79 |
ADC | 3 | 0.294 | 1.16 | TN | 2 | 0.574 | 0.85 |
N | 4 | 0.228 | 1.27 | SC | 3 | 0.594 | 0.72 |
G | 4 | 0.232 | 1.37 | SP | 0 | 1.000 | 0.03 |
C/N | 3 | 0.344 | 1.18 |
1 | Ma K D, Gao L, Yan Z J, et al. Study on root system of plant community in different kinds of sandy land in Hobq. Pratacultural Science, 2010, 27(5): 1-9. |
马阔东, 高丽, 闫志坚, 等. 库布齐沙漠不同类型沙地上植物群落根系研究. 草业科学, 2010, 27(5): 1-9. | |
2 | Tang Z S. Vegetation degradation mechanism of the desert steppe in semi-arid region. Yangling: Northwest A & F University, 2018. |
唐庄生. 半干旱荒漠草原沙化过程中植被退化机制研究. 杨凌: 西北农林科技大学, 2018. | |
3 | Wan M, Guo Y P, Guo Y G, et al. Research on the main ways of vegetation restoration in Urat grassland. Grassland and Prataculture, 2004, 16(4): 49-51. |
万敏, 郭永平, 郭映光, 等. 乌拉特草原植被恢复主要途径的研究. 草原与草业, 2004, 16(4): 49-51. | |
4 | Li J R, Okin G S, Alvarez L, et al. Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry, 2008, 88(1): 73-88. |
5 | Liu J L, Zhao W Z, Li F R. An overview on the distribution pattern of soil animal responses to precipitation pulses in arid desert ecosystems. Journal of Desert Research, 2014, 34(5): 1337-1342. |
刘继亮, 赵文智, 李锋瑞. 干旱荒漠土壤动物分布格局对降水脉动的响应研究进展. 中国沙漠, 2014, 34(5): 1337-1342. | |
6 | Li H T, Yu G R, Li J Y, et al. Decomposition dynamics and nutrient release of litters for four artificial forests in the red soil and hilly region of subtropical China. Acta Ecologica Sinica, 2007, 27(3): 898-908. |
李海涛, 于贵瑞, 李家永, 等. 亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放. 生态学报, 2007, 27(3): 898-908. | |
7 | Maestre F T, Eldridge D J, Soliveres S, et al. Structure and functioning of dryland ecosystems in a changing world. Annual Review of Ecology Evolution and Systematics, 2016, 47(1): 215-237. |
8 | Liu D J, Zhang J X, Lu Q, et al. Effects of rain supplementation on the temperature sensitivity of soil respiration in Nitraria sphaerocarpa community in a hyperarid area of Dunhuang, China. Chinese Journal of Ecology, 2016, 35(3): 584-590. |
刘殿君, 张金鑫, 卢琦, 等. 极端干旱区增雨对泡泡刺(Nitraria sphaerocarpa)群落土壤呼吸温度敏感性的影响. 生态学杂志, 2016, 35(3): 584-590. | |
9 | Zhang A N, Liu R T, Liu J N, et al. Effects of Caragana korshinskii litter on soil arthropod community in a desertified region. Chinese Journal of Ecology, 2020, 39(7): 2383-2391. |
张安宁, 刘任涛, 刘佳楠, 等. 干旱风沙区柠条枯落物对土壤节肢动物群落的影响. 生态学杂志, 2020, 39(7): 2383-2391. | |
10 | Pucheta E, Llanos M, Meglioli C, et al. Litter decomposition in a sandy Monte desert of Western Argentina: Influences of vegetation patches and summer rainfall. Austral Ecology, 2010, 31(7): 808-816. |
11 | Saul-Tcherkas V, Steinberger Y. Substrate utilization patterns of desert soil microbial communities in response to xeric and mesic conditions. Soil Biology & Biochemistry, 2009, 41(9): 1882-1893. |
