草业学报 ›› 2022, Vol. 31 ›› Issue (6): 189-201.DOI: 10.11686/cyxb2021445
• 研究论文 • 上一篇
游永亮1(), 赵海明1, 李源1, 武瑞鑫1, 刘贵波1(), 周健东2, 陈俊峰3
收稿日期:
2021-11-30
修回日期:
2022-01-10
出版日期:
2022-06-20
发布日期:
2022-05-11
通讯作者:
刘贵波
作者简介:
E-mail: lgb2884@126.com基金资助:
Yong-liang YOU1(), Hai-ming ZHAO1, Yuan LI1, Rui-xin WU1, Gui-bo LIU1(), Jian-dong ZHOU2, Jun-feng CHEN3
Received:
2021-11-30
Revised:
2022-01-10
Online:
2022-06-20
Published:
2022-05-11
Contact:
Gui-bo LIU
摘要:
为了探究饲用麦类作物生物量积累和营养品质动态变化规律,2016-2018年在华北平原的河北衡水测定了黑麦、冬性饲用小黑麦、冬小麦、粮饲兼用型小黑麦、燕麦、青稞和春性饲用小黑麦7类麦类作物从拔节期至蜡熟期的生长发育进程、生物量和营养成分含量动态变化。结果显示:黑麦、冬性饲用小黑麦、冬小麦和粮饲兼用型小黑麦一般在5月中下旬达到乳熟期,而燕麦、青稞和春性饲用小黑麦一般在6月上旬。7类麦类作物的平均生物量从拔节期的2.72×103 kg·hm-2增长到蜡熟期的10.19×103 kg·hm-2,其中冬性饲用小黑麦在各个生育期生物量均显著高于其他6类麦类作物(P<0.05),较其他6类麦类作物平均提高61.4%。7类麦类作物的粗蛋白含量随着生育期进程逐渐降低,淀粉含量逐渐升高,酸性洗涤纤维和中性洗涤纤维含量在开花期前逐渐升高,开花期后略有下降。采用Milk 2006综合评价7类麦类作物饲用品质显示,冬小麦从孕穗期后饲用品质优于其他6类麦类作物,吨干物质产奶量较其他6类麦类作物平均提高6.9%。综合生物量和饲用品质及生育期,冬性饲用小黑麦拔节期至蜡熟期hm2产奶量均显著高于其他6类麦类作物(P<0.05),较其他6类麦类作物平均提高46.3%,综合表现好,适于在华北平原大面积推广种植。
游永亮, 赵海明, 李源, 武瑞鑫, 刘贵波, 周健东, 陈俊峰. 饲用麦类作物的生物量积累和营养品质动态变化规律[J]. 草业学报, 2022, 31(6): 189-201.
Yong-liang YOU, Hai-ming ZHAO, Yuan LI, Rui-xin WU, Gui-bo LIU, Jian-dong ZHOU, Jun-feng CHEN. Dynamic changes in biomass accumulation and nutritional quality of triticeae forages[J]. Acta Prataculturae Sinica, 2022, 31(6): 189-201.
