草业学报 ›› 2022, Vol. 31 ›› Issue (7): 50-63.DOI: 10.11686/cyxb2021233
陈意超1(), 孙晓莹1,2, 解智杰1,2, 周攀1, 张露1, 高雪莉1, 李东1(), 刘晓风1
收稿日期:
2021-06-16
修回日期:
2021-09-27
出版日期:
2022-07-20
发布日期:
2022-06-01
通讯作者:
李东
作者简介:
E-mail: lidong@cib.ac.cn基金资助:
Yi-chao CHEN1(), Xiao-ying SUN1,2, Zhi-jie XIE1,2, Pan ZHOU1, Lu ZHANG1, Xue-li GAO1, Dong LI1(), Xiao-feng LIU1
Received:
2021-06-16
Revised:
2021-09-27
Online:
2022-07-20
Published:
2022-06-01
Contact:
Dong LI
摘要:
为探索经济高效且应用推广性强的尾矿改良和植被恢复措施,筛选了来自尾矿原生植被的根际促生菌,并将其组配形成混合促生菌液。采用盆栽试验,研究了混合促生菌液(B)、生物炭(C)和粪肥(F)及不同组合(BC、BF、CF、BⅠCF、BⅡCF,其中BⅠCF是三者复合处理;BⅡCF是在BⅠCF基础上增加1倍的混合促生菌液)对千叶蓍种子萌发和植株生长,根际微生物群落组成,矿砂养分、酶活性以及盆栽系统中的氮素转移和可利用磷、钾总量的影响。筛选得到4株具有固氮、溶磷、解钾、合成吲哚乙酸或分泌1-氨基环丙烷羧酸脱氨酶的根际促生菌,分别为KSB1、KSB2、KSB7和KSB21。盆栽试验结果表明:与CK(空白对照)相比,接种混合促生菌能够强化矿砂磷酸酶活性,并提高假单胞菌属和根瘤菌属在根际环境中的丰度;添加生物炭对矿砂养分和千叶蓍生长的影响有限;施用粪肥可促进千叶蓍生长,强化矿砂酶活性,显著提高蓝细菌属丰度(P<0.01)、盆栽系统氮素总量及可利用磷、钾总量。与单独施用粪肥(F)相比,接种混合促生菌+粪肥(BF)与添加生物炭+粪肥(CF)均能进一步提高部分千叶蓍生长指标和矿砂酶活性。此外,BF处理盆栽系统氮素总量增加了11.18%,可利用磷、钾总量分别增加了22.54%和22.00%;而CF仅有可利用钾总量增加了8.32%。BⅠCF和BⅡCF处理下各指标均高于其他处理,BⅡCF矿砂碱解氮、磷酸酶活性以及千叶蓍植株生物量等指标较BⅠCF有显著提高(P<0.05),且盆栽系统氮素总量增加了9.54%,千叶蓍植株钾总量增加了19.12%,蓝细菌属和假单胞菌属的相对丰度提高了51.96%和13.62%。试验条件下,直接接种促生菌或添加生物炭对尾矿基质改良和植被恢复效果不显著;施用粪肥对改善矿砂养分供给和促进绿垦作物千叶蓍的生长有关键作用;促生菌液和生物炭的功能发挥与粪肥的施用与否存在直接关系;BⅡCF处理是一种有效的矿砂改良措施,其中的多功能混合促生菌发挥了固氮、溶磷和解钾作用,并增强了千叶蓍对钾元素的吸收利用能力。
陈意超, 孙晓莹, 解智杰, 周攀, 张露, 高雪莉, 李东, 刘晓风. 根际促生菌的筛选及其在尾矿改良中的应用[J]. 草业学报, 2022, 31(7): 50-63.
