草业学报 ›› 2023, Vol. 32 ›› Issue (8): 61-70.DOI: 10.11686/cyxb2022374
宋达成1,2,3(), 吴昊1,3(), 王理德1,2,3, 王飞1,3, 张裕凯4, 赵学成4
收稿日期:
2022-09-16
修回日期:
2022-10-17
出版日期:
2023-08-20
发布日期:
2023-06-16
通讯作者:
吴昊
作者简介:
E-mail: wuhao4832@163.com基金资助:
Da-cheng SONG1,2,3(), Hao WU1,3(), Li-de WANG1,2,3, Fei WANG1,3, Yu-kai ZHANG4, Xue-cheng ZHAO4
Received:
2022-09-16
Revised:
2022-10-17
Online:
2023-08-20
Published:
2023-06-16
Contact:
Hao WU
摘要:
以哈溪双龙沟废弃矿区周边3种不同造林年限人工沙棘林(造林2年、造林10年、对照荒地)为对象,采用时空互代法研究了废弃矿区周边不同恢复年限样地土壤重金属含量以及4种酶活性(蔗糖酶、碱性磷酸酶、过氧化氢酶和脲酶),同时分析了重金属元素与4种土壤酶活性的作用效应。结果表明,不同造林年限样地间土壤重金属含量变化总体保持一致,V、Mn、Ni、Cu、Sr、Ba等重金属含量下降了4.21%~26.84%,其中V、Mn、Sr、Ba含量随土层深度增加而增大,而Cu、Ni则在表层土壤含量较多;随着植物生长过程的推进,土壤蔗糖酶(SA)、碱性磷酸酶(APA)、过氧化氢酶(CA)和脲酶(UA)活性均值涨幅达到12.89%~255.29%,且呈明显的表聚现象;区域主要重金属含量和土壤酶活性之间表现出较强的负相关性,Sr是影响区域土壤酶活性变化的主要重金属驱动因子。该研究结果对于祁连山及其相似山区废弃矿区土壤修复具有一定的参考价值。
宋达成, 吴昊, 王理德, 王飞, 张裕凯, 赵学成. 双龙沟废弃矿区不同造林年限人工沙棘林土壤重金属分布特征及其对酶活性的影响[J]. 草业学报, 2023, 32(8): 61-70.
Da-cheng SONG, Hao WU, Li-de WANG, Fei WANG, Yu-kai ZHANG, Xue-cheng ZHAO. Distribution of heavy metals and their effects on enzymatic activity in soil of artificial Hippophae rhamnoides forests of different ages near abandoned mines in Shuanglonggou[J]. Acta Prataculturae Sinica, 2023, 32(8): 61-70.
土层深度 Soil depth (cm) | 恢复年限 Restoration years(a) | pH | 容重 Bulk density (g·cm-3) | 氧化钠 Na2O (%) | 氧化镁 MgO (%) | 氧化铝 Al2O3 (%) | 二氧化硅 SiO2 (%) | 氧化钾 K2O (%) | 氧化钙 CaO (%) | 氧化铁 Fe2O3 (%) |
---|---|---|---|---|---|---|---|---|---|---|
0~5 | 0 | 7.70 | 1.35±0.05a | 3.28±0.01b | 1.35±0.01a | 10.03±0.02c | 51.46±0.07b | 1.75±0.00c | 2.21±0.01a | 3.17±0.00a |
2 | 7.89 | 1.22±0.05a | 3.34±0.01a | 1.30±0.01b | 10.43±0.02b | 52.29±0.07a | 1.95±0.00b | 1.47±0.01b | 3.15±0.00b | |
10 | 7.78 | 0.96±0.05b | 2.48±0.01c | 1.23±0.01c | 10.89±0.02a | 49.43±0.07c | 2.35±0.00a | 1.45±0.01c | 3.00±0.00c | |
20~25 | 0 | 7.79 | 1.38±0.04a | 3.44±0.01a | 1.26±0.00a | 9.39±0.02c | 53.98±0.05b | 1.58±0.00c | 2.16±0.00a | 3.15±0.01a |
2 | 7.89 | 1.27±0.05ab | 3.39±0.01b | 1.21±0.00b | 9.70±0.02b | 54.36±0.05a | 1.79±0.00b | 1.52±0.00b | 2.97±0.01b | |
10 | 7.77 | 1.22±0.04b | 2.73±0.01c | 1.08±0.00c | 10.56±0.02a | 52.24±0.05c | 2.26±0.00a | 1.41±0.00c | 2.84±0.01c | |
40~45 | 0 | 7.69 | 1.36±0.05a | 2.92±0.01b | 1.26±0.01b | 10.43±0.03a | 50.82±0.14c | 1.75±0.00b | 2.01±0.00a | 3.32±0.00a |
2 | 7.97 | 1.22±0.05a | 3.53±0.01a | 1.32±0.01a | 9.81±0.03b | 53.53±0.14a | 1.69±0.00c | 1.69±0.00b | 3.01±0.00b | |
