草业学报 ›› 2023, Vol. 32 ›› Issue (8): 48-60.DOI: 10.11686/cyxb2022483
李林芝1,2(), 张德罡1(), 马源3, 罗珠珠2, 林栋1, 海龙2, 白兰鸽2
收稿日期:
2022-12-13
修回日期:
2023-01-10
出版日期:
2023-08-20
发布日期:
2023-06-16
通讯作者:
张德罡
作者简介:
E-mail: zhangdg@gsau.edu.cn基金资助:
Lin-zhi LI1,2(), De-gang ZHANG1(), Yuan MA3, Zhu-zhu LUO2, Dong LIN1, Long HAI2, Lan-ge BAI2
Received:
2022-12-13
Revised:
2023-01-10
Online:
2023-08-20
Published:
2023-06-16
Contact:
De-gang ZHANG
摘要:
土壤结构中养分的稳定性与高寒草甸生态系统的稳定息息相关,为阐明退化对高寒草甸土壤团聚体养分和生态化学计量特征的影响,在甘肃省天祝藏族自治县金强河流域设置未退化(ND)、轻度退化(LD)、中度退化(MD)和重度退化(SD)4个不同退化程度的高寒草甸,采用干筛法对0~30 cm土层土壤团聚体有机碳、全氮和全磷含量及生态化学计量分布特征进行研究。结果表明:高寒草甸土壤团聚体内有机碳、全氮含量随退化程度加剧呈先上升后降低的趋势,全磷含量随退化加剧呈“V”形分布,碳、氮、磷在0.25~0.50 mm粒级含量最高。草地退化使土壤团聚体C/N降低,C/P和N/P则随退化加剧呈先上升后下降趋势,土壤团聚体C/N、C/P和N/P均随土层加深而逐渐下降。统计分析表明土壤各粒级团聚体所占组分是影响团聚体养分含量的关键因素。从生态化学计量学角度分析,N和P是高寒草甸退化过程中的主要养分限制因子。
李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60.
Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation[J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60.
退化程度 Degradation | 海拔 Altitude (m) | 纬度 Latitude | 经度 Longitude | 优势物种 Dominant species | 植被盖度Vegetation coverage (%) |
---|---|---|---|---|---|
未退化Non degraded (ND) | 3008.3 | 37°13′05″ N | 102°44′11″ E | 珠芽蓼、垂穗披碱草、线叶嵩草Polygonum viviparum,Elymus dahuricus,Kobresia capillifolia | 98~100 |
轻度退化Light degraded (LD) | 2940.0 | 37°11′58″ N | 102°46′17″ E | 线叶嵩草、矮生嵩草、扁蓿豆K. capillifolia,Kobresia humilus,Trigonella ruthenica | 82~85 |
中度退化Moderate degraded (MD) | 2869.8 | 37°11′42″ N | 102°47′01″ E | 矮生嵩草、线叶嵩草、扁蓿豆K. humilus,K. capillifolia,T. ruthenica | 70~78 |
重度退化Severely degraded (SD) | 2893.6 | 37°12′05″ N | 102°45′59″ E | 乳白香青、矮生嵩草Anaphalis lacteal,K. humilus | 32~38 |
表1 试验区概况
Table 1 Basic condition of plots
退化程度 Degradation | 海拔 Altitude (m) | 纬度 Latitude | 经度 Longitude | 优势物种 Dominant species | 植被盖度Vegetation coverage (%) |
---|---|---|---|---|---|
未退化Non degraded (ND) | 3008.3 | 37°13′05″ N | 102°44′11″ E | 珠芽蓼、垂穗披碱草、线叶嵩草Polygonum viviparum,Elymus dahuricus,Kobresia capillifolia | 98~100 |
轻度退化Light degraded (LD) | 2940.0 | 37°11′58″ N | 102°46′17″ E | 线叶嵩草、矮生嵩草、扁蓿豆K. capillifolia,Kobresia humilus,Trigonella ruthenica | 82~85 |
中度退化Moderate degraded (MD) | 2869.8 | 37°11′42″ N | 102°47′01″ E | 矮生嵩草、线叶嵩草、扁蓿豆K. humilus,K. capillifolia,T. ruthenica | 70~78 |
重度退化Severely degraded (SD) | 2893.6 | 37°12′05″ N | 102°45′59″ E | 乳白香青、矮生嵩草Anaphalis lacteal,K. humilus | 32~38 |
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 38.53±9.40aA | 10.54±0.61cA | 5.97±0.67cA | 10.47±1.29cAB | 10.41±1.65cAB | 24.09±6.40bC |
LD | 19.81±4.37bB | 3.92±0.20dB | 4.18±0.45dB | 15.46±4.81bcA | 11.45±2.43cdA | 45.18±6.10aB | |
MD | 8.82±4.45bcBC | 10.08±2.20bcA | 6.20±0.36cA | 9.93±0.50bcB | 12.23±1.81bA | 52.74±4.69aAB | |
SD | 7.04±3.03cC | 11.97±0.39bA | 5.21±0.73cAB | 6.79±1.31cB | 6.70±1.42cB | 62.29±1.17aA | |
10~20 cm | ND | 65.18±4.29aA | 6.61±0.08cB | 2.82±0.24cC | 4.70±0.68cB | 4.98±0.61cB | 15.72±2.80bB |
LD | 45.00±1.97aB | 11.90±0.57cA | 5.85±0.16eA | 8.71±0.54dA | 7.84±0.71dA | 20.69±0.01bB | |
MD | 41.70±4.82aB | 9.82±1.25cA | 3.46±0.31dB | 4.50±1.39dB | 3.73±0.47dC | 18.73±0.47bB | |
SD | 39.61±3.13aB | 9.63±2.45bA | 2.96±0.31cBC | 3.44±0.16cB | 3.38±0.66cC | 40.98±5.06aA | |
20~30 cm | ND | 61.11±7.02aA | 9.15±0.08cB | 3.42±0.53cA | 4.95±1.36cA | 5.06±1.45cA | 16.30±3.61bD |
LD | 51.36±4.02aB | 10.84±0.01cA | 3.51±0.14dA | 4.97±0.52dA | 4.87±0.58dA | 24.45±2.79bC | |