Yi-chao CHEN, Xiao-ying SUN, Zhi-jie XIE, Pan ZHOU, Lu ZHANG, Xue-li GAO, Dong LI, Xiao-feng LIU. Screening of rhizosphere growth promoting bacteria and their application in tailings improvement[J]. Acta Prataculturae Sinica, 2022, 31(7): 50-63.
处理 Treatments | 铁尾矿砂 Iron tailings (kg) | LB培养基 Luria-bertani medium (mL) | 混合促生菌液 Plant growth promoting rhizobacteria (mL) | 生物炭 Biochar (g) | 粪肥 Manure (g) |
---|---|---|---|---|---|
空白对照CK | 5 | 2.4 | / | / | / |
接种促生菌液B | 5 | 1.2 | 1.2 | / | / |
添加生物炭C | 5 | 2.4 | / | 5 | / |
施用粪肥F | 5 | 2.4 | / | / | 30 |
接种促生菌液并添加生物炭BC | 5 | 1.2 | 1.2 | 5 | / |
接种促生菌液并施用粪肥BF | 5 | 1.2 | 1.2 | / | 30 |
添加生物炭并施用粪肥CF | 5 | 2.4 | / | 5 | 30 |
接种促生菌液、添加生物炭并施用粪肥BⅠCF | 5 | 1.2 | 1.2 | 5 | 30 |
接种2倍剂量的促生菌液、添加生物炭并施用粪肥BⅡCF | 5 | / | 2.4 | 5 | 30 |
表1 盆栽试验处理
Table 1 The treatments for pot experiment
处理 Treatments | 铁尾矿砂 Iron tailings (kg) | LB培养基 Luria-bertani medium (mL) | 混合促生菌液 Plant growth promoting rhizobacteria (mL) | 生物炭 Biochar (g) | 粪肥 Manure (g) |
---|---|---|---|---|---|
空白对照CK | 5 | 2.4 | / | / | / |
接种促生菌液B | 5 | 1.2 | 1.2 | / | / |
添加生物炭C | 5 | 2.4 | / | 5 | / |
施用粪肥F | 5 | 2.4 | / | / | 30 |
接种促生菌液并添加生物炭BC | 5 | 1.2 | 1.2 | 5 | / |
接种促生菌液并施用粪肥BF | 5 | 1.2 | 1.2 | / | 30 |
添加生物炭并施用粪肥CF | 5 | 2.4 | / | 5 | 30 |
接种促生菌液、添加生物炭并施用粪肥BⅠCF | 5 | 1.2 | 1.2 | 5 | 30 |
接种2倍剂量的促生菌液、添加生物炭并施用粪肥BⅡCF | 5 | / | 2.4 | 5 | 30 |
菌株 Strain | 固氮能力 Nitrogen fixation ability (nmol C2H4·mg-1 Pr·h-1) | 溶磷能力 Phosphate dissolving capacity (mg·L-1·7 d-1) | 解钾能力 Potassium dissolving ability (mg·L-1·7 d-1) | 3-IAA产率 3-IAA yield (mg·L-1·3 d-1) | ACC脱氨酶活性 ACC deaminase activity (μmol α-KA·mg-1 Pr·h-1) | |||
---|---|---|---|---|---|---|---|---|
Ca3(PO4)2 | 矿砂 Tailings | 钾矿石 Potassium ore | 矿砂 Tailings | 加入L‐色氨酸 Add L-tryptophan | 不加L‐色氨酸 Without L-tryptophan | |||
KSB1 | ND | 25.85±4.15 | 6.98 ± 1.91 | ND | ND | 57.58±5.49 | 7.64±0.42 | 2.39±0.38 |
KSB2 | ND | ND | ND | 39.18±4.57 | 21.11±1.53 | 6.36±1.05 | ND | 3.01±0.36 |
KSB7 | ND | ND | ND | ND | ND | 41.67±4.94 | 0.91±0.32 | 3.79±0.50 |
KSB21 | 1016.89±3 9.21 | 1.64±0.34 | ND | 16.57±0.54 | 3.31±0.26 | 9.85±1.05 | 0.65±0.11 | ND |