10 | 7.85 | 1.23±0.05a | 2.84±0.01c | 1.11±0.01c | 10.49±0.03a | 52.65±0.14b | 2.17±0.00a | 1.51±0.00c | 2.89±0.00c |
表1 不同恢复年限对土壤因子的影响
Table 1 Effects of different restoration years on soil factors
土层深度 Soil depth (cm) | 恢复年限 Restoration years(a) | pH | 容重 Bulk density (g·cm-3) | 氧化钠 Na2O (%) | 氧化镁 MgO (%) | 氧化铝 Al2O3 (%) | 二氧化硅 SiO2 (%) | 氧化钾 K2O (%) | 氧化钙 CaO (%) | 氧化铁 Fe2O3 (%) |
---|---|---|---|---|---|---|---|---|---|---|
0~5 | 0 | 7.70 | 1.35±0.05a | 3.28±0.01b | 1.35±0.01a | 10.03±0.02c | 51.46±0.07b | 1.75±0.00c | 2.21±0.01a | 3.17±0.00a |
2 | 7.89 | 1.22±0.05a | 3.34±0.01a | 1.30±0.01b | 10.43±0.02b | 52.29±0.07a | 1.95±0.00b | 1.47±0.01b | 3.15±0.00b | |
10 | 7.78 | 0.96±0.05b | 2.48±0.01c | 1.23±0.01c | 10.89±0.02a | 49.43±0.07c | 2.35±0.00a | 1.45±0.01c | 3.00±0.00c | |
20~25 | 0 | 7.79 | 1.38±0.04a | 3.44±0.01a | 1.26±0.00a | 9.39±0.02c | 53.98±0.05b | 1.58±0.00c | 2.16±0.00a | 3.15±0.01a |
2 | 7.89 | 1.27±0.05ab | 3.39±0.01b | 1.21±0.00b | 9.70±0.02b | 54.36±0.05a | 1.79±0.00b | 1.52±0.00b | 2.97±0.01b | |
10 | 7.77 | 1.22±0.04b | 2.73±0.01c | 1.08±0.00c | 10.56±0.02a | 52.24±0.05c | 2.26±0.00a | 1.41±0.00c | 2.84±0.01c | |
40~45 | 0 | 7.69 | 1.36±0.05a | 2.92±0.01b | 1.26±0.01b | 10.43±0.03a | 50.82±0.14c | 1.75±0.00b | 2.01±0.00a | 3.32±0.00a |
2 | 7.97 | 1.22±0.05a | 3.53±0.01a | 1.32±0.01a | 9.81±0.03b | 53.53±0.14a | 1.69±0.00c | 1.69±0.00b | 3.01±0.00b | |
10 | 7.85 | 1.23±0.05a | 2.84±0.01c | 1.11±0.01c | 10.49±0.03a | 52.65±0.14b | 2.17±0.00a | 1.51±0.00c | 2.89±0.00c |
土层深度 Soil depth (cm) | 恢复年限 Restoration years (a) | 钒 V | 铬 Cr | 锰 Mn | 镍 Ni | 铜 Cu | 锶 Sr | 钡 Ba |
---|---|---|---|---|---|---|---|---|
0~5 | 0 | 66.80±0.89a | 34.83±2.50a | 461.23±1.19b | 13.87±0.23b | 24.33±0.32a | 146.23±0.32a | 609.80±5.55a |
2 | 67.63±0.71a | 32.90±0.10a | 505.40±2.76a | 13.07±0.15c | 23.90±0.46a | 140.03±0.55b | 539.10±11.62b | |
10 | 59.13±1.46b | 34.10±1.35a | 441.97±2.46c | 14.90±0.17a | 19.63±0.21b | 126.73±0.58c | 488.67±6.10c | |
20~25 | 0 | 68.03±0.51a | 30.47±0.83b | 456.80±1.56a | 13.47±0.31a | 21.63±0.29a | 149.03±0.67a | 601.27±6.75a |
2 | 65.07±1.35b | 29.00±1.01b | 460.20±1.99a | 12.27±0.21b | 20.70±0.17b | 139.63±0.46b | 524.97±6.79b | |
10 | 56.77±1.62c | 32.30±0.76a | 403.23±2.49b | 13.40±0.10a | 14.63±0.31c | 128.40±0.44c | 517.47±7.67b | |
40~45 | 0 | 72.70±1.60a | 35.70±0.44a | 502.27±1.19b | 16.17±0.81a | 23.70±0.40a | 145.77±0.97a | 557.10±3.13b |
2 | 68.27±0.50b | 30.50±1.15b | 509.37±0.51a | 11.83±0.67c | 23.60±0.63a | 141.97±0.59b | 553.53±2.45b | |
