草业学报 ›› 2023, Vol. 32 ›› Issue (7): 175-187.DOI: 10.11686/cyxb2022352
• 研究论文 • 上一篇
张一龙1(), 李雯1, 喻启坤1, 李培英1,2,3(), 孙宗玖1,2,3
收稿日期:
2022-08-31
修回日期:
2022-09-19
出版日期:
2023-07-20
发布日期:
2023-05-26
通讯作者:
李培英
作者简介:
E-mail: 823797457@qq.com基金资助:
Yi-long ZHANG1(), Wen LI1, Qi-kun YU1, Pei-ying LI1,2,3(), Zong-jiu SUN1,2,3
Received:
2022-08-31
Revised:
2022-09-19
Online:
2023-07-20
Published:
2023-05-26
Contact:
Pei-ying LI
摘要:
干旱会影响植物氮代谢过程,从而制约其生长及品质。为了明确狗牙根在干旱胁迫下其叶与根氮代谢指标的变化,探讨狗牙根叶与根氮代谢对不同干旱胁迫的响应机制,筛选关键抗旱氮代谢指标,丰富狗牙根抗旱氮代谢理论,本试验将不同抗旱性狗牙根在不同干旱梯度处理下培养10 d,测定其叶及根有机氮化物(脯氨酸、可溶性蛋白、游离氨基酸)、无机氮化物(全氮、硝态氮、铵态氮)、氮代谢相关酶活性(硝酸还原酶、亚硝酸还原酶、谷氨酰胺合成酶、谷氨酸合成酶)等生理指标。结果表明:随着干旱胁迫加剧,各供试材料的叶及根全氮降低,有机氮化物增加,叶片硝态氮先降后升,根系硝态氮降低,叶、根铵态氮、氮代谢酶则呈先增后降趋势。抗旱材料在胁迫下因具有较高的氮代谢酶活性及无机氮化物含量,加速了氮代谢进程,致使抗旱材料叶、根的有机氮化物含量快速上升且显著高于敏旱材料。干旱下狗牙根通过对根系吸收的氮素进行转运再分配、同化,与其地上部分共同抵御干旱。冗余分析表明谷氨酸合成酶(GOGAT),谷氨酰胺合成酶(GS)与中度胁迫时抗旱材料叶、根的相关性较强,脯氨酸、游离氨基酸、可溶性蛋白与重度胁迫时抗旱材料有较强的相关性。通径分析得根系可溶性蛋白(决策系数为-0.739)、叶片(0.530)与根系游离氨基酸(0.498)与干旱下狗牙根抗旱性关联度高。本试验结果可丰富、补充狗牙根抗旱氮代谢响应研究,也可为其抗旱资源选育提供参考。
张一龙, 李雯, 喻启坤, 李培英, 孙宗玖. 狗牙根叶与根氮代谢对不同干旱胁迫的响应机制[J]. 草业学报, 2023, 32(7): 175-187.
Yi-long ZHANG, Wen LI, Qi-kun YU, Pei-ying LI, Zong-jiu SUN. Nitrogen metabolism response mechanism to different drought stresses in leaves and roots of Cynodon dactylon[J]. Acta Prataculturae Sinica, 2023, 32(7): 175-187.
图1 干旱胁迫对狗牙根叶、根有机氮化物的影响不同小写字母表示相同处理不同材料间差异显著(P<0.05),不同大写字母表示相同材料不同处理间差异显著(P<0.05),CK:正常灌溉,MD:中度干旱胁迫,SD:重度干旱胁迫,下同。Different lowercase letters indicate significant differences among different materials under the same treatment (P<0.05), and different capital letters indicate significant differences among different treatments of the same material (P<0.05). CK: Normal irrigation; MD: Moderate drought stress; SD: Severe drought stress, the same below.
Fig.1 Effects of drought stress on organic nitrogen compounds in leaf and root of C. dactylon
图4 干旱胁迫对狗牙根叶、根氮代谢指标的热图聚类分析及主成分分析
Fig.4 Heat map cluster analysis and principal component analysis of nitrogen metabolism indexes of leaf and root of C. dactylon under drought stress
图5 干旱胁迫下狗牙根叶、根氮代谢指标的冗余分析图中红色表示正常灌溉下供试材料,绿色表示中度干旱,黑色表示重度干旱。In the figure, red represents the tested material under normal irrigation, green represents moderate drought, and black represents severe drought.