图1 试验期间及长期(1981-2015年)的月平均气温、降水量和累计积温
Fig.1 Monthly temperature, precipitation and accumulated GDD in 2016-2017 and 2017-2018 compared with the long-term values at the experimental site (1981-2015)
种类Species | 品种Varieties | 来源Sources of varieties |
---|---|---|
黑麦Rye | 冬牧70 Dongmu NO.70 | 河北农林科学院旱作农业研究所 Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Sciences |
黔黑636 Qianhei NO. 636 | 贵州农业科学院 Guizhou Academy of Agricultural Sciences | |
冀黑1号 Jihei NO. 1 | 河北农林科学院旱作农业研究所 Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Sciences | |
冬性饲用小黑麦 Winter triticale | 中饲1048 Zhongsi NO. 1048 | 中国农科院作物科学研究所 Institute of Crop Science, Chinese Academy of Agricultural Science |
中饲237 Zhongsi NO. 237 | ||
中饲828 Zhongsi NO. 828 | ||
冬小麦 Winter wheat | 邯4589 Han NO. 4589 | 邯郸市农业科学院 Handan Academy of Agricultural Sciences |
石麦22 Shimai NO. 22 | 石家庄市农业科学院Shijiazhuang Academy of Agricultural Sciences | |
衡麦2111 Hengmai NO. 2111 | 河北农林科学院旱作农业研究所 Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Sciences | |
粮饲兼用型小黑麦 Grain and forage triticale | Pingpong | 斯洛伐克 Slovakia |
Pletomax | ||
Kendo | ||
燕麦Oat | 青引2号 Qingyin NO. 2 | 青海大学农牧学院 Collage of Agriculture and Animal Husbandry, Qinghai University |
青燕1号Qingyan NO. 1 | ||
青海甜燕麦 Qinghaitianyanmai | ||
青稞 Barley | 藏青13 Zangqing NO. 13 | 西藏自治区农牧科学院 Tibet Academy of Agricultural and Animal Husbandry Sciences |
藏青2000 Zangqing NO. 2000 | ||
山青9号 Shanqing NO. 9 | ||
春性饲用小黑麦 Spring triticale | 新小黑麦3号 Xinxiaoheimai NO.3 | 石河子大学 Shihezi University |
新小黑麦4号Xinxiaoheimai NO.4 | ||
11H-6 |
表1 饲用麦类作物种类及来源
Table 1 The species and sources of cereal-grain forages
种类Species | 品种Varieties | 来源Sources of varieties |
---|---|---|
黑麦Rye | 冬牧70 Dongmu NO.70 | 河北农林科学院旱作农业研究所 Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Sciences |
黔黑636 Qianhei NO. 636 | 贵州农业科学院 Guizhou Academy of Agricultural Sciences | |
冀黑1号 Jihei NO. 1 | 河北农林科学院旱作农业研究所 Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Sciences | |
冬性饲用小黑麦 Winter triticale | 中饲1048 Zhongsi NO. 1048 | 中国农科院作物科学研究所 Institute of Crop Science, Chinese Academy of Agricultural Science |
中饲237 Zhongsi NO. 237 | ||
中饲828 Zhongsi NO. 828 | ||
冬小麦 Winter wheat | 邯4589 Han NO. 4589 | 邯郸市农业科学院 Handan Academy of Agricultural Sciences |
石麦22 Shimai NO. 22 | 石家庄市农业科学院Shijiazhuang Academy of Agricultural Sciences | |
衡麦2111 Hengmai NO. 2111 | 河北农林科学院旱作农业研究所 Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Sciences | |
粮饲兼用型小黑麦 Grain and forage triticale | Pingpong | 斯洛伐克 Slovakia |
Pletomax | ||
Kendo | ||
燕麦Oat | 青引2号 Qingyin NO. 2 | 青海大学农牧学院 Collage of Agriculture and Animal Husbandry, Qinghai University |
青燕1号Qingyan NO. 1 | ||
青海甜燕麦 Qinghaitianyanmai | ||
青稞 Barley | 藏青13 Zangqing NO. 13 | 西藏自治区农牧科学院 Tibet Academy of Agricultural and Animal Husbandry Sciences |
藏青2000 Zangqing NO. 2000 | ||
山青9号 Shanqing NO. 9 | ||
春性饲用小黑麦 Spring triticale | 新小黑麦3号 Xinxiaoheimai NO.3 | 石河子大学 Shihezi University |
新小黑麦4号Xinxiaoheimai NO.4 | ||
11H-6 |
作物类别 Crop types | 种类 Species | 拔节期Jointing stage | 孕穗期Booting stage | 抽穗期 Heading stage | ||||||