MD | 45.75±2.08aB | 9.40±0.66cB | 2.52±0.26dB | 3.55±0.23dAB | 3.94±0.20dAB | 34.84±1.27bB | |
SD | 45.58±1.58aB | 7.59±1.14cC | 2.08±0.21dB | 2.25±0.29dB | 2.55±0.28dB | 39.95±0.98bA |
表2 不同退化程度高寒草甸土壤团聚体组成
Table 2 Composition of soil aggregates in different degrees of degradation (%)
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 38.53±9.40aA | 10.54±0.61cA | 5.97±0.67cA | 10.47±1.29cAB | 10.41±1.65cAB | 24.09±6.40bC |
LD | 19.81±4.37bB | 3.92±0.20dB | 4.18±0.45dB | 15.46±4.81bcA | 11.45±2.43cdA | 45.18±6.10aB | |
MD | 8.82±4.45bcBC | 10.08±2.20bcA | 6.20±0.36cA | 9.93±0.50bcB | 12.23±1.81bA | 52.74±4.69aAB | |
SD | 7.04±3.03cC | 11.97±0.39bA | 5.21±0.73cAB | 6.79±1.31cB | 6.70±1.42cB | 62.29±1.17aA | |
10~20 cm | ND | 65.18±4.29aA | 6.61±0.08cB | 2.82±0.24cC | 4.70±0.68cB | 4.98±0.61cB | 15.72±2.80bB |
LD | 45.00±1.97aB | 11.90±0.57cA | 5.85±0.16eA | 8.71±0.54dA | 7.84±0.71dA | 20.69±0.01bB | |
MD | 41.70±4.82aB | 9.82±1.25cA | 3.46±0.31dB | 4.50±1.39dB | 3.73±0.47dC | 18.73±0.47bB | |
SD | 39.61±3.13aB | 9.63±2.45bA | 2.96±0.31cBC | 3.44±0.16cB | 3.38±0.66cC | 40.98±5.06aA | |
20~30 cm | ND | 61.11±7.02aA | 9.15±0.08cB | 3.42±0.53cA | 4.95±1.36cA | 5.06±1.45cA | 16.30±3.61bD |
LD | 51.36±4.02aB | 10.84±0.01cA | 3.51±0.14dA | 4.97±0.52dA | 4.87±0.58dA | 24.45±2.79bC | |
MD | 45.75±2.08aB | 9.40±0.66cB | 2.52±0.26dB | 3.55±0.23dAB | 3.94±0.20dAB | 34.84±1.27bB | |
SD | 45.58±1.58aB | 7.59±1.14cC | 2.08±0.21dB | 2.25±0.29dB | 2.55±0.28dB | 39.95±0.98bA |
因素 Variation source | 自由度 Degree of freedom | 土壤有机碳 Soil organic carbon | 全氮 Total nitrogen | 全磷 Total phosphorus | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|
粒级Aggregate size (A) | 5 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
退化程度Degree of degradation (D) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
土壤深度Soil depth (L) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
粒级×退化程度A×D | 15 | <0.001 | 0.477 | 0.014 | 0.349 | 0.017 | 0.320 |
退化程度×土壤深度D×L | 6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
粒级×土壤深度A×L | 10 | <0.001 | <0.001 | 0.230 | 0.149 | <0.001 | <0.001 |
粒级×土壤深度×退化程度A×L×D | 30 | <0.001 | 0.520 | <0.001 | 0.258 | 0.027 | 0.029 |
表3 土壤团聚体有机碳、全氮、全磷含量及C/N、C/P、N/P三因素方差分析
Table 3 Three-way AVOVA for soil aggregate organic carbon,total nitrogen,total phosphorus content and C/N,C/P,N/P
因素 Variation source | 自由度 Degree of freedom | 土壤有机碳 Soil organic carbon | 全氮 Total nitrogen | 全磷 Total phosphorus | C/N | C/P | N/P |
---|---|---|---|---|---|---|---|
粒级Aggregate size (A) | 5 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
退化程度Degree of degradation (D) | 3 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
土壤深度Soil depth (L) | 2 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
粒级×退化程度A×D | 15 | <0.001 | 0.477 | 0.014 | 0.349 | 0.017 | 0.320 |
退化程度×土壤深度D×L | 6 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
粒级×土壤深度A×L | 10 | <0.001 | <0.001 | 0.230 | 0.149 | <0.001 | <0.001 |
粒级×土壤深度×退化程度A×L×D | 30 | <0.001 | 0.520 | <0.001 | 0.258 | 0.027 | 0.029 |
图1 土壤团聚体有机碳分布特征不同大写字母表示不同退化程度间差异显著(P<0.05);不同小写字母表示各粒级之间差异显著(P<0.05),下同。Different capital letters indicate significant differences among different degradation at the 0.05 level; Different lowercase letters indicate significant differences among different aggregate size at the 0.05 level, the same below.