表2 各根际促生菌的促生功能
Table 2 Growth-promoting function of different plant growth promoting rhizobacteria
菌株 Strain | 固氮能力 Nitrogen fixation ability (nmol C2H4·mg-1 Pr·h-1) | 溶磷能力 Phosphate dissolving capacity (mg·L-1·7 d-1) | 解钾能力 Potassium dissolving ability (mg·L-1·7 d-1) | 3-IAA产率 3-IAA yield (mg·L-1·3 d-1) | ACC脱氨酶活性 ACC deaminase activity (μmol α-KA·mg-1 Pr·h-1) | |||
---|---|---|---|---|---|---|---|---|
Ca3(PO4)2 | 矿砂 Tailings | 钾矿石 Potassium ore | 矿砂 Tailings | 加入L‐色氨酸 Add L-tryptophan | 不加L‐色氨酸 Without L-tryptophan | |||
KSB1 | ND | 25.85±4.15 | 6.98 ± 1.91 | ND | ND | 57.58±5.49 | 7.64±0.42 | 2.39±0.38 |
KSB2 | ND | ND | ND | 39.18±4.57 | 21.11±1.53 | 6.36±1.05 | ND | 3.01±0.36 |
KSB7 | ND | ND | ND | ND | ND | 41.67±4.94 | 0.91±0.32 | 3.79±0.50 |
KSB21 | 1016.89±3 9.21 | 1.64±0.34 | ND | 16.57±0.54 | 3.31±0.26 | 9.85±1.05 | 0.65±0.11 | ND |
菌株 | |||||||||
---|---|---|---|---|---|---|---|---|---|
KSB1 | 扁平 Flat | 整齐 Neat | 淡黄色 Light yellow | 不透明 Opaque | 湿润 Wet | SUB9236258 | 99.57 | 假单胞菌 Pseudomonas sp. | |
KSB2 | 凸起 Raised | 整齐 Neat | 淡黄色 Light yellow | 半透明 Translucent | 湿润 Wet | SUB9291453 | 99.42 | 假单胞菌 Pseudomonas sp. | |
KSB7 | 凸起 Raised | 整齐 Neat | 浅白色 Light white | 边缘透明 Edge transparency | 湿润 Wet | SUB9291458 | 99.28 | 假单胞菌 Pseudomonas sp. | |
KSB21 | 凸起 Raised | 整齐 Neat | 奶白色 Milky white | 不透明 Opaque | 湿润 Wet | SUB9291466 | 99.18 | 根瘤菌 Rhizobium sp. |
表3 菌落形态及鉴定结果
Table 3 Colony morphology and identification results
菌株 | |||||||||
---|---|---|---|---|---|---|---|---|---|
KSB1 | 扁平 Flat | 整齐 Neat | 淡黄色 Light yellow | 不透明 Opaque | 湿润 Wet | SUB9236258 | 99.57 | 假单胞菌 Pseudomonas sp. | |
KSB2 | 凸起 Raised | 整齐 Neat | 淡黄色 Light yellow | 半透明 Translucent | 湿润 Wet | SUB9291453 | 99.42 | 假单胞菌 Pseudomonas sp. | |
KSB7 | 凸起 Raised | 整齐 Neat | 浅白色 Light white | 边缘透明 Edge transparency | 湿润 Wet | SUB9291458 | 99.28 | 假单胞菌 Pseudomonas sp. | |
KSB21 | 凸起 Raised | 整齐 Neat | 奶白色 Milky white | 不透明 Opaque | 湿润 Wet | SUB9291466 | 99.18 | 根瘤菌 Rhizobium sp. |
图2 不同根际促生菌浓度对千叶蓍种子发芽率和幼苗鲜重的影响不同小写字母表示处理间差异显著(P < 0.05),下同。Different small letters mean significant differences among the treatments (P<0.05), the same below.