12 | Kardol P, Reynolds W N, Norby R J, et al. Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology, 2011, 47(1): 37-44. |
13 | Yang Z M. Effects of grazing and exclosure on arthropod community beneath shrub canopy and in open space in sandy land ecosystem. Hohhot: Inner Mongolia Normal University, 2017. |
杨志敏. 放牧、封育对沙地灌丛内外节肢动物群落的影响. 呼和浩特: 内蒙古师范大学, 2017. | |
14 | Zhao S L, Zuo X A, Zhang T H, et al. Response of relationship between community species diversity and aboveground biomass to grazing intensity in the Urat desert steppe in Northern China. Arid Zone Research, 2020, 37(1): 168-177. |
赵生龙, 左小安, 张铜会, 等. 乌拉特荒漠草原群落物种多样性和生物量关系对放牧强度的响应. 干旱区研究, 2020, 37(1): 168-177. | |
15 | Yang Q, Zheng X N, He L H. Spatial-temporal shift for major boundary of climate regionalization based on meteorological data stimulated by HadCM3 during from 1950-2059 in China. Arid Land Geography, 2017, 40(1): 17-25. |
杨强, 郑西楠, 何立恒. 基于HadCM3模式的我国主要气候区划界线时空预测研究. 干旱区地理, 2017, 40(1): 17-25. | |
16 | Geng Q L. Research on zoning of agriculture water and land resources utilization and their matching characteristics in arid areas of Northwest of China. Beijing: University of Chinese Academy of Sciences, 2014. |
耿庆玲. 西北旱区农业水土资源利用分区及其匹配特征研究. 北京: 中国科学院大学, 2014. | |
17 | Yin W Y. An illustrated book of soil animal retrieval in China. Beijing: Science Press, 1998. |
尹文英. 中国土壤动物检索图鉴. 北京: 科学出版社, 1998. | |
18 | Zhong J M. Larva taxonomy. Beijing: Agricultural Press, 1990. |
钟觉民. 幼虫分类学. 北京: 农业出版社, 1990. | |
19 | Liu J N, Zhao J, Chang H T, et al. Detection of changes in litter nutrients in Caragana korshinskii following the decomposition process in desertified grassland ecosystems using the litter bag method. Pratacultural Science, 2019, 36(6): 1624-1633. |
刘佳楠, 赵娟, 常海涛, 等. 基于网孔分解袋法的荒漠草原柠条枯落物分解过程中的养分变化. 草业科学, 2019, 36(6): 1624-1633. | |
20 | Chang H T, Zhao J, Liu J N, et al. Changes in soil physico-chemical properties and related fractal features during conversion of cropland into agroforestry and grassland: A case study of desertified steppe in Ningxia. Acta Prataculturae Sinica, 2019, 28(7): 14-25. |
常海涛, 赵娟, 刘佳楠, 等. 退耕还林与还草对土壤理化性质及分形特征的影响——以宁夏荒漠草原为例. 草业学报, 2019, 28(7): 14-25. | |
21 | Yang L X. Different vegetation types community structure and soil nutrient in loess hilly and gully region. Yangling: Northwest A & F University, 2014. |
杨丽霞. 黄土丘陵区不同植被恢复类型群落结构与土壤养分相关研究. 杨凌: 西北农林科技大学, 2014. | |
22 | Zhang H Z, Wu P F, Yang D X, et al. Dynamics of soil meso- and microfauna communities in Zoigê alpine meadows on the eastern edge of Qinghai-Tibet Plateau, China. Acta Ecologica Sinica, 2011, 31(15): 4385-4397. |