Fig.1 Distribution of organic carbon in soil aggregates
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 16.39±3.10aA | 14.25±0.85aA | 16.15±0.28aA | 15.97±1.33aA | 15.29±0.32aA | 14.18±1.00aA |
LD | 14.13±0.27abAB | 13.44±0.75bcAB | 12.96±0.39cdB | 13.79±0.54bcBC | 14.87±0.73aA | 12.36±0.48dB | |
MD | 13.35±0.49bcAB | 12.66±0.68cB | 14.87±1.47abA | 15.50±1.11aAB | 15.53±0.91aA | 13.24±1.21bcAB | |
SD | 12.76±0.72cB | 11.13±0.20cC | 11.63±0.37cB | 12.42±0.28abC | 12.91±0.41aB | 11.87±0.10bcB | |
10~20 cm | ND | 11.58±0.93aA | 12.07±1.21aA | 12.56±1.31aA | 12.36±0.99aA | 13.54±1.10aA | 12.91±0.84aA |
LD | 12.77±1.86aA | 11.12±0.47aAB | 11.47±1.57aA | 11.52±0.27aA | 12.42±0.18aAB | 11.03±0.31aB | |
MD | 11.67±0.36aA | 10.84±0.76aAB | 11.27±0.11aA | 11.38±0.31aA | 11.31±1.15aB | 11.05±0.93aB | |
SD | 10.90±0.50bcA | 10.49±0.28cB | 11.03±0.69abcA | 11.58±0.50abA | 11.85±0.23aB | 11.09±0.15abcB | |
20~30 cm | ND | 12.34±0.78aA | 12.59±0.78aA | 13.00±0.78aA | 12.67±0.54aA | 12.49±0.61aA | 12.44±1.57aA |
LD | 11.06±0.68aA | 11.13±0.27aB | 11.54±0.61aB | 11.10±0.63aB | 11.89±0.45aA | 11.15±0.38aA | |
MD | 11.36±1.18abA | 11.02±0.36bB | 11.39±0.59abB | 12.14±0.93abAB | 13.78±2.76aA | 11.81±0.88abA | |
SD | 11.00±0.50aA | 11.09±0.93aB | 11.37±0.48aB | 12.12±0.26aAB | 11.81±0.67aA | 11.31±0.88aA |
表4 土壤团聚体C/N分布特征
Table 4 Distribution of C/N in soil aggregates
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 16.39±3.10aA | 14.25±0.85aA | 16.15±0.28aA | 15.97±1.33aA | 15.29±0.32aA | 14.18±1.00aA |
LD | 14.13±0.27abAB | 13.44±0.75bcAB | 12.96±0.39cdB | 13.79±0.54bcBC | 14.87±0.73aA | 12.36±0.48dB | |
MD | 13.35±0.49bcAB | 12.66±0.68cB | 14.87±1.47abA | 15.50±1.11aAB | 15.53±0.91aA | 13.24±1.21bcAB | |
SD | 12.76±0.72cB | 11.13±0.20cC | 11.63±0.37cB | 12.42±0.28abC | 12.91±0.41aB | 11.87±0.10bcB | |
10~20 cm | ND | 11.58±0.93aA | 12.07±1.21aA | 12.56±1.31aA | 12.36±0.99aA | 13.54±1.10aA | 12.91±0.84aA |
LD | 12.77±1.86aA | 11.12±0.47aAB | 11.47±1.57aA | 11.52±0.27aA | 12.42±0.18aAB | 11.03±0.31aB | |
MD | 11.67±0.36aA | 10.84±0.76aAB | 11.27±0.11aA | 11.38±0.31aA | 11.31±1.15aB | 11.05±0.93aB | |
SD | 10.90±0.50bcA | 10.49±0.28cB | 11.03±0.69abcA | 11.58±0.50abA | 11.85±0.23aB | 11.09±0.15abcB | |
20~30 cm | ND | 12.34±0.78aA | 12.59±0.78aA | 13.00±0.78aA | 12.67±0.54aA | 12.49±0.61aA | 12.44±1.57aA |
LD | 11.06±0.68aA | 11.13±0.27aB | 11.54±0.61aB | 11.10±0.63aB | 11.89±0.45aA | 11.15±0.38aA | |
MD | 11.36±1.18abA | 11.02±0.36bB | 11.39±0.59abB | 12.14±0.93abAB | 13.78±2.76aA | 11.81±0.88abA | |
SD | 11.00±0.50aA | 11.09±0.93aB | 11.37±0.48aB | 12.12±0.26aAB | 11.81±0.67aA | 11.31±0.88aA |
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 84.13±4.03aA | 79.01±4.46aAB | 84.26±8.01aB | 86.69±10.21aBC | 88.72±4.28aB | 79.16±0.71aB |
LD | 90.34±2.84bcA | 87.43±6.57cA | 88.03±7.54cB | 98.45±4.16bB | 110.09±3.77aA | 94.67±4.20bcA | |
MD | 83.59±12.54cA | 86.30±9.33cA | 104.76±9.51abA | 113.46±4.94aA | 109.96±5.33aA | 94.59±3.84bcA | |
SD | 69.26±1.28cdB | 68.52±1.29dB | 67.61±2.93dC | 78.29±4.18abC | 84.42±4.86aB | 74.85±1.99bcB | |
10~20 cm | ND | 59.66±2.76aC | 55.77±5.74aB | 60.44±7.48aB | 64.01±6.08aBC | 63.12±4.35aC | 62.37±5.48aB |
LD | 79.56±4.96aA | 89.67±9.51aA | 81.62±8.72aA | 81.68±2.54aA | 87.66±4.12aA | 77.68±7.75aA | |
