草业学报 ›› 2022, Vol. 31 ›› Issue (6): 11-22.DOI: 10.11686/cyxb2021164
王瑞泾(), 冯琦胜(), 金哲人, 刘洁, 赵玉婷, 葛静, 梁天刚
收稿日期:
2021-04-27
修回日期:
2021-07-27
出版日期:
2022-06-20
发布日期:
2022-05-11
通讯作者:
冯琦胜
作者简介:
E-mail: fengqsh@lzu.edu.cn基金资助:
Rui-jing WANG(), Qi-sheng FENG(), Zhe-ren JIN, Jie LIU, Yu-ting ZHAO, Jing GE, Tian-gang LIANG
Received:
2021-04-27
Revised:
2021-07-27
Online:
2022-06-20
Published:
2022-05-11
Contact:
Qi-sheng FENG
摘要:
近年来青藏高原高寒草地生态系统整体上呈现改善的状态,但仍有部分草地存在不同程度的退化,对青藏高原草地现状及恢复潜势进行评估对于青藏高原退化草地恢复政策的制定具有重要意义。基于2001-2019年气象数据与MODIS遥感影像,选用CASA模型和Thornthwaite Memorial模型分别计算了青藏高原现实净初级生产力(actual net primary productivity,NPP)和潜在净初级生产力(potential net primary productivity,PNPP),并以其差值评估草地恢复潜势,主要结论如下:1)2001-2019年青藏高原NPP呈现东南部高,西北部低的分布特征;青藏高原草地持续恢复区域占40.98%,持续稳定区域占12.72%,而持续退化区域仅占3.47%,青藏高原草地整体以可持续的恢复状态为主。2)2001-2019年青藏高原潜在净初级生产力最大值(maximum potential net primary productivity,PNPPm)呈现明显东南与西南部高,北部偏低的空间分布格局。各草地类型PNPPm多在1000 g C·m-2左右。3)2001-2019年青藏高原草地恢复潜势呈现西南与东南部较高,北部偏低的分布情况。由此可见日喀则地区、阿里南部地区、阿坝藏族羌族自治州以及甘南藏族自治州等地的草地具有较高的恢复价值,在这些地区开展草地恢复的前景更好。研究结果为青藏高原退化草地恢复政策的制定提供科学与理论支撑,对指导青藏高原草地保护与生态系统恢复具有重要意义。
王瑞泾, 冯琦胜, 金哲人, 刘洁, 赵玉婷, 葛静, 梁天刚. 青藏高原退化草地的恢复潜势研究[J]. 草业学报, 2022, 31(6): 11-22.
Rui-jing WANG, Qi-sheng FENG, Zhe-ren JIN, Jie LIU, Yu-ting ZHAO, Jing GE, Tian-gang LIANG. A study on restoration potential of degraded grassland on the Qinghai-Tibetan Plateau[J]. Acta Prataculturae Sinica, 2022, 31(6): 11-22.