---|---|---|---|---|---|---|---|---|---|---|
日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | 日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | 日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | ||
秋播作物 Autumn-sown crops | 黑麦Rye | 25-Mar | 156 | 183.1 | 10-Apr | 172 | 293.3 | 21-Apr | 183 | 407.8 |
冬性饲用小黑麦Winter triticale | 5-Apr | 167 | 249.5 | 24-Apr | 186 | 451.6 | 5-May | 197 | 593.4 | |
冬小麦Winter wheat | 6-Apr | 168 | 255.2 | 18-Apr | 180 | 373.3 | 28-Apr | 190 | 495.1 | |
粮饲兼用型小黑麦Grain and forage triticale | 12-Apr | 174 | 320.5 | 29-Apr | 191 | 508.2 | 9-May | 201 | 650.0 | |
春播作物 Spring-sown crops | 燕麦Oat | 27-Apr | 50 | 359.4 | 10-May | 63 | 537.8 | 18-May | 70 | 670.1 |
青稞Barley | 30-Apr | 53 | 401.3 | 12-May | 64 | 566.1 | 20-May | 73 | 706.2 | |
春性饲用小黑麦Spring triticale | 28-Apr | 51 | 363.2 | 7-May | 60 | 485.9 | 15-May | 67 | 609.6 | |
作物类别 Crop types | 种类 Species | 开花期 Flowering stage | 乳熟期 Milk stage | 蜡熟期 Dough stage | ||||||
日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | 日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | 日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | ||
秋播作物 Autumn-sown crops | 黑麦Rye | 28-Apr | 190 | 496.4 | 14-May | 206 | 726.1 | 1-Jun | 224 | 1064.6 |
冬性饲用小黑麦Winter triticale | 11-May | 203 | 676.4 | 22-May | 214 | 870.4 | 11-Jun | 234 | 1252.3 | |
冬小麦Winter wheat | 3-May | 195 | 565.1 | 17-May | 209 | 775.6 | 4-Jun | 227 | 1119.4 | |
粮饲兼用型小黑麦Grain and forage triticale | 13-May | 205 | 719.9 | 28-May | 220 | 981.1 | 16-Jun | 239 | 1354.0 | |
春播作物 Spring-sown crops | 燕麦Oat | 22-May | 75 | 751.2 | 31-May | 84 | 922.7 | 20-Jun | 103 | 1319.0 |
青稞Barley | 23-May | 76 | 767.7 | 1-Jun | 85 | 951.7 | 18-Jun | 102 | 1284.0 | |
春性饲用小黑麦Spring triticale | 20-May | 72 | 691.4 | 3-Jun | 87 | 985.3 | 21-Jun | 104 | 1336.1 |
表2 不同饲用麦类作物生育期、累计生长天数和累计积温(GDD)
Table 2 The growth period, accumulative growth days and accumulative GDD (growing degree-days) for different cereal-grain forages
作物类别 Crop types | 种类 Species | 拔节期Jointing stage | 孕穗期Booting stage | 抽穗期 Heading stage | ||||||
---|---|---|---|---|---|---|---|---|---|---|
日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | 日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | 日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | ||
秋播作物 Autumn-sown crops | 黑麦Rye | 25-Mar | 156 | 183.1 | 10-Apr | 172 | 293.3 | 21-Apr | 183 | 407.8 |
冬性饲用小黑麦Winter triticale | 5-Apr | 167 | 249.5 | 24-Apr | 186 | 451.6 | 5-May | 197 | 593.4 | |
冬小麦Winter wheat | 6-Apr | 168 | 255.2 | 18-Apr | 180 | 373.3 | 28-Apr | 190 | 495.1 | |
粮饲兼用型小黑麦Grain and forage triticale | 12-Apr | 174 | 320.5 | 29-Apr | 191 | 508.2 | 9-May | 201 | 650.0 | |
春播作物 Spring-sown crops | 燕麦Oat | 27-Apr | 50 | 359.4 | 10-May | 63 | 537.8 | 18-May | 70 | 670.1 |
青稞Barley | 30-Apr | 53 | 401.3 | 12-May | 64 | 566.1 | 20-May | 73 | 706.2 | |
春性饲用小黑麦Spring triticale | 28-Apr | 51 | 363.2 | 7-May | 60 | 485.9 | 15-May | 67 | 609.6 | |