MD | 68.55±2.66aB | 66.29±2.80aB | 69.96±4.62aAB | 69.64±2.27aB | 74.13±4.77aB | 69.32±6.77aAB | |
SD | 57.68±1.19cC | 55.82±1.69cB | 59.89±4.14bcB | 62.53±1.81abC | 64.55±2.39aC | 62.84±1.96abB | |
20~30 cm | ND | 55.46±3.87aBC | 53.71±5.37aB | 55.42±2.83aB | 58.14±4.81aB | 58.70±2.50aB | 54.90±6.76aBC |
LD | 67.20±1.63aA | 67.98±0.78aA | 66.28±2.99aA | 70.11±5.17aA | 73.56±3.44aA | 67.21±3.74aA | |
MD | 58.73±4.32aB | 52.87±2.45aB | 58.44±2.43aB | 59.18±5.25aB | 69.66±7.27aA | 59.90±5.57aAB | |
SD | 52.09±1.28abC | 51.14±2.11abB | 50.19±2.14abC | 51.14±0.84abB | 53.85±3.58aB | 49.03±3.30bC |
表5 土壤团聚体C/P分布特征
Table 5 Distribution of C/P in soil aggregates
土层 Soil depth | 处理 Treatment | 粒级Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 84.13±4.03aA | 79.01±4.46aAB | 84.26±8.01aB | 86.69±10.21aBC | 88.72±4.28aB | 79.16±0.71aB |
LD | 90.34±2.84bcA | 87.43±6.57cA | 88.03±7.54cB | 98.45±4.16bB | 110.09±3.77aA | 94.67±4.20bcA | |
MD | 83.59±12.54cA | 86.30±9.33cA | 104.76±9.51abA | 113.46±4.94aA | 109.96±5.33aA | 94.59±3.84bcA | |
SD | 69.26±1.28cdB | 68.52±1.29dB | 67.61±2.93dC | 78.29±4.18abC | 84.42±4.86aB | 74.85±1.99bcB | |
10~20 cm | ND | 59.66±2.76aC | 55.77±5.74aB | 60.44±7.48aB | 64.01±6.08aBC | 63.12±4.35aC | 62.37±5.48aB |
LD | 79.56±4.96aA | 89.67±9.51aA | 81.62±8.72aA | 81.68±2.54aA | 87.66±4.12aA | 77.68±7.75aA | |
MD | 68.55±2.66aB | 66.29±2.80aB | 69.96±4.62aAB | 69.64±2.27aB | 74.13±4.77aB | 69.32±6.77aAB | |
SD | 57.68±1.19cC | 55.82±1.69cB | 59.89±4.14bcB | 62.53±1.81abC | 64.55±2.39aC | 62.84±1.96abB | |
20~30 cm | ND | 55.46±3.87aBC | 53.71±5.37aB | 55.42±2.83aB | 58.14±4.81aB | 58.70±2.50aB | 54.90±6.76aBC |
LD | 67.20±1.63aA | 67.98±0.78aA | 66.28±2.99aA | 70.11±5.17aA | 73.56±3.44aA | 67.21±3.74aA | |
MD | 58.73±4.32aB | 52.87±2.45aB | 58.44±2.43aB | 59.18±5.25aB | 69.66±7.27aA | 59.90±5.57aAB | |
SD | 52.09±1.28abC | 51.14±2.11abB | 50.19±2.14abC | 51.14±0.84abB | 53.85±3.58aB | 49.03±3.30bC |
土层 Soil depth | 处理 Treatment | 粒级 Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 5.24±0.82aA | 5.55±0.13aC | 5.22±0.58aB | 5.43±0.51aC | 5.80±0.16aC | 5.60±0.36aB |
LD | 6.39±0.25cA | 6.50±0.16cAB | 6.79±0.47bcA | 7.14±0.07abAB | 7.41±0.36aA | 7.67±0.36aA | |
MD | 6.26±0.92aA | 6.81±0.54aA | 7.05±0.27aA | 7.36±0.83aA | 7.09±0.15aAB | 7.18±0.66aA | |
SD | 5.44±0.27cA | 6.16±0.16abB | 5.81±0.18bcB | 6.30±0.22abBc | 6.54±0.50aB | 6.31±0.20abB | |
10~20 cm | ND | 5.17±0.22aC | 4.62±0.01aC | 4.81±0.32aD | 5.20±0.59aC | 4.68±0.40aC | 4.84±0.37aC |
LD | 6.29±0.58bA | 8.07±0.83aA | 7.14±0.23bA | 7.10±0.28bA | 7.06±0.24bA | 7.04±0.51bA | |
MD | 5.88±0.06bAB | 6.13±0.18abB | 6.21±0.45abB | 6.12±0.32abB | 6.57±0.28aA | 6.28±0.36abB | |
SD | 5.30±0.18aBC | 5.33±0.25aBC | 5.43±0.16aC | 5.41±0.32aC | 5.45±0.16aB | 5.66±0.12aB | |
20~30 cm | ND | 4.51±0.46aB | 4.27±0.37aB | 4.27±0.36aC | 4.59±0.21aB | 4.70±0.03aB | 4.42±0.27aC |
LD | 6.10±0.53aA | 6.11±0.13aA | 5.75±0.04aA | 6.33±0.63aA | 6.19±0.31aA | 6.03±0.40aA | |
MD | 5.18±0.18aB | 4.81±0.37aB | 5.13±0.06aB | 4.87±0.22aB | 5.12±0.50aB | 5.07±0.34aB | |
SD | 4.74±0.12aB | 4.62±0.21abB | 4.42±0.18bcdC | 4.22±0.14cB | 4.56±0.05abcB | 4.34±0.09cdC |
表6 土壤团聚体N/P分布特征
Table 6 Distribution of N/P in soil aggregates
土层 Soil depth | 处理 Treatment | 粒级 Aggregate size | |||||
---|---|---|---|---|---|---|---|
>5 mm | 2~5 mm | 1~2 mm | 0.5~1.0 mm | 0.25~0.50 mm | <0.25 mm | ||