张洪芝, 吴鹏飞, 杨大星, 等. 青藏东缘若尔盖高寒草甸中小型土壤动物群落特征及季节变化. 生态学报, 2011, 31(15): 4385-4397. | |
23 | Chang H T, Liu R T, Chen W, et al. Distribution of ground-active arthropod community structure after introduction of Caragana korshinskii into Reaumuria soongorica shrubland on the Urat desert steppe, Inner Mongolia. Acta Prataculturae Sinica, 2020, 29(12): 188-197. |
常海涛, 刘任涛, 陈蔚, 等. 内蒙古乌拉特荒漠草原红砂灌丛林引入柠条后地面节肢动物群落结构分布特征. 草业学报, 2020, 29(12): 188-197. | |
24 | Liu R T, Xi W H, Liu J N, et al. Spatial distribution of arthropod community between Caragana shrub microhabitats. Journal of Desert Research, 2018, 38(1): 117-125. |
刘任涛, 郗伟华, 刘佳楠, 等. 沙地柠条(Caragana)灌丛微生境节肢动物群落特征. 中国沙漠, 2018, 38(1): 117-125. | |
25 | He R L, Chen Y M, Deng C C, et al. Seasonal responses of the soil meso-and microfauna to litter decomposition in alpine meadow of Western Sichuan. Chinese Journal of Applied and Environmental Biology, 2015, 21(2): 350-357. |
和润莲, 陈亚梅, 邓长春, 等. 中小型土壤动物对川西高山草甸枯落物分解的季节响应. 应用与环境生物学报, 2015, 21(2): 350-357. | |
26 | Liu R T, Xi W H, Zhao J, et al. Distribution of terrestrial arthropod communities in and out-of Caragana Korshinskii shrubberies under different site conditions. Arid Zone Research, 2018, 35(2): 354-362. |
刘任涛, 郗伟华, 赵娟, 等. 不同立地条件柠条灌丛内外地面节肢动物群落结构分布特征. 干旱区研究, 2018, 35(2): 354-362. | |
27 | Liu R T, Zhu F. Effect of afforested shrubs on ground-dwelling arthropod diversity and throphic structure in desertified grassland ecosystems. Scientia Silvae Sinicae, 2016, 52(2): 91-98. |
刘任涛, 朱凡. 流动沙地人工种植灌丛对地面节肢动物多样性与功能群结构的影响. 林业科学, 2016, 52(2): 91-98. | |
28 | Zhao H L, Liu R T, Zhou R L, et al. “Bug island” effect of shrubs in Horqin sand land of North China and related formation mechanisms. Chinese Journal of Ecology, 2012, 31(12): 2990-2995. |
赵哈林, 刘任涛, 周瑞莲, 等. 科尔沁沙地灌丛的“虫岛”效应及其形成机理. 生态学杂志, 2012, 31(12): 2990-2995. | |
29 | Liu R T, Wang S K, Zhou J. Comparison of “arthropod island” of shrub effect between two sandy grasslands in Northern China. Journal of Desert Research, 2015, 35(6): 1599-1606. |
刘任涛, 王少昆, 周娟. 科尔沁和毛乌素沙地灌丛“虫岛”效应比较. 中国沙漠, 2015, 35(6): 1599-1606. | |
30 | Hertl P T, Brandenburg R L, Barbercheck M E. Effect of soil moisture on ovipositional behavior in the Southern mole cricket (Orthoptera: Gryllotalpidae). Environmental Entomology, 2001, 30(3): 466-473. |
31 | Qu W L, Yang X P, Zhang C T, et al. Shrub-mediated “fertile island” effects in arid and semi-arid grassland. Acta Prataculturae Sinica, 2015, 24(4): 201-207. |
瞿王龙, 杨小鹏, 张存涛, 等. 干旱、半干旱地区天然草原灌木及其肥岛效应研究进展. 草业学报, 2015, 24(4): 201-207. | |
32 | Wu P F, Yang D X. Effect of habitat degradation on soil meso- and microfaunal communities in the Zoigê Alpine Meadow, Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2011, 31(13): 3745-3757. |