10 | 59.47±1.74c | 35.53±1.06a | 402.30±2.19c | 13.37±0.15b | 16.70±0.20b | 136.30±0.36c | 574.90±12.00a |
表2 土壤重金属含量变化特征
Table 2 Variation characteristics of soil heavy metal content (mg·kg-1)
土层深度 Soil depth (cm) | 恢复年限 Restoration years (a) | 钒 V | 铬 Cr | 锰 Mn | 镍 Ni | 铜 Cu | 锶 Sr | 钡 Ba |
---|---|---|---|---|---|---|---|---|
0~5 | 0 | 66.80±0.89a | 34.83±2.50a | 461.23±1.19b | 13.87±0.23b | 24.33±0.32a | 146.23±0.32a | 609.80±5.55a |
2 | 67.63±0.71a | 32.90±0.10a | 505.40±2.76a | 13.07±0.15c | 23.90±0.46a | 140.03±0.55b | 539.10±11.62b | |
10 | 59.13±1.46b | 34.10±1.35a | 441.97±2.46c | 14.90±0.17a | 19.63±0.21b | 126.73±0.58c | 488.67±6.10c | |
20~25 | 0 | 68.03±0.51a | 30.47±0.83b | 456.80±1.56a | 13.47±0.31a | 21.63±0.29a | 149.03±0.67a | 601.27±6.75a |
2 | 65.07±1.35b | 29.00±1.01b | 460.20±1.99a | 12.27±0.21b | 20.70±0.17b | 139.63±0.46b | 524.97±6.79b | |
10 | 56.77±1.62c | 32.30±0.76a | 403.23±2.49b | 13.40±0.10a | 14.63±0.31c | 128.40±0.44c | 517.47±7.67b | |
40~45 | 0 | 72.70±1.60a | 35.70±0.44a | 502.27±1.19b | 16.17±0.81a | 23.70±0.40a | 145.77±0.97a | 557.10±3.13b |
2 | 68.27±0.50b | 30.50±1.15b | 509.37±0.51a | 11.83±0.67c | 23.60±0.63a | 141.97±0.59b | 553.53±2.45b | |
10 | 59.47±1.74c | 35.53±1.06a | 402.30±2.19c | 13.37±0.15b | 16.70±0.20b | 136.30±0.36c | 574.90±12.00a |
图2 土壤酶活性变化特征不同大写字母表示同一退耕年限不同土壤深度间差异显著,不同小写字母表示同一土壤深度不同退耕年限间差异显著(P<0.05)。Different uppercase letters indicate significant differences among different soil depths in the same restoration year, and different lowercase letters indicate significant differences among different restoration year at the same soil depth (P<0.05).
Fig.2 Variation characteristics of soil enzyme activity
图3 土壤重金属含量与土壤酶活性相关性分析黑色数值代表相关系数;×代表未通过显著性检验(P>0.05);扇形大小表示相关系数所占百分比,其颜色深浅反映相关系数的大小;-代表负相关。The black value represents the correlation coefficient; × indicate no significant correlation (P>0.05); The size of the sector represents the percentage of the correlation coefficient and the size of the correlation coefficient of the color intensity; - means negative correlation.
Fig.3 Correlation analysis of heavy metals in soil and soil enzyme activity
图4 土壤重金属含量对土壤酶活性的SEM分析*: P<0.05; **: P<0.01; ***: P<0.001; 实线箭头代表正相关,虚线箭头代表负相关,箭头上的数字为标准化路径系数,变量旁边的R2为方差解释率。The solid arrows in the figure represent positive correlations, the dashed arrows represent negative correlations, the numbers on the arrows are normalized path coefficients, and R2 next to the variables is the variance explained.