0~10 cm | ND | 5.24±0.82aA | 5.55±0.13aC | 5.22±0.58aB | 5.43±0.51aC | 5.80±0.16aC | 5.60±0.36aB |
LD | 6.39±0.25cA | 6.50±0.16cAB | 6.79±0.47bcA | 7.14±0.07abAB | 7.41±0.36aA | 7.67±0.36aA | |
MD | 6.26±0.92aA | 6.81±0.54aA | 7.05±0.27aA | 7.36±0.83aA | 7.09±0.15aAB | 7.18±0.66aA | |
SD | 5.44±0.27cA | 6.16±0.16abB | 5.81±0.18bcB | 6.30±0.22abBc | 6.54±0.50aB | 6.31±0.20abB | |
10~20 cm | ND | 5.17±0.22aC | 4.62±0.01aC | 4.81±0.32aD | 5.20±0.59aC | 4.68±0.40aC | 4.84±0.37aC |
LD | 6.29±0.58bA | 8.07±0.83aA | 7.14±0.23bA | 7.10±0.28bA | 7.06±0.24bA | 7.04±0.51bA | |
MD | 5.88±0.06bAB | 6.13±0.18abB | 6.21±0.45abB | 6.12±0.32abB | 6.57±0.28aA | 6.28±0.36abB | |
SD | 5.30±0.18aBC | 5.33±0.25aBC | 5.43±0.16aC | 5.41±0.32aC | 5.45±0.16aB | 5.66±0.12aB | |
20~30 cm | ND | 4.51±0.46aB | 4.27±0.37aB | 4.27±0.36aC | 4.59±0.21aB | 4.70±0.03aB | 4.42±0.27aC |
LD | 6.10±0.53aA | 6.11±0.13aA | 5.75±0.04aA | 6.33±0.63aA | 6.19±0.31aA | 6.03±0.40aA | |
MD | 5.18±0.18aB | 4.81±0.37aB | 5.13±0.06aB | 4.87±0.22aB | 5.12±0.50aB | 5.07±0.34aB | |
SD | 4.74±0.12aB | 4.62±0.21abB | 4.42±0.18bcdC | 4.22±0.14cB | 4.56±0.05abcB | 4.34±0.09cdC |
1 | Shang Z H, Gibb M J, Leiber F, et al. The sustainable development of grassland-livestock systems on the Tibetan plateau: Problems, strategies and prospects. The Rangeland Journal, 2014, 36(3): 267-296. |
2 | Zhou R, Hua R, Hua X Z, et al. Temporal and spatial dynamics of plant community structure under the disturbance of plateau pika(Ochotona curzoniae). Grassland and Turf, 2021, 41(1): 1-7. |
周睿, 花蕊, 华铣泽, 等. 高原鼠兔干扰下高寒草甸植物群落结构的时空动态特征. 草原与草坪, 2021, 41(1): 1-7. | |
3 | Zhou H K, Zhao X Q, Zhou L, et al. A study on correlations between vegetation degradation and soil degradation in the ‘Alpine Meadow’ of the Qinghai Tibetan Plateau. Acta Prataculturae Sinica, 2005, 14(3): 31-40. |
周华坤, 赵新全, 周立, 等. 青藏高原高寒草甸的植被退化与土壤退化特征研究. 草业学报, 2005, 14(3): 31-40. | |
4 | Li S L, Chen Y J, Guan S Y, et al. Relationships between soil degradation and rangeland degradation. Journal of Arid Land Resources and Environment, 2002, 16(1): 92-95. |
李绍良, 陈有君, 关世英, 等. 土壤退化与草地退化关系的研究. 干旱区资源与环境, 2002, 16(1): 92-95. | |
5 | Rabot E, Wiesmeier M, Schlüter S, et al. Soil structure as an indicator of soil functions: A review. Geoderma, 2018, 314: 122-137. |
6 | Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 2002, 241(2): 155-176. |
7 | Denef K, Six J, Paustain K, et al. Importance of macroaggregate dynamics in controlling soil carbon stabilization: Short-term effects of physical disturbance induced by dry-wet cycles. Soil Biology and Biochemistry, 2002, 33(15): 2145-2153. |
8 | Jia L Y, Chen Q, Zhang L Z, et al. Effects of grazing and enclosure on physicochemical properties of soil aggregates in Leymus chinensis steppe, Inner Mongolia. Journal of Tianjin Normal University(Natural Science Edition), 2021, 41(6): 40-45. |
贾丽英, 陈清, 张洛梓, 等. 放牧和围封对内蒙古羊草草原土壤团聚体理化性质的影响. 天津师范大学学报(自然科学版), 2021, 41(6): 40-45. | |
9 | Yuan Z Q, Jiang X J, Liu G J, et al. Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow. Catena, 2019, 178: 40-48. |
10 | Guggenberger G, Zech W, Thomas R J. Lignin and carbohydrate alteration in particle-size separates of an oxisol under tropical pastures following native savanna. Soil Biology and Biochemistry, 1995, 27(12): 1629-1638. |