Fig.2 Effects of growth promoting rhizobacteria cell concentration on the seed germination rate and seedling fresh weight of A. millefolium
图3 不同根际促生菌组合处理对千叶蓍种子萌发和根长的影响
Fig.3 Effects of combination treatment of different growth promoting rhizobacteria on seed germination and root length of A. millefolium
处理 Treatments | 碱解氮 Alkali hydrolyzable nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) | 脲酶 Urease (NH4+-N mg·g-1·24 h-1) | 磷酸酶 Phosphatase (PhOH mg·g-1·24 h-1) | 蔗糖转化酶 Saccharase (glu, mg·g-1·24 h-1) |
---|---|---|---|---|---|
CK | 1.62±0.08c | 3.14±0.12de | 5.01±0.16d | 1.24±0.08e | 0.14±0.01de |
B | 1.56±0.12c | 2.95±0.18e | 4.94±0.13d | 1.48±0.05d | 0.13±0.01de |
C | 1.51±0.09c | 3.39±0.19cd | 4.83±0.20d | 1.21±0.06e | 0.12±0.01e |
F | 2.32±0.06b | 3.65±0.13c | 5.35±0.15c | 1.66±0.09c | 0.23±0.02c |
BC | 1.65±0.11c | 3.40±0.16cd | 5.06±0.14d | 1.51±0.03d | 0.16±0.01d |
BF | 2.41±0.08b | 3.90±0.10b | 5.61±0.10bc | 1.92±0.12b | 0.27±0.02b |
CF | 2.36±0.05b | 4.01±0.15b | 5.72±0.17ab | 1.71±0.04c | 0.24±0.02c |
BⅠCF | 2.43±0.07b | 4.16±0.11ab | 5.95±0.19a | 2.03±0.12b | 0.29±0.03ab |
BⅡCF | 2.56±0.06a | 4.30±0.20a | 6.03±0.38a | 2.17±0.15a | 0.31±0.03a |
表4 不同处理对矿砂养分含量及酶活性的影响
Table 4 Effects of different treatments on nutrient content and enzyme activity of iron tailings
处理 Treatments | 碱解氮 Alkali hydrolyzable nitrogen (mg·kg-1) | 有机质 Organic matter (g·kg-1) | 脲酶 Urease (NH4+-N mg·g-1·24 h-1) | 磷酸酶 Phosphatase (PhOH mg·g-1·24 h-1) | 蔗糖转化酶 Saccharase (glu, mg·g-1·24 h-1) |
---|---|---|---|---|---|
CK | 1.62±0.08c | 3.14±0.12de | 5.01±0.16d | 1.24±0.08e | 0.14±0.01de |
B | 1.56±0.12c | 2.95±0.18e | 4.94±0.13d | 1.48±0.05d | 0.13±0.01de |
C | 1.51±0.09c | 3.39±0.19cd | 4.83±0.20d | 1.21±0.06e | 0.12±0.01e |
F | 2.32±0.06b | 3.65±0.13c | 5.35±0.15c | 1.66±0.09c | 0.23±0.02c |
BC | 1.65±0.11c | 3.40±0.16cd | 5.06±0.14d | 1.51±0.03d | 0.16±0.01d |
BF | 2.41±0.08b | 3.90±0.10b | 5.61±0.10bc | 1.92±0.12b | 0.27±0.02b |
CF | 2.36±0.05b | 4.01±0.15b | 5.72±0.17ab | 1.71±0.04c | 0.24±0.02c |
BⅠCF | 2.43±0.07b | 4.16±0.11ab | 5.95±0.19a | 2.03±0.12b | 0.29±0.03ab |
BⅡCF | 2.56±0.06a | 4.30±0.20a | 6.03±0.38a | 2.17±0.15a | 0.31±0.03a |
处理 Treatments | 丛径 Cluster diameter (cm) | 株高 Plant height (cm) | 根长 Root length (cm) | 地上部鲜重 Fresh weight of shoot (g·plant-1) | 地下部鲜重 Fresh weight of roots (g·plant-1) | 根冠比 Root shoot ratio |
---|---|---|---|---|---|---|
CK | 37.47±1.46d | 11.55±0.59d | 14.82±0.91de | 41.35±2.58e | 27.58±2.48d | 0.67±0.06a |