Fig.4 Results of structural equation model about soil heavy metal content on enzyme activities
1 | Huo Y H, Wang M E, Jiang R, et al. Characteristics and influencing factors of microbial function in soils around a typical mining smelter. Chinese Journal of Applied Ecology, 2022, 7(12): 1-9. |
霍彦慧, 王美娥, 姜瑢, 等. 典型矿冶区周边土壤微生物功能特征及影响因素. 应用生态学报, 2022, 7(12): 1-9. | |
2 | Xie W, Peng C, Wang H, et al. Health risk assessment of trace metals in various environmental media, crops and human hair from a mining affected area. International Journal of Environmental Research and Public Health, 2017, 14(12): 1595. |
3 | Khanam R, Kumar A, Nayak A K, et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Science of the Total Environment, 2020, 699: 134330. |
4 | Suresh B, Ravishankar G A. Phytoremediation-A novel and promising approach for environmental clean-up. Critical Reviews in Biotechnology, 2004, 24(2/3): 97-124. |
5 | Li J X, Guan Q, Huang F S, et al. Impacts of different amendments of availability of heavy metals and soil enzyme activity in mining area soils. Journal of Soil and Water Conservation, 2014, 28(6): 211-215. |
李江遐, 关强, 黄伏森, 等. 不同改良剂对矿区土壤重金属有效性及土壤酶活性的影响. 水土保持学报, 2014, 28(6): 211-215. | |
6 | Yang Q L, Wu Z Z, Chen J L, et al. Research status of phytoremediation of heavy metals contaminated soil and prospects of water and fertilizer regulating technology. Ecology and Environmental Sciences, 2015, 24(6): 1075-1084. |
杨启良, 武振中, 陈金陵, 等. 植物修复重金属污染土壤的研究现状及其水肥调控技术展望. 生态环境学报, 2015, 24(6): 1075-1084. | |
7 | Wallace A W, Berry W L. Dose-response curves for zinc, cadmium, and nickel in combinations of one, two, or three. Soil Science, 1989, 147(6): 401-410. |
8 | Lv H Y. Investigation and analysis of interference factors in vegetation restoration in Shuanglonggou abandoned mine area. Agriculture & Technology, 2015, 35(6): 7. |
吕海元. 双龙沟废弃矿区植被恢复干扰因素调查分析. 农业与技术, 2015, 35(6): 7. | |
9 | Chang L, Wu C R, He F L, et al. Artificial planting of Hippophae rhamnoides in abandoned goldfield of Shuanglong gully: effects on community composition and soil properties. Chinese Agricultural Science Bulletin, 2019, 35(19): 83-90. |
常丽, 吴春荣, 何芳兰, 等. 双龙沟废弃采金区人工栽植沙棘后植物群落组成和土壤性质的变化. 中国农学通报, 2019, 35(19): 83-90. | |
10 | Bao S D. Soil agrochemical analysis. Beijing: China Agriculture Press, 2005. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2005. | |
11 | Guan S Y. Soil enzymes and their research methods. Beijing: Agricultural Press, 1986. |
关松荫. 土壤酶及其研究方法. 北京: 农业出版社, 1986. | |
12 | Yao H Y, Huang C Y. Soil microbial ecology and its experimental techniques. Beijing: Science Press, 2006. |
姚槐应, 黄昌勇. 土壤微生物生态学及其实验技术. 北京: 科学出版社, 2006. | |
13 | Wan W, Hao X, Xing Y, et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degradation & Development, 2021, 32(2): 766-776. |
14 | Schermelleh-Engel K, Moosbrugger H, Müller H H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods of Psychological Research, 2003, 8(2): 23-74. |
15 | Shen H, Dong S K, Li S, et al. Grazing enhances plant photosynthetic capacity by altering soil nitrogen in alpine grasslands on the Qinghai-Tibetan Plateau. Agriculture, Ecosystems & Environment, 2019, 280: 161-168. |