11 | Liu X D, Yin G L, Wu J, et al. Effect of organic carbon and total nitrogen distribution in alpine meadow soil aggregates with different nitrogen addition level. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(14): 139-147. |
刘晓东, 尹国丽, 武均, 等. 氮素补充对高寒草甸土壤团聚体有机碳、全氮分布的影响. 农业工程学报, 2015, 31(14): 139-147. | |
12 | Feng R Z, Zhou W H, Long R J, et al. Characteristics of soil physical, chemical and biological properties on degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau. Chinese Journal of Soil Science, 2010, 41(2): 263-269. |
冯瑞章, 周万海, 龙瑞军, 等. 江河源区不同退化程度高寒草地土壤物理、化学及生物学特征研究. 土壤通报, 2010, 41(2): 263-269. | |
13 | Zhang Y, Li P, Liu X, et al. Effects of farmland conversion on the stoichiometry of carbon, nitrogen and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma, 2019, 351: 188-196. |
14 | Jiang R T, Li F C, Shen S T. Effects of degradation of alpine grassland on soil aggregates composition and stability in northwestern Sichuan Province. Research of Soil and Water Conservation, 2018, 25(4): 36-42. |
江仁涛, 李富程, 沈凇涛. 川西北高寒草地退化对土壤团聚体组成及稳定性的影响. 水土保持研究, 2018, 25(4): 36-42. | |
15 | Tang L, Wang S. Dynamics of soil aggregate-related C-N-P stoichiometric characteristics with stand age and soil depth in Chinese fir plantations. Land Degradation & Development, 2022, 33(8): 1290-1306. |
16 | Li W, Zheng Z C, Li T X. Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages. Chinese Journal of Applied Ecology, 2015, 26(1): 9-16. |
李玮, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征. 应用生态学报, 2015, 26(1): 9-16. | |
17 | Six J, Paustian K, Elliott E T, et al. Soil structure and organic matter I. Distribution of aggregate‐size classes and aggregate‐associated carbon. Soil Science Society of America Journal, 2000, 64(2): 681-689. |
18 | Zhong Z, Han X, Xu Y, et al. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China. Land Degradation & Development, 2019, 30(9): 1070-1082. |
19 | Ma W M, Liu C W, Zhou Q P, et al. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
马文明, 刘超文, 周青平, 等. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响. 草业学报, 2022, 31(1): 57-68. | |
20 | Jia W, Nie F Y, Yang W Q, et al. Ecological stoichiometry of soil carbon, nitrogen, and phosphorus with in soil aggregates of four plantations in the western edge of Sichuan Basin. Chinese Journal of Applied and Environmental Biology, 2018, 24(1): 112-118. |
家伟, 聂富育, 杨万勤, 等. 四川盆地西缘4种人工林土壤团聚体碳氮磷生态化学计量学特征. 应用与环境生物学报, 2018, 24(1): 112-118. | |
21 | Li Q, Qi H, He G X, et al. Response of soil enzymes activities and their stoichometric characteristics to altitude and aspect of alpine meadow in eastern Qilian Mountains. Journal of Soil and Water Conservation, 2022, 36(4): 357-364. |
李强, 漆昊, 何国兴, 等. 东祁连山高寒草甸土壤酶活性及其化学计量特征对海拔和坡向的响应. 水土保持学报, 2022, 36(4): 357-364. | |
22 | Duan C W, Li X L, Chai Y, et al. Eco-stoichiometric characteristics of carbon, nitrogen, and phosphorus in degraded alpine meadow under artificial restoration. Chinese Journal of Grassland, 2022, 44(7): 23-32. |
段成伟, 李希来, 柴瑜, 等. 人工修复下退化高寒草甸碳、氮、磷生态化学计量特征. 中国草地学报, 2022, 44(7): 23-32. | |
23 | Su D X, Zhang Z H, Chen Z Z. Parameters for degradation, sandification and salification of rangelands, GB19377-2003. Beijing: Standards Press of China, 2003. |
苏大学, 张自和, 陈佐忠. 天然草地退化、沙化、盐渍化的分级标准, GB19377-2003. 北京: 中国标准出版社, 2003. | |