作物类别 Crop types | 种类 Species | 开花期 Flowering stage | 乳熟期 Milk stage | 蜡熟期 Dough stage | ||||||
日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | 日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | 日期Date (日-月 Day-month) | 累计生长天数 Accumulative growth days (d) | 累计GDD Accumulative GDD (℃) | ||
秋播作物 Autumn-sown crops | 黑麦Rye | 28-Apr | 190 | 496.4 | 14-May | 206 | 726.1 | 1-Jun | 224 | 1064.6 |
冬性饲用小黑麦Winter triticale | 11-May | 203 | 676.4 | 22-May | 214 | 870.4 | 11-Jun | 234 | 1252.3 | |
冬小麦Winter wheat | 3-May | 195 | 565.1 | 17-May | 209 | 775.6 | 4-Jun | 227 | 1119.4 | |
粮饲兼用型小黑麦Grain and forage triticale | 13-May | 205 | 719.9 | 28-May | 220 | 981.1 | 16-Jun | 239 | 1354.0 | |
春播作物 Spring-sown crops | 燕麦Oat | 22-May | 75 | 751.2 | 31-May | 84 | 922.7 | 20-Jun | 103 | 1319.0 |
青稞Barley | 23-May | 76 | 767.7 | 1-Jun | 85 | 951.7 | 18-Jun | 102 | 1284.0 | |
春性饲用小黑麦Spring triticale | 20-May | 72 | 691.4 | 3-Jun | 87 | 985.3 | 21-Jun | 104 | 1336.1 |
1 | Coblentz W K, Walgenbach R P. Fall growth, nutritive value, and estimation of total digestible nutrients for cereal-grain forages in the north-central United States. Journal of Animal Science, 2010, 88(1): 383-399. |
2 | Anderson W K. Production of green feed and grain from grazed barley in Northern Syria. Field Crops Research, 1985,10: 57-75. |
3 | Harrison M T, Evans J R, Dove H, et al. Dual-purpose cereals: can the relative influences of management and environment on crop recovery and grain yield be dissected. Crop and Pasture Science, 2011, 62(11): 930-946. |
4 | Frischke A J, Hunt J R, McMillan D K, et al. Forage and grain yield of grazed or defoliated spring and winter cereals in a winter-dominant, low-rainfall environment. Crop and Pasture Science, 2015, 66(4): 308-317. |
5 | Li X Y, Wang J T, Han T H, et al. China’s fodder production situation and countermeasure analysis. Pratacultural Science, 2015, 32(12): 2155-2166. |
李新一, 王加亭, 韩天虎, 等. 我国饲草料生产形势及对策. 草业科学, 2015, 32(12): 2155-2166. | |
6 | Virgona J M, Gummer F A J, Angus J F. Effects of grazing on wheat growth, yield, development, water use, and nitrogen use. Australian Journal of Agricultural Research, 2006, 57(12): 1307-1319. |
7 | Giunta F, Motzo R, Virdis A, et al.The effects of forage removal on biomass and grain yield of intermediate and spring triticales. Field Crops Research, 2017, 200: 47-57. |
8 | Sprague S J, Kirkegaard J A, Bell L W, et al. Dual-purpose cereals offer increased productivity across diverse regions of Australia’s high rainfall zone. Field Crops Research, 2018, 227: 119-131. |
9 | Jacobs J L, Hill J, Jenlin T. Effect of stage of growth and silage additives on whole crop cereal silage nutritive and fermentation characteristics. Animal Production Science, 2009, 49(7): 595-607. |
10 | Edmisten K L, Green J T, Mueller J P, et al. Winter annual small grain forage potential. I. Dry matter yield in relation to morphological characteristics of four small grain species at six growth stages. Communications in Soil Science and Plant Analysis, 1998, 29(7/8): 867-879. |