B | 33.28±1.66e | 9.48±0.60e | 13.17±1.14e | 37.43±3.33e | 26.02±1.48d | 0.70±0.05a |
C | 35.63±2.80de | 10.92±0.92de | 17.38±1.46cd | 38.65±2.45e | 24.86±1.54d | 0.64±0.05a |
F | 41.54±1.39c | 13.94±1.01c | 20.14±1.95c | 65.17±4.43d | 34.28±2.79c | 0.53±0.05b |
BC | 38.21±1.62d | 12.07±0.69d | 18.06±1.61c | 44.78±3.93e | 28.12±2.29d | 0.63±0.03a |
BF | 45.88±3.84ab | 18.83±1.06a | 27.09±1.50b | 83.97±7.50bc | 43.04±4.50b | 0.51±0.03b |
CF | 43.96±2.15bc | 16.84±1.13b | 32.05±2.54a | 78.21±5.85c | 41.22±2.79b | 0.53±0.03b |
BⅠCF | 47.20±2.56ab | 18.98±1.35a | 29.71±2.02ab | 91.57±5.78b | 45.05±4.10b | 0.49±0.02b |
BⅡCF | 49.28±2.29a | 18.65±1.38a | 30.32±2.79a | 102.90±8.78a | 56.81±3.72a | 0.55±0.02b |
表5 不同处理对千叶蓍生长的影响
Table 5 Effects of different treatments on the growth indexes of A. millefolium
处理 Treatments | 丛径 Cluster diameter (cm) | 株高 Plant height (cm) | 根长 Root length (cm) | 地上部鲜重 Fresh weight of shoot (g·plant-1) | 地下部鲜重 Fresh weight of roots (g·plant-1) | 根冠比 Root shoot ratio |
---|---|---|---|---|---|---|
CK | 37.47±1.46d | 11.55±0.59d | 14.82±0.91de | 41.35±2.58e | 27.58±2.48d | 0.67±0.06a |
B | 33.28±1.66e | 9.48±0.60e | 13.17±1.14e | 37.43±3.33e | 26.02±1.48d | 0.70±0.05a |
C | 35.63±2.80de | 10.92±0.92de | 17.38±1.46cd | 38.65±2.45e | 24.86±1.54d | 0.64±0.05a |
F | 41.54±1.39c | 13.94±1.01c | 20.14±1.95c | 65.17±4.43d | 34.28±2.79c | 0.53±0.05b |
BC | 38.21±1.62d | 12.07±0.69d | 18.06±1.61c | 44.78±3.93e | 28.12±2.29d | 0.63±0.03a |
BF | 45.88±3.84ab | 18.83±1.06a | 27.09±1.50b | 83.97±7.50bc | 43.04±4.50b | 0.51±0.03b |
CF | 43.96±2.15bc | 16.84±1.13b | 32.05±2.54a | 78.21±5.85c | 41.22±2.79b | 0.53±0.03b |
BⅠCF | 47.20±2.56ab | 18.98±1.35a | 29.71±2.02ab | 91.57±5.78b | 45.05±4.10b | 0.49±0.02b |
BⅡCF | 49.28±2.29a | 18.65±1.38a | 30.32±2.79a | 102.90±8.78a | 56.81±3.72a | 0.55±0.02b |
图7 不同改良剂对盆栽系统可利用磷、钾总量和分布的影响
Fig.7 Effects of different modifiers on the total amount and distribution of available phosphorus and potassium in pot system
1 | Zhan J, Sun Q Y. Diversity of free-living nitrogen-fixing microorganisms in wastelands of copper mine tailings during the process of natural ecological restoration. Journal of Environmental Sciences, 2011, 23(3): 476-487. |
2 | Wang J, Zhang C B, Ke S S, et al. Effects of sewage sludge amendment on physico-chemical properties of mine tailings and physiological responses of Cinnamomum camphora. Acta Ecologica Sinica, 2010, 30(10): 2593-2602. |
