[1] Yi Y J,Yang Z F, Zhang S H.Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin. Environmental Pollution, 2011, 159(10): 2575-2585. [2] Liu L, Hu L L, Tang J J, et al. Food safety assessment of planting patterns of four vegetable-type crops grown in soil contaminated by electronic waste activities. Journal of Environmental Management, 2012, 93(1): 22-30. [3] Wang F, Chang P P, Chen Y P, et al. Effect of exogenous nitric oxide on seedling growth and physiological characteristics of maize seedlings under cadmium stress. Acta Prataculturae Sinica, 2013, 22(2): 178-186. 王芳, 常盼盼, 陈永平, 等. 外源NO对镉胁迫下玉米幼苗生长和生理特性的影响. 草业学报, 2013, 22(2): 178-186. [4] Liu L, Zhang Q, Hu L L, et al. Legumes can increase cadmium contamination in neighboring crops. Plos One, 2012, 7(8): e42944. [5] Fu F L, Wang Q.Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 2011, 92(3): 407-418. [6] Solísdomínguez F A, Valentínvargas A, Chorover J, et al. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Science of the Total Environment, 2011, 409(6): 1009-1016. [7] Wu Q S, Yuan F Y, Fei Y J, et al. Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP and carbohydrates of white clover. Acta Prataculturae Sinica, 2014, 23(4): 269-275. 吴强盛, 袁芳英, 费永俊, 等. 菌根真菌对白三叶根际团聚体稳定性、球囊霉素相关土壤蛋白和糖类物质的影响. 草业学报, 2014, 23(4): 269-275. [8] Ogar A, Sobczyk Ł, Turnau K.Effect of combined microbes on plant tolerance to Zn-Pb contaminations. Environmental Science & Pollution Research, 2015, 22(23): 19142-19156. [9] Yang Y R, Liang Y, Ghosh A, et al. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: potential applications for phytoremediation. Environmental Science & Pollution Research, 2015, 22(17): 13179-13193. [10] Nguyen B T, Lehmann J, Kinyangi J, et al. Long-term black carbon dynamics in cultivated soil. Biogeochemistry, 2008, 89(3): 295-308. [11] Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere, 2014, 99(3): 19-33. [12] Hossain M K, Strezov V, Chan K Y, et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 2010, 78(9): 1167-1171. [13] Zhang X H, Li Z L, Li Y, et al. Effect of biochar amendment on purple and yellow soil. Acta Prataculturae Sinica, 2017, 26(4): 63-72. 张旭辉, 李治玲, 李勇, 等. 施用生物炭对西南地区紫色土和黄壤的作用效果. 草业学报, 2017, 26(4): 63-72. [14] Liu L, Wang Y F, Song J Y, et al. Effects of biochar addition combined with reducing nitrogen application rate on growth of flue-cured tobacco and soil enzyme activities. Journal of Henan Agricultural Sciences, 2016, 45(2): 62-66. 刘领, 王艳芳, 宋久洋, 等. 生物炭与氮肥减量配施对烤烟生长及土壤酶活性的影响. 河南农业科学, 2016, 45(2): 62-66. [15] Atkinson C J, Fitzgerald J D, Hipps N A.Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant & Soil, 2010, 337(1/2): 1-18. [16] Kim K, Yim W, Trivedi P, et al. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant & Soil, 2010, 327(1/2): 429-440. [17] Hammer E C, Balogh-Brunstad Z, Jakobsen I, et al. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biology & Biochemistry, 2014, 77(7): 252-260. [18] Hammer E C, Forstreuter M, Rillig M C, et al. Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Applied Soil Ecology, 2015, 96(3): 114-121. [19] Wang Y P, Chang H, Li C, et al. Effects of exogenous Ca2+ on growth, photosynthetic characteristics and photosystem II function of maize seedlings under cadmium stress. Acta Prataculturae Sinica, 2016, 25(5): 40-48. 王玉萍, 常宏, 李成, 等. Ca2+对镉胁迫下玉米幼苗生长、光合特征和PSⅡ功能的影响. 草业学报, 2016, 25(5): 40-48. [20] Cao J L, Feng Y Z, He S Y, et al. Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Applied Soil Ecology, 2017, 119: 307-316. [21] Zhang S Q, Li Y.Plant physiology experiment technology tutorials. Beijing: Science Press, 2011. 张蜀秋, 李云. 植物生理学实验技术教程. 北京: 科学出版社, 2011. [22] Liu L, Li J W, Chang Q Q, et al. Effects of Brassica extracts on occurrence of black shank disease and physiological characteristics of flue-cured tobacco. Plant Physiology Journal, 2017, 53(6): 997-1006. 刘领, 李继伟, 常茜茜, 等. 芸薹属植物提取液对烤烟黑胫病发生及烟株生理特性的影响. 