16 | Chun F, Na R M D L, Zhang W Q, et al. Spatial heterogeneity of soil heavy metal content in Baiyinhua mining area, Inner Mongolia, China. Chinese Journal of Applied Ecology, 2021, 32(2): 601-608. |
春风, 那仁满都拉, 张卫青, 等. 白音华矿区土壤重金属含量的空间异质性. 应用生态学报, 2021, 32(2): 601-608. | |
17 | Dong J H, Zeng S Y, Zhong Z Q. The role of soil plant diversity in ecological restoration of heavy metal mines//Proceedings of the 2019 Chinese Society for Environmental Sciences Science and Technology Annual Conference (Volume 3). Xi’an: Chinese Society for Environmental Sciences, 2019: 604-610. |
董家华, 曾思远, 钟志强. 土壤植物多样性在重金属矿山生态恢复中的作用//2019中国环境科学学会科学技术年会论文集 (第三卷) . 西安: 中国环境科学学会, 2019: 604-610. | |
18 | Chen J Y, Liu G B, Cui J L, et al. Mobilization of heavy metals in a soil-plant system and risk assessment in the Dabaoshan mine area, Guangdong Province, China. Environmental Science, 2019, 40(12): 5629-5639. |
陈洁宜, 刘广波, 崔金立, 等. 广东大宝山矿区土壤植物体系重金属迁移过程及风险评价. 环境科学, 2019, 40(12): 5629-5639. | |
19 | Jiang X S, Liu J, Li H X, et al. Vegetation restoration and substrate amendment of a reclaimed lead-zinc mine tailings pond. Environmental Engineering, 2021, 39(12): 220-226. |
蒋旭升, 刘杰, 李海翔, 等. 复垦铅锌矿尾砂库的植被恢复和基质演变. 环境工程, 2021, 39(12): 220-226. | |
20 | Dong J H. Distribution of heavy metals in reclamation soils and their accumulation in crops. Xuzhou: China University of Mining and Technology, 2008. |
董霁红. 矿区充填复垦土壤重金属分布规律及主要农作物污染评价. 徐州: 中国矿业大学, 2008. | |
21 | Chu C J, Ma J H. Analysis on distribution of Zn and Ni in typical urban soil profiles of Zhengzhou City. Journal of Sichuan Normal University (Natural Science), 2012, 35(3): 418-424. |
楚纯洁, 马建华. 郑州市典型城市土壤剖面Zn、Ni分布特征分析. 四川师范大学学报(自然科学版), 2012, 35(3): 418-424. | |
22 | Gao W, Reed S C, Munson S M, et al. Responses of soil extracellular enzyme activities and bacterial community composition to seasonal stages of drought in a semiarid grassland. Geoderma, 2021, 401(3): 115327. |
23 | Wang X, Li J C, Yue J Y, et al. Comparison of soil fertility among open-pit mine reclaimed lands in antaibao regenerated with different vegetation types. Environmental Science, 2013, 34(9): 3601-3606. |
王翔, 李晋川, 岳建英, 等. 安太堡露天矿复垦地不同人工植被恢复下的土壤酶活性和肥力比较. 环境科学, 2013, 34(9): 3601-3606. | |
24 | Qi L, Li Y L, Zhao W, et al. Effect of Avena sativa L. on soil enzyme activity and microbe functional diversity under strontium pollution. Acta Ecologica Sinica, 2018, 38(13): 4888-4896. |
亓琳, 李艳玲, 赵威, 等. 锶污染下燕麦对土壤酶活性和微生物群落功能多样性的影响. 生态学报, 2018, 38(13): 4888-4896. | |
25 | Li Q, Sun Y N, Lin L, et al. Changes of soil enzyme activities and nutrients across different succession stages of grazing alpine Kobresia grassland. Chinese Journal of Applied Ecology, 2019, 30(7): 2267-2274. |
李茜, 孙亚男, 林丽, 等. 放牧高寒嵩草草地不同演替阶段土壤酶活性及养分演变特征. 应用生态学报, 2019, 30(7): 2267-2274. | |
26 | Mang S L, Luo X M, Ding G J. Effects of root exudates of Pinus massoniana seedlings on enzyme activity and nutrient in soil. Journal of Central South University of Forestry & Technology, 2021, 41(12): 53-59. |
忙顺兰, 罗晓蔓, 丁贵杰. 马尾松幼苗根系分泌物对土壤酶活性和养分的影响. 中南林业科技大学学报, 2021, 41(12): 53-59. | |
27 | Liu S J, Zhang W, Wang K L, et al. Soil urease activity during different vegetation successions in karst peak-cluster depression area of northwest Guangxi, China. Acta Ecologica Sinica, 2011, 31(19): 5789-5796. |