王江, 张崇邦, 柯世省, 等. 添加污泥对尾矿砂理化性质及香樟生理特性的影响. 生态学报, 2010, 30(10): 2593-2602. | |
3 | Etesami H, Maheshwari D K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 156: 225-246. |
4 | Cui Z H. Combined remediation and improvement techniques of plant-microorganism in utilization of iron tailings. Jinan: Shandong University, 2018. |
崔照豪. 铁尾矿土壤化利用植物-微生物联合修复与改良技术研究. 济南: 山东大学, 2018. | |
5 | Cristina G, Blanca R L, Luz E B, et al. Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil. Land Degradation & Development, 2018, 29(5): 1453-1466. |
6 | Yang S X, Li F M, Peng X Z, et al. Effects of amendments with different C/N/P ratios on plant and soil properties of a Pb-Zn mine tailings. Environmental Science, 2019, 40(9): 4253-4261. |
杨胜香, 李凤梅, 彭禧柱, 等. 不同碳氮磷源改良剂对铅锌尾矿废弃地植被与土壤性质的影响. 环境科学, 2019, 40(9): 4253-4261. | |
7 | Palansooriya K N, Fung-Wong J T, Hashimoto Y, et al. Response of microbial communities to biochar‑amended soils: A critical review. Biochar, 2019, 1(1): 3-22. |
8 | Wang H, Xia W, Lu P. Study on adsorption characteristics of biochar on heavy metals in soil. Korean Journal of Chemical Engineering, 2017, 34(6): 1867-1873. |
9 | Lazcano C, Gómez-Brandón M, Revilla P, et al. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biology and Fertility of Soils, 2013, 49(6): 723-733. |
10 | Noyd R K, Pfleger E L, Norland M R. Field responses to added organic matter, arbuscular mycorrhizal fungi, and fertilizer in reclamation of taconite iron ore tailings. Plant and Soil, 1996, 179(1): 89-97. |
11 | Arabi Z, Eghtedaey H, Gharehchmaghloo B, et al. Effects of biochar and bio-fertilizer on yield and qualitative properties of soybean and some chemical properties of soil. Arabian Journal of Geosciences, 2018, 11(672): 2-9. |
12 | Zhao L F, Xu Y J, Chang J L, et al. Screening, resistance and growth-promoting effect of endophytic bacteria with ACC deaminase activity isolated from soybean nodules. Acta Microbiologica Sinica, 2016, 56(6): 1009-1021. |
赵龙飞, 徐亚军, 常佳丽, 等. 具ACC脱氨酶活性大豆根瘤内生菌的筛选、抗性及促生作用. 微生物学报, 2016, 56(6): 1009-1021. | |
13 | Amandeep S B. Insolation of endophytic bcteria from lodgepole pine and westernrd cedar and determination of their nitrogen fixing ability. Canada: The University of British Colurmbia, 2003. |
14 | Kızılkaya R. Yield response and nitrogen concentrations of spring wheat (Triticum aestivum) inoculated with Azotobacter chroococcum strains. Ecological Engineering, 2008, 33(2): 150-156. |