11 | Geren H. Dry matter yield and silage quality of some winter cereals harvested at different stages under mediterranean climate conditions. Turkish Journal of Field Crops, 2014, 19(2): 197-202. |
12 | Keles G, Ates S, Coskun B, et al. Forage yields and feeding value of small grain winter cereals for lambs. Journal of the Science of Food and Agriculture, 2016, 96(12): 4168-4177. |
13 | Coblentz W K, Akins M S, Kalscheur K F, et al. Effects of growth stage and growing degree day accumulations on triticale forages:1. Dry matter yield, nutritive value, and in vitro dry matter disappearance. Journal of Dairy Science, 2018, 101(10): 8965-8985. |
14 | Xing H C, Tan S L, Zhang Y, et al. Effect of cutting time and stubble height on fresh yield and forage quality of barley. Chinese Agricultural Science Bulletin, 2018, 34(31): 1-4. |
邢虎成, 谭松林, 张英, 等. 刈割时期和留茬高度对大麦鲜草产量及饲用品质的影响.中国农学通报, 2018, 34(31): 1-4. | |
15 | Wu H, Liu W H, Jia Z F, et al. Response of biomass accumulation and distribution to phosphorus in oat (Avena sativa cv. Qingyin No.1). Chinese Journal of Grassland, 2018, 40(6): 18-25. |
吴浩, 刘文辉, 贾志锋, 等. 青引1号燕麦生物量积累及其分配对磷肥的响应. 中国草地学报, 2018, 40(6): 18-25. | |
16 | Zhang L, Sui X X, Wang Y, et al. Dry matter accumulation and assignment rule of wheat cultivars with different maturity. Shandong Agricultural Sciences, 2007, 6: 54-56. |
张利, 隋新霞, 王羽, 等. 不同熟性小麦品种的干物质积累和分配规律. 山东农业科学, 2007, 6: 54-56. | |
17 | Cherney J H, Marten G C. Small grain crop forage potential: I. biological and chemical determinants of quality, and yield. Crop Science, 1982, 22: 227-230. |
18 | You Y L, Zhao H M, Li Y, et al. Water- and fertilizer- use efficiency of cotton and Secale cereale cultivated under a multiple cropping pattern on the Haihe Plain. Acta Prataculturae Sinica, 2018, 27(12): 166-176. |
游永亮, 赵海明, 李源, 等. 海河平原区棉花饲用黑麦复种方式及水肥利用效率分析. 草业学报, 2018, 27(12): 166-176. | |
19 | You Y L, Li Y, Zhao H M, et al. Effects of nitrogen and phosphate fertilizer application on yield and forage quality of forage triticale on the Haihe Plain. Acta Prataculturae Sinica, 2020, 29(3): 137-146. |
游永亮, 李源, 赵海明, 等. 海河平原区施氮磷肥对饲用小黑麦生产性能及营养品质的影响. 草业学报, 2020, 29(3): 137-146. | |
20 | You Y L, Li Y, Zhao H M, et al. Effect of planting density on ×Triticale Wittmack and Secale cereale seed productivity. Pratacultural Science, 2017, 11(7): 1522-1529. |
游永亮, 李源, 赵海明, 等. 种植密度对饲用小黑麦、饲用黑麦种子生产性能的影响. 草业科学, 2017, 11(7): 1522-1529. | |
21 | Jiang H X, Bai S S, Wu B, et al. A multivariate evaluation of agronomic straits and forage quality of 22 oat varieties in the Huang-Huai-Hai area of China. Acta Prataculturae Sinica, 2021, 30(1): 140-149. |
姜慧新, 柏杉杉, 吴波, 等. 22个燕麦品种在黄淮海地区的农艺性状与饲草品质综合评价. 草业学报, 2021, 30(1): 140-149. | |
22 | McMaster G S, Wilhelm W W. Growing degree-days: One equation, two interpretations. Agricultural and Forest Meteorology, 1997, 87 (4): 291-300. |
23 | Qi S H, Wang B J, Wu Z S. The relationship between agricultural production and temperature. Journal of Henan Institute of Science and Technology (Natural Science Edition), 2007, 35(4): 20-23. |