Fig.5 Redundancy analysis of nitrogen metabolism indexes in leaf and root of C. dactylon under drought stress
作用因子 Action factor | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 合计 Total | 决策系数Decision coefficient | ||||
---|---|---|---|---|---|---|---|---|---|
根系硝态氮Root NO3--N | 根系游离 氨基酸 Root FAA | 根系可溶性蛋白 Root SP | 叶片游离 氨基酸 Leaf FAA | 根系全氮 Root N | |||||
根系硝态氮Root NO3--N | -0.835 | -0.320 | -0.286 | 0.222 | -0.394 | -0.056 | -0.514 | 0.432 | |
根系游离氨基酸Root FAA | 0.792 | 0.433 | 0.211 | -0.419 | 0.525 | -0.056 | 0.260 | 0.498 | |
根系可溶性蛋白Root SP | 0.420 | -0.537 | 0.132 | 0.338 | 0.505 | -0.019 | 0.957 | -0.739 | |
叶片游离氨基酸Leaf FAA | 0.743 | 0.594 | 0.212 | 0.382 | -0.457 | 0.011 | 0.149 | 0.530 | |
根系全氮Root N | -0.499 | -0.153 | -0.117 | -0.120 | -0.066 | -0.043 | -0.346 | 0.129 |
表1 叶片相对电导率与狗牙根叶、根氮代谢指标的通径分析
Table 1 Path analysis of leaf relative electrical conductivity and nitrogen metabolism indexes in root and leaf of C. dactylon
作用因子 Action factor | 相关系数 Correlation coefficient | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | 合计 Total | 决策系数Decision coefficient | ||||
---|---|---|---|---|---|---|---|---|---|
根系硝态氮Root NO3--N | 根系游离 氨基酸 Root FAA | 根系可溶性蛋白 Root SP | 叶片游离 氨基酸 Leaf FAA | 根系全氮 Root N | |||||
根系硝态氮Root NO3--N | -0.835 | -0.320 | -0.286 | 0.222 | -0.394 | -0.056 | -0.514 | 0.432 | |
根系游离氨基酸Root FAA | 0.792 | 0.433 | 0.211 | -0.419 | 0.525 | -0.056 | 0.260 | 0.498 | |
根系可溶性蛋白Root SP | 0.420 | -0.537 | 0.132 | 0.338 | 0.505 | -0.019 | 0.957 | -0.739 | |
叶片游离氨基酸Leaf FAA | 0.743 | 0.594 | 0.212 | 0.382 | -0.457 | 0.011 | 0.149 | 0.530 | |
根系全氮Root N | -0.499 | -0.153 | -0.117 | -0.120 | -0.066 | -0.043 | -0.346 | 0.129 |
1 | Krouk G, Mirowski P, Lecun Y, et al. Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate. Genome Biology, 2010, 11(12): 1-19. |
2 | Li C Y, Kong X Q, Dong H Z. Nitrate uptake, transport and signaling regulation pathways. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 982-993. |
李晨阳, 孔祥强, 董合忠. 植物吸收转运硝态氮及其信号调控研究进展. 核农学报, 2020, 34(5): 982-993. | |
3 | Hu C J, Lei N, Zou L P, et al. Research progress on nitrogen utilization and nitrate transport protein in plant. Molecular Plant Breeding, 2016, 14(8): 2188-2196. |
胡春吉, 雷宁, 邹良平, 等. 植物中氮素利用及硝态氮转运蛋白的研究进展. 分子植物育种, 2016, 14(8): 2188-2196. | |
4 | Cairns J E, Impa S M, Toole J C O, et al. Influence of the soil physical environment on rice (Oryza sativa) response to drought stress and its implications for drought research. Field Crops Research, 2011, 121(3): 303-310. |
5 | Zhao J B, Du C J, Ma C M, et al. Response of photosynthesis and carbon/nitrogen metabolism to drought stress in Chinese chestnut ‘Yanshanzaofeng’ seedlings. Chinese Journal of Applied Ecology, 2020, 31(11): 3674-3680. |
赵佳冰, 杜常健, 马长明, 等. 板栗“燕山早丰”幼苗光合与碳氮代谢对干旱胁迫的响应. 应用生态学报, 2020, 31(11): 3674-3680. | |
6 | Liu Y, Li C F, Hong X, et al. Effects of saline-alkali stress on nitrogen metabolism activity and root yield and sugar content of suger beet. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 397-404. |
刘洋, 李彩凤, 洪鑫, 等. 盐碱胁迫对甜菜氮代谢相关酶活性及产量和含糖率的影响. 核农学报, 2015, 29(2): 397-404. | |
7 | Zhang H M, Li J J, Hei G G, et al. Effects of exogenous betaine on the secondary metabolites of Pinellia ternata under drought stress. Acta Prataculturae Sinica, 2014, 23(4): 229-236. |
张红敏, 李姣姣, 黑刚刚, 等. 外源甜菜碱处理对干旱胁迫下半夏氮代谢及相关酶活性的影响. 草业学报, 2014, 23(4): 229-236. | |
8 | Cao R, Liang Z S, Wu J Y, et al. Effect of progressive drying stress and the subsequent re-watering on root nitrogen metabolism in cotton seedlings. Journal of Soil and Water Conservation, 2012, 26(6): 274-280. |
曹让, 梁宗锁, 吴洁云, 等. 干旱胁迫及复水对棉花幼苗根系氮代谢的影响. 水土保持学报, 2012, 26(6): 274-280. | |
9 | Naik R M, Kadam B S, Pandhare R A, et al. Inheritance of proline accumulation and in vivo nitrate reductase activity in sugarcane leaves under water stress. Indian Sugar, 2002, 6(52): 427-429. |