15 | Krause A, Ramakumar A, Bartels D, et al. Complete genom of the mutualistic, N(2)-fixing grass endophyte Azoarcus sp. strain BH72. Nature Biotechnology, 2006, 24(11): 1385-1391. |
16 | Lin Q M, Zhao X R, Sun Y X, et al. Community characters of soil phosphobacteria in four ecosystems. Soil and Environmental Sciences, 2000, 9(1): 34-37. |
林启美, 赵小蓉, 孙焱鑫, 等. 四种不同生态系统的土壤解磷细菌数量及种群分布. 土壤与环境, 2000, 9(1): 34-37. | |
17 | Li Z G, Luo Y M, Teng Y. Research methods of soil and environmental microorganism. Beijing: Science Press, 2008. |
李振高, 骆永明, 滕应. 土壤与环境微生物研究法. 北京: 科学出版社, 2008. | |
18 | Zhang Y. Screening plant growth promoting rhizosphere resources and their promotion mechanisms from rhizosphere of four forages in Ali Alpine grassland of Tibet. Lanzhou: Gansu Agricultural University, 2013. |
张英. 西藏阿里高寒草原四种牧草根际促生菌资源筛选及促生机理研究. 兰州: 甘肃农业大学, 2013. | |
19 | Fang H Z, Zuo X Z. Isolation and application of N-fixing, P-releasing and K-releasing bacteria from rice paddy. Soil and Fertilizer Sciences in China, 2014, 17(2): 82-87. |
方华舟, 左雪枝. 稻田固氮解磷解钾菌筛选及其复合菌剂对土壤培肥作用. 中国土壤与肥料, 2014, 17(2): 82-87. | |
20 | Bao S D. Soil and agricultural chemistry analysis (The third edition). Beijing: China Agricultural Press, 2000. |
鲍士旦. 土壤农化分析(第三版) . 北京: 中国农业出版社, 2000. | |
21 | Sun X Y. Screening of salt-tolerant plant growth promoting rhizobacteria and its effect on plant growth. Beijing: University of Chinese Academy of Sciences, 2019. |
孙晓莹. 耐盐植物根际促生菌的筛选及其功能探究. 北京: 中国科学院大学, 2019. | |
22 | Glickmann E, Dessaux Y. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 1995, 61(2): 793-796. |
23 | Li X, Zhang B J, Li J Q, et al. Effects of combined application of water retention agent and organic fertilizer on physico-chemical properties of iron tailings. Chinese Journal of Applied Ecology, 2017, 28(2): 554-562. |
李想, 张宝娟, 李继泉, 等. 保水剂与有机肥配施对铁尾矿理化性质的改良作用. 应用生态学报, 2017, 28(2): 554-562. | |
24 | Zhuang X L, Chen J, Shim H, et al. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 2007, 33(3): 406-413. |
25 | Zeng Q F, Wang Q, Lu R X, et al. Identification of soybean growth-promoting rhizobacteria and their effects on the growth and quality of Glycine max and Lotus corniculatus. Acta Prataculturae Sinica, 2017, 26(1): 99-111. |
曾庆飞, 王茜, 陆瑞霞, 等. 大豆根际促生菌的分离筛选及其对大豆和百脉根生长与品质的影响. 草业学报, 2017, 26(1): 99-111. | |
26 | Zhang H L, Sun L N, Sun T H, et al. Substrate amelioration and vegetation reconstruction in ecological remediation of abandoned mines: Research advances. Chinese Journal of Ecology, 2012, 31(2): 460-467. |