齐尚红, 王冰洁, 武作书. 农业生产与温度的关系. 河南科技学院学报(自然科学版), 2007, 35(4): 20-23. | |
24 | Zadoks J C, Chang T T, Konzak C F. A decimal code for the growth stages of cereals. Weed Research, 1974, 14: 415-421. |
25 | Tabacco E, Righi F, Quarantelli A, et al. Dry matter and nutritional losses during aerobic deterioration of corn and sorghum silages as influenced by different lactic acid bacteria inocula. Journal of Dairy Science, 2011, 94(3): 1409-1419. |
26 | Helsel Z R, Thomas J W. Small grains for forage. Journal of Dairy Science, 1987, 70(11): 2330-2338. |
27 | Nadeau E. Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage. Journal of the Science of Food and Agriculture, 2007, 87(5): 789-801. |
28 | Ayalew H, Kumssa T T, Butler T J, et al. Triticale improvement for forage and cover crop uses in the Southern Great Plains of the United States. Frontiers in Plant Science, 2018, 9: 1-9. |
29 | Yan D C, Zhu Y, Wang S H, et al. A quantitative knowledge based model for designing suitable growth dynamics in rice. Plant Production Science, 2006, 9(2): 93-105. |
30 | Hadjichristodoulou A. Effect of harvesting stage on cereal and legume forage production in low rainfall regions. The Journal of Agricultural Science, 1976, 86(1): 155-161. |
31 | Wang Y T, Yang Z M, Liu J C, et al. Comprehensive evaluation of production performance and nutritional quality of 21 oat varieties in Northwest of Hebei Province. Acta Agrestia Sinica, 2020, 28(5): 1311-1318. |
王运涛, 杨志敏, 刘建成, 等. 冀西北地区21个燕麦品种生产性能与营养品质综合评价.草地学报, 2020, 28(5): 1311-1318. |
[1] | 王瑞泾, 冯琦胜, 金哲人, 刘洁, 赵玉婷, 葛静, 梁天刚. 青藏高原退化草地的恢复潜势研究[J]. 草业学报, 2022, 31(6): 11-22. |
[2] | 陈文瑞, 蒋朝, 周齐新, 王云琴, 李春鸣, 郭鹏辉, 刘慧霞. 不同盐分条件下硅对两个高羊茅品种生物量分配和营养元素氮、磷、钾吸收利用的影响[J]. 草业学报, 2022, 31(5): 51-60. |
[3] | 秦格霞, 吴静, 李纯斌, 吉珍霞, 邱政超, 李颖. 基于机器学习算法的天祝藏族自治县草地地上生物量反演[J]. 草业学报, 2022, 31(4): 177-188. |
[4] | 郭文婷, 王国华, 缑倩倩, 刘婧. 河西走廊荒漠绿洲过渡带3种典型一年生藜科植物构件生长及生物量分配特征[J]. 草业学报, 2022, 31(2): 25-38. |
[5] | 韩小雨, 郭宁, 李冬冬, 谢明阳, 焦峰. 氮添加对内蒙古不同草原生物量及土壤碳氮变化特征的影响[J]. 草业学报, 2022, 31(1): 13-25. |
[6] | 薛晴, 陈斌, 杨小梅, 杨宇佳, 李子葳, 薄杉, 何淼. 不同光强下4种鸭跖草科植物的生物量分配、水分生理及光响应特征[J]. 草业学报, 2022, 31(1): 69-80. |
[7] | 杨鑫, 曹文侠, 鱼小军, 汪海斌, 郝媛媛. 基于近20年MODIS NDVI日数据的青海省草地资源动态监测及其对环境因子的响应[J]. 草业学报, 2021, 30(9): 1-14. |
[8] | 郭丰辉, 丁勇, 马文静, 李贤松, 李西良, 侯向阳. 母体放牧经历对羊草克隆后代干旱敏感性的影响[J]. 草业学报, 2021, 30(8): 119-126. |
[9] | 马婧婧, 刘耘华, 盛建东, 李宁, 武红旗, 贾宏涛, 孙宗玖, 程军回. 新疆草地优势种植物相对生物量沿海拔梯度变化特征[J]. 草业学报, 2021, 30(8): 25-35. |
[10] | 彭磊, 张力, 周小龙, 万彦博, 师庆东. 水分胁迫对新疆准东地区钠猪毛菜的生活史对策的影响[J]. 草业学报, 2021, 30(5): 65-74. |
[11] | 张亦然, 刘廷玺, 童新, 段利民, 吴宇辰. 基于XGBoost算法的草甸地上生物量的高光谱遥感反演[J]. 草业学报, 2021, 30(4): 1-12. |
[12] | 王子欣, 胡国铮, 水宏伟, 葛怡情, 韩玲, 高清竹, 干珠扎布, 旦久罗布. 不同时期干旱对青藏高原高寒草甸生态系统碳交换的影响[J]. 草业学报, 2021, 30(4): 24-33. |
[13] | 顾继雄, 郭天斗, 王红梅, 李雪颖, 梁丹妮, 杨青莲, 高锦月. 宁夏东部荒漠草原向灌丛地转变过程土壤微生物响应[J]. 草业学报, 2021, 30(4): 46-57. |
[14] | 张茹, 李建平, 彭文栋, 王芳, 李志刚. 柠条枝条覆盖对宁夏荒漠草原土壤水热及补播牧草生物量的影响[J]. 草业学报, 2021, 30(4): 58-67. |
[15] | 陈宸, 井长青, 邢文渊, 邓小进, 付皓宇, 郭文章. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3): 1-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||