草地类型 Grassland type | 未来趋势不确定Uncertain future trends | 持续性轻微退化Persistent slight degradation | 持续性显著退化Persistent significant degradation | 持续性稳定不变The continuity is stable | 持续性轻微改善Continuous slight improvement | 持续性显著改善Continuous significant improvement |
---|---|---|---|---|---|---|
热性灌草丛Thermal shrub tussock | 28.51 | 6.77 | 4.82 | 14.05 | 9.13 | 34.56 |
热性草丛Thermal tussock | 10.17 | 1.07 | 0.80 | 3.48 | 3.84 | 74.04 |
暖性灌草丛Warm-temperate shrub tussock | 29.89 | 4.03 | 1.41 | 15.54 | 12.41 | 18.98 |
暖性草丛Warm-temperate tussock | 25.73 | 3.16 | 1.21 | 19.66 | 14.08 | 17.48 |
低地草甸Lowland meadow | 6.12 | 1.87 | 1.77 | 24.09 | 8.12 | 53.70 |
山地草甸Mountain meadow | 42.43 | 2.02 | 0.34 | 16.59 | 12.94 | 16.58 |
温性草甸草原Temperate meadow steppe | 28.75 | 12.60 | 3.86 | 23.27 | 14.59 | 6.87 |
温性草原Temperate steppe | 43.47 | 1.98 | 0.53 | 12.67 | 12.61 | 25.25 |
温性荒漠草原Temperate desert grassland | 38.16 | 0.27 | 0.04 | 8.61 | 11.99 | 35.25 |
温性草原化荒漠Temperate steppe desert | 45.06 | 0.25 | 0.03 | 7.29 | 8.89 | 29.22 |
温性荒漠Temperate desert | 36.27 | 0.19 | 0.16 | 5.22 | 6.00 | 47.59 |
高寒草甸Alpine meadow | 50.23 | 2.99 | 0.33 | 17.56 | 15.70 | 7.30 |
高寒草甸草原Alpine meadow steppe | 44.78 | 1.16 | 0.28 | 15.48 | 17.86 | 18.78 |
高寒草原Alpine grassland | 39.31 | 1.57 | 0.38 | 12.06 | 18.99 | 24.95 |
高寒荒漠草原Alpine desert grassland | 41.55 | 0.29 | 0.08 | 4.84 | 12.23 | 36.83 |
高寒荒漠Alpine desert | 45.07 | 0.58 | 0.47 | 5.41 | 9.04 | 34.54 |
沼泽Marsh | 60.09 | 1.40 | 0.33 | 10.39 | 13.34 | 12.99 |
总计Total | 36.21 | 2.48 | 0.99 | 12.72 | 11.87 | 29.11 |
表1 NPP变化趋势统计
Table 1 Statistics of NPP trend (%)
草地类型 Grassland type | 未来趋势不确定Uncertain future trends | 持续性轻微退化Persistent slight degradation | 持续性显著退化Persistent significant degradation | 持续性稳定不变The continuity is stable | 持续性轻微改善Continuous slight improvement | 持续性显著改善Continuous significant improvement |
---|---|---|---|---|---|---|
热性灌草丛Thermal shrub tussock | 28.51 | 6.77 | 4.82 | 14.05 | 9.13 | 34.56 |
热性草丛Thermal tussock | 10.17 | 1.07 | 0.80 | 3.48 | 3.84 | 74.04 |
暖性灌草丛Warm-temperate shrub tussock | 29.89 | 4.03 | 1.41 | 15.54 | 12.41 | 18.98 |
暖性草丛Warm-temperate tussock | 25.73 | 3.16 | 1.21 | 19.66 | 14.08 | 17.48 |
低地草甸Lowland meadow | 6.12 | 1.87 | 1.77 | 24.09 | 8.12 | 53.70 |
山地草甸Mountain meadow | 42.43 | 2.02 | 0.34 | 16.59 | 12.94 | 16.58 |
温性草甸草原Temperate meadow steppe | 28.75 | 12.60 | 3.86 | 23.27 | 14.59 | 6.87 |
温性草原Temperate steppe | 43.47 | 1.98 | 0.53 | 12.67 | 12.61 | 25.25 |
温性荒漠草原Temperate desert grassland | 38.16 | 0.27 | 0.04 | 8.61 | 11.99 | 35.25 |
温性草原化荒漠Temperate steppe desert | 45.06 | 0.25 | 0.03 | 7.29 | 8.89 | 29.22 |
温性荒漠Temperate desert | 36.27 | 0.19 | 0.16 | 5.22 | 6.00 | 47.59 |
高寒草甸Alpine meadow | 50.23 | 2.99 | 0.33 | 17.56 | 15.70 | 7.30 |
高寒草甸草原Alpine meadow steppe | 44.78 | 1.16 | 0.28 | 15.48 | 17.86 | 18.78 |
高寒草原Alpine grassland | 39.31 | 1.57 | 0.38 | 12.06 | 18.99 | 24.95 |
高寒荒漠草原Alpine desert grassland | 41.55 | 0.29 | 0.08 | 4.84 | 12.23 | 36.83 |
高寒荒漠Alpine desert | 45.07 | 0.58 | 0.47 | 5.41 | 9.04 | 34.54 |
沼泽Marsh | 60.09 | 1.40 | 0.33 | 10.39 | 13.34 | 12.99 |
总计Total | 36.21 | 2.48 | 0.99 | 12.72 | 11.87 | 29.11 |
图4 2001-2019年青藏高原各草地类型NPP年际变化A:热性灌草丛类Thermal shrub tussock; B:热性草丛类Thermal tussock; C:暖性灌草丛类Warm-temperate shrub tussock; D:暖性草丛类Warm-temperate tussock; E:低地草甸类Lowland meadow; F:山地草甸类Mountain meadow; G:温性草甸草原类Temperate meadow steppe; H:温性草原类Temperate steppe; I:温性荒漠草原类Temperate desert grassland; J:温性草原化荒漠类Temperate steppe desert; K:温性荒漠类Temperate desert; L:高寒草甸类Alpine meadow; M:高寒草甸草原类Alpine meadow steppe; N:高寒草原类Alpine grassland; O:高寒荒漠草原类Alpine desert grassland; P:高寒荒漠类Alpine desert; Q:沼泽类Marsh. 下同The same below.