吴鹏飞, 杨大星. 若尔盖高寒草甸退化对中小型土壤动物群落的影响. 生态学报, 2011, 31(13): 3745-3757. | |
33 | Owojori O J, Reinecke A J, Voua-Otomo P, et al. Comparative study of the effects of salinity on life-cycle parameters of four soil-dwelling species (Folsomia candida, Enchytraeus doerjesi, Eisenia fetida and Aporrectodea caliginosa). Pedobiologia, 2009, 52(6): 351-360. |
34 | He Y T, Dong Y S, Qi Y C, et al. Advances in researches on soil microbial biomass of grassland ecosystems and its influencing factors. Progress in Geography, 2010, 29(11): 1350-1359. |
何亚婷, 董云社, 齐玉春, 等. 草地生态系统土壤微生物量及其影响因子研究进展. 地理科学进展, 2010, 29(11): 1350-1359. | |
35 | Guo W X. Biomass analysis and model prediction of typical shrubs communities in desert steppe of in Wulate Middle Banner. Hohhot: Inner Mongolia Agricultural University, 2019. |
郭威星. 乌拉特中旗荒漠草原优势灌丛地上生物量分析及预测模型. 呼和浩特: 内蒙古农业大学, 2019. | |
36 | Li Q, Zhou D W, Chen X Y. The accumulation, decomposition and ecological effects of above-ground litter in terrestrial ecosystem. Acta Ecologica Sinica, 2014, 34(14): 3807-3819. |
李强, 周道玮, 陈笑莹. 地上枯落物的累积、分解及其在陆地生态系统中的作用. 生态学报, 2014, 34(14): 3807-3819. | |
37 | Zhang M J. The effect of soil fauna on forest litter decomposition and soil formation of Maolan Karst area. Guiyang: Guizhou Normal University, 2018. |
张明江. 土壤动物对茂兰喀斯特森林凋落物的分解及成土作用研究. 贵阳: 贵州师范大学, 2018. |
[1] | 周晓雷, 闫月娥, 张婧, 周旭姣, 闫永琴, 杨富强, 曹雪萍, 赵安, 赵艳丽, 苏静怡. 青藏高原东北边缘云杉-冷杉林火烧迹地不同坡向植物群落结构与多样性研究[J]. 草业学报, 2022, 31(5): 144-155. |
[2] | 卢俊艳, 红梅, 赵巴音那木拉null, 赵乌英嘎, 王文东, 马尚飞, 杨殿林. 贝加尔针茅草原植物群落结构及生物量对长期养分添加的响应[J]. 草业学报, 2022, 31(4): 22-31. |
[3] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
[4] | 孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75. |
[5] | 田翠翠, 卜书海, 周多良, 刘建泉, 周永祥, 郑雪莉. 安南坝野骆驼国家级自然保护区鼠类群落结构的研究[J]. 草业学报, 2021, 30(7): 62-71. |
[6] | 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67. |
[7] | 何周窈, 王勇, 苏正安, 杨鸿琨, 周涛. 干热河谷冲沟沟头活跃度对植物群落结构的影响[J]. 草业学报, 2020, 29(9): 28-37. |
[8] | 李静, 红梅, 闫瑾, 张宇晨, 梁志伟, 叶贺, 高海燕, 赵巴音那木拉. 短花针茅荒漠草原植被群落结构及生物量对水氮变化的响应[J]. 草业学报, 2020, 29(9): 38-48. |
[9] | 李志龙, 罗超越, 邱慧珍, 付笑, 邓德雷, 张春红, 沈其荣. 连续施氮对马铃薯根际细菌群落结构及反硝化作用的影响[J]. 草业学报, 2020, 29(6): 105-116. |
[10] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[11] | 王婷, 张永超, 赵之重. 青藏高原退化高寒湿地植被群落结构和土壤养分变化特征[J]. 草业学报, 2020, 29(4): 9-18. |
[12] | 王占军, 马琨, 崔慧珍, 李光文, 俞鸿千, 蒋齐. 土壤丛枝菌根真菌与宁夏主要草原类型植被群落分布间的相互关系研究[J]. 草业学报, 2020, 29(12): 150-160. |
[13] | 常海涛, 刘任涛, 陈蔚, 张安宁, 左小安. 内蒙古乌拉特荒漠草原红砂灌丛林引入柠条后地面节肢动物群落结构分布特征[J]. 草业学报, 2020, 29(12): 188-197. |
[14] | 李争艳, 徐智明, 师尚礼, 贺春贵. 江淮地区不同轮茬作物对苜蓿产量及根际土壤质量的影响[J]. 草业学报, 2019, 28(8): 28-39. |
[15] | 李海云, 姚拓, 马亚春, 张慧荣, 路晓雯, 杨晓蕾, 夏东慧, 张建贵, 高亚敏. 祁连山中段退化高寒草地土壤细菌群落分布特征[J]. 草业学报, 2019, 28(8): 170-179. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||