24 | Institute of Soil Science, Chinese Academy of Sciences. Soil physicochemical analysis. Shanghai: Shanghai Scientific & Technical Publishers, 1983: 103-104. |
中国科学院南京土壤研究所. 土壤理化分析. 上海: 上海科学技术出版社, 1983: 103-104. | |
25 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000: 25-76. |
鲍士旦. 土壤农业化学分析. 北京: 中国农业出版社, 2000: 25-76. | |
26 | Li C, Cao Z, Chang J, et al. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow. Catena, 2017, 156: 139-148. |
27 | Egan G, Crawley M J, Fornara D A. Effects of long-term grassland management on the carbon and nitrogen pools of different soil aggregate fractions. Science of the Total Environment, 2018, 613: 810-819. |
28 | Wang Y, Fang N, Zhang F, et al. Effects of erosion on the microaggregate organic carbon dynamics in a small catchment of the Loess Plateau, China. Soil and Tillage Research, 2017, 174: 205-213. |
29 | Qi Z C, Chang P J, Li Y S, et al. Effects of grazing intensity on soil aggregates composition, stability, nutrients and C/N in desert shrubland. Arid Zone Research, 2021, 38(1): 87-94. |
祁正超, 常佩静, 李永善, 等. 放牧对荒漠灌丛草地土壤团聚体组成及其稳定性的影响. 干旱区研究, 2021, 38(1): 87-94. | |
30 | Baumert V L, Forstner S J, Zethof J H T, et al. Root-induced fungal growth triggers macroaggregation in forest subsoils. Soil Biology and Biochemistry, 2021, 157: 108244. |
31 | Tian H, Chen G, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1): 139-151. |
32 | Huang Y Z, Wang S Q, Ye S M. Effects of Cunninghamia lanceolata stand types on the changes of aggregate-related organic carbon and nutrients in surface soil. Chinese Journal of Applied Ecology, 2020, 31(9): 2857-2865. |
黄永珍, 王晟强, 叶绍明. 杉木林分类型对表层土壤团聚体有机碳及养分变化的影响. 应用生态学报, 2020, 31(9): 2857-2865. | |
33 | Li W, Shen F, Liu Y, et al. Soil depth determine the ecological stoichiometry of soil aggregates after returning ancient rice terraces to forest. Catena, 2022, 219: 106587. |
34 | Kou T J, Zhu P, Huang S, et al. Effects of long-term cropping regimes on soil carbon sequestration and aggregate composition in rainfed farmland of Northeast China. Soil and Tillage Research, 2012, 118: 132-138. |
35 | Osborne B B, Soper F M, Nasto M K, et al. Litter inputs drive patterns of soil nitrogen heterogeneity in a diverse tropical forest: Results from a litter manipulation experiment. Soil Biology and Biochemistry, 2021, 158: 108247. |
36 | Wan T, Tu W G, Xi H, et al. Study on vegetation and soil characteristics of desertification grassland in north west Sichuan. Acta Agrestia Sinica, 2013, 21(4): 650-657. |
万婷, 涂卫国, 席欢, 等. 川西北不同程度沙化草地植被和土壤特征研究. 草地学报, 2013, 21(4): 650-657. | |
37 | Jastrow J D, Miller R M, Boutton T W. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance. Soil Science Society of America Journal, 1996, 60(3): 801-807. |
38 | DeGryze S, Six J, Paustian K, et al. Soil organic carbon pool changes following land-use conversions. Global Change Biology, 2004, 10(7): 1120-1132. |
39 | Zhang Q C, Wang S Q, Huang Y Z, et al. Ecological stoichiometry of soil carbon,nitrogen,and phosphorus within soil aggregates of four plantations in different Cunninghamia lanceolata stand types. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1028-1035. |
张钱春, 王晟强, 黄永珍, 等. 不同杉木林分类型土壤团聚体生态化学计量特征. 西北植物学报, 2021, 41(6): 1028-1035. | |