Fig.4 Interannual variation of NPP of different grassland types in the Qinghai-Tibet Plateau from 2001 to 2019
1 | Liu Y Y, Zhang Z Y, Tong L J, et al. Assessing the effects of climate variation and human activities on grassland degradation and restoration across the globe. Ecological Indicators, 2019, 106: 105504. |
2 | Wang Y, Ren Z, Ma P P, et al. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of Total Environment, 2020, 722: 137910. |
3 | He J S, Liu Z P, Yao T, et al. Analysis of the main constrains and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 2020, 38(17): 66-80. |
4 | He L, Bin J, Deng D Z, et al. Review on progress in vegetation close-to-nature recovery. Journal of Sichuan Forestry Science and Technology, 2017, 38(5): 18-21. |
5 | He J S, Bu H Y, Hu X W, et al. Close-to-nature restoration of degraded alpine grasslands: Theoretical basis and technical approach. Chinese Science Bulletin, 2020, 65(34): 3898-3908. |
贺金生, 卜海燕, 胡小文, 等. 退化高寒草地的近自然恢复: 理论基础与技术途径. 科学通报, 2020, 65(34): 3898-3908. | |
6 | Venter Z S, Scott S L, Desmet P G, et al. Application of landsat-derived vegetation trends over South Africa: Potential for monitoring land degradation and restoration. Ecological Indicators, 2020, 113: 106206. |
7 | Gao H D, Pang G W, Li Z B, et al. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geographica Sinica, 2017, 72(5): 863-874. |
高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究. 地理学报, 2017, 72(5): 863-874. | |
8 | Zhao G J, Mu X M, Tian P, et al. Prediction of vegetation variation and vegetation restoration potential in the Loess Plateau. Journal of Soil and Water Conservation, 2021, 35(1): 205-212. |
赵广举, 穆兴民, 田鹏, 等. 黄土高原植被变化与恢复潜力预测. 水土保持学报, 2021, 35(1): 205-212. | |
9 | Li H D, Qin W H, Zhang T, et al. Comprehensive evaluation model for revegetation potentiality on moving sandy land in alpine valley of Tibet, China. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(16): 220-228. |
李海东, 秦卫华, 张涛, 等. 西藏高寒河谷流动沙地植被恢复潜力综合评价模型. 农业工程学报, 2015, 31(16): 220-228. | |
10 | Pan J H, Xu B C. Modeling spatial distribution of potential vegetation NPP in China. Chinese Journal of Ecology, 2020, 39(3): 1001-1012. |
潘竟虎, 徐柏翠. 中国潜在植被NPP的空间分布模拟. 生物学杂志, 2020, 39(3): 1001-1012. | |
11 | Li Q, Gao S G, Zhang C L, et al. Assessment of the impacts of climate change and human activities on the dynamic grassland change in Inner Mongolia. Geography and Geo-Information Science, 2019, 35(3): 99-104. |