刘淑娟, 张伟, 王克林, 等. 桂西北喀斯特峰丛洼地不同植被演替阶段的土壤脲酶活性. 生态学报, 2011, 31(19): 5789-5796. | |
28 | Cui H P, Zhao G Q, Liu H. Effects of herbicide on the activities of urease and alkaline phosphatase in oat field. Chinese Journal of Grassland, 2014, 36(1): 37-43. |
崔荟萍, 赵桂琴, 刘欢. 除草剂对燕麦田土壤脲酶和碱性磷酸酶活性的影响. 中国草地学报, 2014, 36(1): 37-43. | |
29 | Shang W Q. Chemical forms of heavy metals and microbial ecological characteristics in soils of Linhuan subsidence of Huaibei coalfield, Anhui Province, China. Hefei: Anhui University, 2017. |
尚文勤. 淮北采煤沉陷区土壤重金属分布赋存及微生物生态特征研究. 合肥: 安徽大学, 2017. | |
30 | Nannipieri P, Pankhurst C E, Doube B M, et al. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. Environmental Science, 1994, 1: 238-244. |
31 | Khan A G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 2005, 18(4): 355-364. |
32 | Li T Q, Shu Q H, Yang X E. Effects of heavy metal-contaminated soils at different levels on rhizosphere microorganisms of Sedum alfredii Hance. Journal of Zhejiang University (Agriculture & Life Sciences), 2008(6): 692-698. |
李廷强, 舒钦红, 杨肖娥. 不同程度重金属污染土壤对东南景天根际土壤微生物特征的影响. 浙江大学学报(农业与生命科学版), 2008(6): 692-698. | |
33 | Bai D, Yang X, Lai J, et al. In situ restoration of soil ecological function in a coal gangue reclamation area after 10 years of elm/poplar phytoremediation. Journal of Environmental Management, 2022, 305: 114400. |
34 | Meng Q F, Yang J S, Yao R J, et al. Influence of single and combined pollutions of heavy metal on soil enzyme activity. Ecology and Environmental Sciences, 2012, 21(3): 545-550. |
孟庆峰, 杨劲松, 姚荣江, 等. 单一及复合重金属污染对土壤酶活性的影响. 生态环境学报, 2012, 21(3): 545-550. | |
35 | Wang Y, Feng F Y, Ge J, et al. Effects and mechanisms of plant root exudates on soil remediation. Acta Ecologica Sinica, 2022, 42(3): 829-842. |
王亚, 冯发运, 葛静, 等. 植物根系分泌物对土壤污染修复的作用及影响机理. 生态学报, 2022, 42(3): 829-842. | |
36 | Ciarkowska K, Sołek-Podwika K, Wieczorek J. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. Journal of Environmental Management, 2014, 132: 250-256. |
[1] | 刘继亮, 赵文智, 王永珍, 冯怡琳, 祁进贤, 李永元. 禁牧和放牧对祁连山高寒草原秋季大型和中型土壤节肢动物多样性的影响[J]. 草业学报, 2023, 32(8): 214-221. |
[2] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[3] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸物种多样性与系统发育多样性沿海拔梯度分布格局及驱动因子[J]. 草业学报, 2023, 32(7): 12-22. |
[4] | 杨瑞杰, 何淑勤, 周树峰, 杨晶月, 金钰宪, 郑子成. 杂交粱草生长期土壤抗冲性变化特征及其根系调控效应[J]. 草业学报, 2023, 32(7): 149-159. |
[5] | 张一龙, 李雯, 喻启坤, 李培英, 孙宗玖. 狗牙根叶与根氮代谢对不同干旱胁迫的响应机制[J]. 草业学报, 2023, 32(7): 175-187. |
[6] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
[7] | 马嵩科, 霍克, 张冬霞, 张静, 张俊豪, 柴雪茹, 王贺正. 玉米秸秆还田配施氮肥对豫西旱地小麦土壤酶活性和氮肥利用效率的影响[J]. 草业学报, 2023, 32(6): 120-133. |
[8] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[9] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[10] | 陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44. |
[11] | 刘欢, 董凯, 仁增旺堆, 王敬龙, 刘云飞, 赵桂琴. 藏沙蒿与多年生禾草混播对西藏沙化草地植被及土壤真菌群落特征的影响[J]. 草业学报, 2023, 32(6): 45-57. |
[12] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
[13] | 安晓霞, 张盈盈, 马春晖, 李曼, 张前兵. 施磷与接种丛枝菌根真菌对苜蓿产量和磷素利用效率的影响[J]. 草业学报, 2023, 32(6): 71-84. |
[14] | 李超男, 王磊, 周继强, 赵长兴, 谢晓蓉, 刘金荣. 微塑料对紫花苜蓿生长及生理特性的影响[J]. 草业学报, 2023, 32(5): 138-146. |
[15] | 郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||