40 | Adesodun J K, Adeyemi E F, Oyegoke C O. Distribution of nutrient elements within water-stable aggregates of two tropical agro-ecological soils under different land uses. Soil and Tillage Research, 2007, 92(1): 190-197. |
41 | Spaccini R, Mbagwu J S C, Igwe C A, et al. Carbohydrates and aggregation in lowland soils of Nigeria as influenced by organic inputs. Soil and Tillage Research, 2004, 75(2): 161-172. |
42 | Wang S Q, Du L, Ye S M. Responses of soil aggregate-associated organic carbon and nutrients to tea cultivation age in southern Guangxi, China. Chinese Journal of Applied Ecology, 2020, 31(3): 837-844. |
王晟强, 杜磊, 叶绍明. 桂南茶园土壤团聚体有机碳和养分对植茶年限的响应. 应用生态学报, 2020, 31(3): 837-844. | |
43 | Ma Y, Li L Z, Zhang D G, et al. Responses of stoichiometric characteristics of rhizosphere soil to the degradation of alpine meadow. Chinese Journal of Applied Ecology, 2019, 30(9): 3039-3048. |
马源, 李林芝, 张德罡, 等. 高寒草甸根际土壤化学计量特征对草地退化的响应. 应用生态学报, 2019, 30(9): 3039-3048. | |
44 | Bimüller C, Kreyling O, Kölbl A, et al. Carbon and nitrogen mineralization in hierarchically structured aggregates of different size. Soil and Tillage Research, 2016, 160: 23-33. |
45 | Müller M, Oelmann Y, Schickhoff U, et al. Himalayan treeline soil and foliar C∶N∶P stoichiometry indicate nutrient shortage with elevation. Geoderma, 2017, 291: 21-32. |
46 | Ma P P. Stability and nutrition of soil aggregates in degraded alpine grassland. Lanzhou: Lanzhou University, 2019. |
马盼盼. 退化高寒草地土壤团聚体稳定性及其养分特征. 兰州: 兰州大学, 2019. | |
47 | Fan Y, Lu S, He M, et al. Long-term throughfall exclusion decreases soil organic phosphorus associated with reduced plant roots and soil microbial biomass in a subtropical forest. Geoderma, 2021, 404: 115309. |
48 | Sun J, Zhao F Z, Han X H, et al. Ecological stoichiometry of soil aggregates and relationship with soil nutrients of different-aged Robinia pseudoacacia forests. Acta Ecologica Sinica, 2016, 36(21): 6879-6888. |
孙娇, 赵发珠, 韩新辉, 等. 不同林龄刺槐林土壤团聚体化学计量特征及其与土壤养分的关系. 生态学报, 2016, 36(21): 6879-6888. |
[1] | 廖小琴, 王长庭, 刘丹, 唐国, 毛军. 氮磷配施对高寒草甸植物根系特征的影响[J]. 草业学报, 2023, 32(7): 160-174. |
[2] | 路欣, 祁娟, 师尚礼, 车美美, 李霞, 独双双, 赛宁刚, 贾燕伟. 阔叶类草抑制剂与氮素配施对高寒草甸土壤特性的影响[J]. 草业学报, 2023, 32(7): 38-48. |
[3] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[4] | 孙玉, 杨永胜, 何琦, 王军邦, 张秀娟, 李慧婷, 徐兴良, 周华坤, 张宇恒. 三江源高寒草甸水源涵养功能及土壤理化性质对退化程度的响应[J]. 草业学报, 2023, 32(6): 16-29. |
[5] | 郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93. |
[6] | 张勇, 王海娣, 高玉红, 吴兵, 剡斌, 王一帆, 崔政军, 文泽东. 多元胡麻轮作模式对土壤团聚体特征及氮素含量的影响[J]. 草业学报, 2023, 32(1): 75-88. |
[7] | 游郭虹, 刘丹, 王艳丽, 王长庭. 高寒草甸植物叶片生态化学计量特征对长期氮肥添加的响应[J]. 草业学报, 2022, 31(9): 50-62. |
[8] | 张玉琢, 杨志贵, 于红妍, 张强, 杨淑霞, 赵婷, 许画画, 孟宝平, 吕燕燕. 基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例[J]. 草业学报, 2022, 31(6): 23-34. |
[9] | 李洋, 王毅, 韩国栋, 孙建, 汪亚峰. 青藏高原高寒草地土壤微生物量碳氮含量特征及其控制要素[J]. 草业学报, 2022, 31(6): 50-60. |
[10] | 刘咏梅, 董幸枝, 龙永清, 朱志梅, 王雷, 盖星华, 赵樊, 李京忠. 退化高寒草甸狼毒群落分类特征及其环境影响因子[J]. 草业学报, 2022, 31(4): 1-11. |
[11] | 李鑫, 魏雪, 王长庭, 任晓, 吴鹏飞. 外源性养分添加对高寒草甸土壤节肢动物群落的影响[J]. 草业学报, 2022, 31(4): 155-164. |
[12] | 段媛媛, 张静, 王玲玲, 刘彩凤, 王乙茉, 周俗, 郭正刚. 高原鼠兔对高寒草甸植物物种多样性和功能多样性关系的影响[J]. 草业学报, 2022, 31(11): 25-35. |
[13] | 王永宏, 田黎明, 艾鷖, 陈仕勇, 泽让东科. 短期牦牛放牧对青藏高原高寒草地土壤真菌群落的影响[J]. 草业学报, 2022, 31(10): 41-52. |
[14] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[15] | 唐立涛, 毛睿, 王长庭, 李洁, 胡雷, 字洪标. 氮磷添加对高寒草甸植物群落根系特征的影响[J]. 草业学报, 2021, 30(9): 105-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||