李庆, 高素改, 张春来, 等. 内蒙古草地变化过程中气候变化和人类活动的相对作用评估. 地理与地理信息科学, 2019, 35(3): 99-104. | |
12 | Feng Q S, Gao X H, Huang X D, et al. Remote sensing dynamic monitoring of grass growth in Qinghai-Tibet plateau from 2001 to 2010. Journal of Lanzhou University (Natural Sciences), 2011, 47(4): 76-81, 90. |
冯琦胜, 高新华, 黄晓东, 等. 2001-2010年青藏高原草地生长状况遥感动态监测. 兰州大学学报(自然科学版), 2011, 47(4): 76-81, 90. | |
13 | Ge J, Meng B P, Liang T G, et al. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sensing of Environment, 2018, 218: 162-173. |
14 | Jin X, Yang L X. Solar radiation calculation under complex topography based on ArcGIS. Journal of Anhui Agriculture Science, 2014, 42(23): 7952-7955, 7973. |
金鑫, 杨礼箫. 基于ArcGIS的复杂地形下太阳辐射分析计算. 安徽农业科学, 2014, 42(23): 7952-7955, 7973. | |
15 | Liu J, Meng B P, Ge J, et al. Spatio-temporal dynamic changes of grassland NPP in Gannan prefecture, as determined by the CASA model. Acta Prataculturae Sinica, 2019, 28(6): 19-32. |
刘洁, 孟宝平, 葛静, 等. 基于CASA模型和MODIS数据的甘南草地NPP时空动态变化研究. 草业学报, 2019, 28(6): 19-32. | |
16 | Zhu W Q, Pan Y Z, Zhang J S. Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology (formerly Acta Phytoecologica Sinica), 2007, 31(3): 413-424. |
朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424. | |
17 | Xu H J, Wang X P, Zhang X X. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 2016, 92: 251-259. |
18 | Li H, Hong Y, Deng G R, et al. Impact of climate change and human activities on net primary productivity of grasslands in Inner Mongolia, China during 1982-2015. Chinese Journal of Applied Ecology, 2021, 32(2): 415-424. |
李辉, 红英, 邓国荣, 等. 1982-2015年气候变化和人类活动对内蒙古草地净初级生产力的影响. 应用生态学报, 2021, 32(2): 415-424. | |
19 | Yuan L H, Jiang W G, Shen W M, et al. The spatio-temporal variations of vegetation cover in the Yellow River Basin from 2000 to 2010. Acta Ecologica Sinica, 2013, 33(24): 7798-7910. |
袁丽华, 蒋卫国, 申文明, 等. 2000-2010年黄河流域植被覆盖的时空变化. 生态学报, 2013, 33(24): 7798-7910. | |
20 | Deji Y Z, Lu X Y. Analysis of vegetation net primary productivity on Qinghai-Tibetan Plateau and its response to climate change. Journal of Green Science and Technology, 2013(10): 4-6. |
德吉央宗, 鲁旭阳. 青藏高原植被净初级生产力及其对气候变化的响应. 绿色科技, 2013(10): 4-6. | |
21 | Chen S T, Guo B, Yang F, et al. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015. Journal of Nature Resources, 2020, 35(10): 2511-2527. |
陈舒婷, 郭兵, 杨飞, 等. 2000-2015年青藏高原植被NPP时空变化格局及其对气候变化的响应. 自然资源学报, 2020, 35(10): 2511-2527. | |