张鸿龄, 孙丽娜, 孙铁珩, 等. 矿山废弃地生态修复过程中基质改良与植被重建研究进展. 生态学杂志, 2012, 31(2): 460-467. | |
27 | Lai F Y, Lu N C, Niu D K, et al. Ecological engineering remediation of heavy metal polluted soil. Transactions of the CSAE, 2007, 23(3): 80-84. |
赖发英, 卢年春, 牛德奎, 等. 重金属污染土壤生态工程修复的试验研究. 农业工程学报, 2007, 23(3): 80-84. | |
28 | Dennis C G, Ann L P, Chittaranjan K. Genomics of plant-associated bacteria. Berlin: Springer-Verlag, 2014. |
29 | Jiang L L. The effect of biochar on soil microbial diversity and community structure. Shenyang: Shenyang Agricultural University, 2016. |
江琳琳. 生物炭对土壤微生物多样性和群落结构的影响. 沈阳: 沈阳农业大学, 2016. | |
30 | Yang Q, Zhao L, Hou H, et al. Effect of soil ameliorants on abandoned rare mine tailings in Jiangxi Province. Applied Chemical Industry, 2018, 47(2): 211-214. |
杨侨, 赵龙, 侯红, 等. 土壤改良剂对赣南废弃稀土尾矿的改良效应. 应用化工, 2018, 47(2): 211-214. | |
31 | Liu B W. Research and development of PGPR solid fertilizer and its effect on the growth and quality of alfalfa. Harbin: Harbin Normal University, 2017. |
刘博文. PGPR固体菌肥的研发及对紫花苜蓿生长和品质的影响. 哈尔滨: 哈尔滨师范大学, 2017. | |
32 | Yang H B, Li J Q, Wang J J, et al. Effects of fertilizer and rhizobium inoculation on alfalfa growth on mine tailings and physicochemical properties of iron tailing. Acta Prataculturae Sinica, 2016, 25(2): 68-76. |
杨何宝, 李继泉, 王俊娟, 等. 施肥和苜蓿接种根瘤菌对苜蓿生长及铁尾矿砂基质理化性质的影响. 草业学报, 2016, 25(2): 68-76. |
[1] | 吴慧丽, 田薇, 纪燕玲, 娄来清, 蔡庆生. 促进镉吸收积累的植物根际促生菌的筛选及其对一年生黑麦草的影响[J]. 草业学报, 2021, 30(7): 53-61. |
[2] | 孙娇, 梁锦秀, 孔德杰, 郭鑫年, 魏永东, 周涛. 生物炭与秸秆还田对风沙土壤-微生物-胞外酶化学计量特征的影响[J]. 草业学报, 2021, 30(11): 29-39. |
[3] | 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
[4] | 徐绮雯, 马淑敏, 朱波, 张小短, 邢毅, 段美春, 王龙昌. 生物炭与化肥配施对紫色土肥力与微生物特征及油菜产量品质的影响[J]. 草业学报, 2020, 29(5): 121-131. |
[5] | 黎嘉成, 高明, 田冬, 黄容, 徐国鑫. 秸秆及生物炭还田对土壤有机碳及其活性组分的影响[J]. 草业学报, 2018, 27(5): 39-50. |
[6] | 李继伟, 悦飞雪, 王艳芳, 张亚梅, 倪瑞景, 王发园, 付国占, 刘领. 施用生物炭和AM真菌对镉胁迫下玉米生长和生理生化指标的影响[J]. 草业学报, 2018, 27(5): 120-129. |
[7] | 宋丹丹,何丙辉,罗松平,吴耀鹏. 黑麦草和生物炭对喀斯特地区黄壤养分影响研究[J]. 草业学报, 2018, 27(4): 195-201. |
[8] | 郭雄飞. 生物炭和AM真菌对重金属污染下土壤养分及望江南生长的影响[J]. 草业学报, 2018, 27(11): 150-161. |
[9] | 张旭辉, 李治玲, 李勇, 王洋清. 施用生物炭对西南地区紫色土和黄壤的作用效果[J]. 草业学报, 2017, 26(4): 63-72. |
[10] | 马骢毓, 张英, 马文彬, 李建宏, 姚拓. 黄芪根际促生菌(PGPR)筛选与特性研究[J]. 草业学报, 2017, 26(1): 149-159. |
[11] | 刘婷, 姚拓, 陈建纲, 马文彬, 刘欢, 马骢毓, 蒋永梅. 无脉苔草根际优良促生菌鉴定及其作用研究[J]. 草业学报, 2016, 25(12): 130-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||