植物生理学报, 2017, 53(6): 997-1006. [23] Rao K V M, Sresty T V S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 2000, 157(1): 113-128. [24] Ghosh M, Singh S P.A comparative study of cadmium phytoextraction by accumulator and weed species. Environmental Pollution, 2005, 133(2): 365-371. [25] Chen J X, Wang X F.Experimental guide of physiology of plant. 2nd. Guangzhou: South China Science and Technology University Press, 2006. 陈建勋, 王晓峰. 植物生理学实验指导. 第2版. 广州: 华南理工大学出版社, 2006. [26] Giovannetti M, Mosse B.Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 1980, 84(3): 489-500. [27] Liu L Z, Gong Z Q, Zhang Y L, et al. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology, 2014, 23(10): 1979-1986. [28] Malekzadeh E, Alikhani H A, Savaghebi-Firoozabadi G R, et al. Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish Journal of Agricultural Research, 2011, 9(4): 1213-1223. [29] Sujana I P, Lanya I, Subadiyasa I N N, et al. The effect of dose biochar and organic matters on soil characteristic and corn plants growth on the land degraded by garment liquid waste. Journal of Biology Agriculture & Healthcare, 2014, 4(5): 77-78. [30] Zhang H W, Zhen H Y, Yue S Z, et al. Bioavailability of Cd in contaminated soil after short-term application of rice straw biochar. Ecology and Environment Sciences, 2017, 26(6): 1068-1074. 张华纬, 甄华杨, 岳士忠, 等. 水稻秸秆生物炭对污染土壤中镉生物有效性的影响. 生态环境学报, 2017, 26(6): 1068-1074. [31] Zhang X N, Zhao X Q, Wang Z Q, et al. Protective effects of hydrogen-rich water on the photosynthetic apparatus of maize seedlings (Zea mays L.) as a result of an increase in antioxidant enzyme activities under high light stress. Plant Growth Regulation, 2015, 77(1): 43-56. [32] Bhaduri A M, Fulekar M H.Antioxidant enzyme responses of plants to heavy metal stress. Reviews in Environmental Science & Bio/technology, 2012, 11(1): 55-69. [33] Manyà J J.Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environmental Science & Technology, 2012, 46(15): 7939-7954. [34] Wang F Y, Shi Z Y, Xu X F, et al. Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants. Environmental Science Processes & Impacts, 2013, 15(4): 794-801. [35] Hu J, Wu F, Wu S, et al.Biochar and Glomus caledonium influence Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with Alfred stonecrop (Sedum alfredii Hance). Scientific Reports, 2014, 4(4): 4671. [36] Liu X L, Zhang C, Deng M, et al. Effects of biochar and AM fungi on root morphology, physiological characteristics and chemical constituents of flue-cured tobacco. Tobacco Science & Technology, 2017, 50(8): 30-36. 刘先良, 张春, 邓茂, 等. 施用生物炭和AM真菌对烤烟根系形态、生理特性及化学成分的影响. 烟草科技, 2017, 50(8): 30-36. [37] Pereira P, Ibáñez S G, Agostini E, et al. Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and antioxidative enzymatic activities. Applied Soil Ecology, 2011, 51(6): 52-59. [38] Wang F Y, Liu X Q, Shi Z Y, et al. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants—A soil microcosm experiment. Chemosphere, 2016, 147: 88-97. [39] Xu X Y, Cao X D, Zhao L.Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere, 2013, 92(8): 955-961. [40] Zwetsloot M J, Lehmann J, Bauerle T, et al. Phosphorus availability from bone char in a P-fixing soil influenced by root-mycorrhizae-biochar interactions. Plant & Soil, 2016, 408(1/2): 1-11. [41] Liu L, Wang Y F, Yan X W, et al. Biochar amendments increase the yield advantage of legume-based intercropping systems over monoculture. Agriculture Ecosystems & Environment, 2017, 237: 16-23. [42] Vanek S J, Lehmann J.Phosphorus availability to beans via interactions between mycorrhizas and biochar. Plant & Soil, 2015, 395(1/2): 105-123. [43] Woolf D, Amonette J E, Street-Perrott F A, et al. Sustainable biochar to mitigate global climate change. Nature Communications, 2010, 1(5): 56. [44] Wang F Y, Lin X G, Yin R.Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant & Soil, 2005, 269(1/2): 225-232. [45] Alguacil M M, Torrecillas E, Caravaca F, et al. The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biology & Biochemistry, 2011, 43(7): 1498-1508. |