22 | Wang B L, Wang J J, Yang Y, et al. Algorithm improvements for two important parameters of FPAR and maximum solar energy utilization efficiency. Acta Prataculturae Sinica, 2013, 22(5): 220-228. |
王保林, 王晶杰, 杨勇, 等. 植被光合有效辐射吸收分量及最大光能利用率算法的改进. 草业学报, 2013, 22(5): 220-228. | |
23 | Raymood E, Hunt J R. Relationship between woody biomass and PAR conversion efficiency for estimating net primary production from NDVI. International Journal of Remote Sensing, 1994, 15(8): 1725-1730. |
24 | Lv Z G, Li W B, Huang X R, et al. Larix principis-rupprechtii growth suitability based on potential NPP under climate change scenarios in Hebei Province. Scientia Silvae Sinicae, 2019, 55(11): 37-44. |
吕振刚, 李文博, 黄选瑞, 等. 气候变化情景下基于潜在NPP的河北省华北落叶松生长适宜性. 林业科学, 2019, 55(11): 37-44. | |
25 | Ren Z C, Zhu H Z, Shi H, et al. Spatiotemporal-distribution pattern variation of net primary productivity in potential natural vegetation and its response to climate and topography in China. Acta Agrestia Sinica, 2017, 25(3): 474-485. |
任正超, 朱华忠, 史华, 等. 中国潜在自然植被NPP时空分布格局变化及其对气候和地形的响应. 草地学报, 2017, 25(3): 474-485. |
[1] | 蔺豆豆, 琚泽亮, 柴继宽, 赵桂琴. 青藏高原燕麦附着耐低温乳酸菌的筛选与鉴定[J]. 草业学报, 2022, 31(5): 103-114. |
[2] | 王亚晖, 唐文家, 李森, 赵鸿雁, 谢家丽, 马超, 颜长珍. 青海省草地生产力变化及其驱动因素[J]. 草业学报, 2022, 31(2): 1-13. |
[3] | 杨鑫, 曹文侠, 鱼小军, 汪海斌, 郝媛媛. 基于近20年MODIS NDVI日数据的青海省草地资源动态监测及其对环境因子的响应[J]. 草业学报, 2021, 30(9): 1-14. |
[4] | 付刚, 王俊皓, 李少伟, 何萍. 藏北高寒草地牧草营养品质对放牧的响应机制[J]. 草业学报, 2021, 30(9): 38-50. |
[5] | 南志标, 王彦荣, 聂斌, 李春杰, 张卫国, 夏超. 春箭筈豌豆新品种“兰箭3号”选育与特性评价[J]. 草业学报, 2021, 30(4): 111-120. |
[6] | 吴瑞, 刘文辉, 张永超, 秦燕, 魏小星, 刘敏洁. 青藏高原老芒麦落粒性及农艺性状相关性研究[J]. 草业学报, 2021, 30(4): 130-139. |
[7] | 陈宸, 井长青, 邢文渊, 邓小进, 付皓宇, 郭文章. 近20年新疆荒漠草地动态变化及其对气候变化的响应[J]. 草业学报, 2021, 30(3): 1-14. |
[8] | 宋达成, 王理德, 吴昊, 吴春荣, 赵赫然, 韩生慧, 胥宝一. 民勤退耕区次生草地土壤特性研究[J]. 草业学报, 2021, 30(2): 59-68. |
[9] | 石明明, 王晓敏, 陈奇, 韩炳宏, 周秉荣, 肖建设, 肖宏斌. 高寒草地干湿生态系统土壤水分及入渗对降水的响应[J]. 草业学报, 2021, 30(12): 49-58. |
[10] | 林慧龙, 范迪, 冯琦胜, 梁天刚. 草地综合顺序分类法研究新热点:2008-2020年回顾与展望[J]. 草业学报, 2021, 30(10): 201-213. |
[11] | 崔博超, 郑江华, 吐尔逊·哈斯木, 段素素, 杜梦洁. 塔里木河流域草地净初级生产力时空分异特征研究[J]. 草业学报, 2020, 29(6): 1-13. |
[12] | 邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异[J]. 草业学报, 2020, 29(5): 21-32. |
[13] | 乌尼图, 刘桂香, 杨勇, 宋向阳, 白海花. 基于光能利用率模型的内蒙古天然草原植被净初级生产力动态监测与气候因子的响应[J]. 草业学报, 2020, 29(11): 1-10. |
[14] | 杨阳, 田莉华, 田浩琦, 孙怀恩, 赵景学, 周青平. 增温对川西北高寒草甸草场植物凋落物分解的影响[J]. 草业学报, 2020, 29(10): 35-46. |
[15] | 侯蒙京, 高金龙, 葛静, 李元春, 刘洁, 殷建鹏, 冯琦胜, 梁天刚. 青藏高原东部高寒沼泽湿地动态变化及其驱动因素研究[J]. 草业学报, 2020, 29(1): 13-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||