10 | Nakashima K, Yamaguchi K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front Plant, 2014, 5(170): 170-175. |
11 | Zhang J X, Ge S F, Wu Y H, et al. Effects of drought stress on carbon and nitrogen metabolism of Ardisia japonica leaves. Journal of Soil and Water Conservation, 2015, 29(2): 278-282. |
张建新, 葛淑芳, 吴玉环, 等. 干旱胁迫对紫金牛叶片碳氮代谢的影响. 水土保持学报, 2015, 29(2): 278-282. | |
12 | Luo H B, Huang C M, Zhu H M, et al. Effects of drought stress on carbon and nitrogen metabolism of sugarcane roots. Journal of Southern Agriculture, 2020, 51(6): 1332-1338. |
罗海斌, 黄诚梅, 朱慧明, 等. 干旱胁迫对甘蔗根系碳氮代谢的影响. 南方农业学报, 2020, 51(6): 1332-1338. | |
13 | Zeng L S, Li P Y, Sun X F, et al. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang Province. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
曾令霜, 李培英, 孙晓梵, 等. 新疆不同生境狗牙根种质抗旱性综合评价. 草业学报, 2020, 29(8): 155-169. | |
14 | Zhang Y L, Yu Q K, Li W, et al. Aboveground and belowground phenotypic characteristics of Cynodon dactylon lines differing in drought resistance and endogenous hormone response to drought stress. Acta Prataculturae Sinica, 2023, 32(3): 163-178. |
张一龙, 喻启坤, 李雯, 等. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应. 草业学报, 2023, 32(3): 163-178. | |
15 | Huang C Y. Soil science. Beijing: China Agriculture Press, 2000. |
黄昌勇. 土壤学. 北京: 中国农业出版社, 2000. | |
16 | Wang Y L. Experimental guidance of plant physiology. Beijing: China Agriculture Press, 2014. |
王燕凌. 植物生理学实验指导. 北京: 中国农业出版社, 2014. | |
17 | Gao J F. Experimental guidance of plant physiology. Beijing: Higher Education Press, 2006. |
高俊凤. 植物生理学实验指导. 北京: 高等教育出版社, 2006. | |
18 | Li H S. Principles and techniques of plant physiology and biochemistry experiments. Beijing: Higher Education Press, 2000. |
李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000. | |
19 | Bao S D. Soil agrochemical analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
20 | Tang Z C. Experimental guide to modern plant physiology. Beijing: Science Press, 1999. |
汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999. | |
21 | Gu Y P, Mi F G, Yan L J, et al. Physiological response to drought stresses and drought resistances evaluation of different Kentucky bluegrass varieties. Acta Prataculturae Sinica, 2014, 23(4): 220-228. |
郭郁频, 米福贵, 闫利军, 等. 不同早熟禾品种对干旱胁迫的生理响应及抗旱性评价. 草业学报, 2014, 23(4): 220-228. | |
22 | Brugiere N. Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell Online, 1999, 11(10): 1995-2012. |
23 | Zhang Y X, Wang X W, Cao H, et al. Effect of water stress on nitrogen metabolism indexes of peach leaves. Journal of Anhui Agricultural Sciences, 2010, 38(3): 1200-1202. |
张玉宵, 王孝威, 曹慧, 等. 水分胁迫对桃树叶片氮代谢相关指标的影响. 安徽农业科学, 2010, 38(3): 1200-1202. | |
24 | Lu X H, Wu L H, Pang L J. Some physiological characteristics of nitrogen metabolism under water-saving cultivation condition in rice. Journal of Plant Nutrition and Fertilizers, 2009, 15(4): 737-743. |
路兴花, 吴良欢, 庞林江. 节水栽培水稻某些氮代谢生理特性研究. 植物营养与肥料学报, 2009, 15(4): 737-743. | |
25 | Lv H H. The responses of Tamarix ramosissima seedlings on nitrogen distribution and utilization and growth under drought stress. Urumqi: Xinjiang Normal University, 2017. |
吕豪豪. 干旱胁迫下多枝柽柳幼苗氮素分配利用及其生长响应. 乌鲁木齐: 新疆师范大学, 2017. | |
26 | Liu Q Q, Shi J, An H L, et al. Absorption and distribution of PM2.5 NH4 + and NO3 - in Populus euramericana Neva. Acta Ecologica Sinica, 2015, 35(19): 6541-6548. |
刘庆倩, 石婕, 安海龙, 等. 应用15N示踪研究欧美杨对PM2.5无机成分NH4 +和NO3 -的吸收与分配. 生态学报, 2015, 35(19): 6541-6548. | |
27 | Zhou Y, Guo S W, Song N, et al. Effects of nitrogen forms and water stress on photosynthesis and water use efficiency of rice at seedling-tillering stage. Journal of Plant Nutrition and Fertilizers, 2006(3): 334-339, 345. |
周毅, 郭世伟, 宋娜, 等. 供氮形态和水分胁迫对苗期-分蘖期水稻光合与水分利用效率的影响. 植物营养与肥料学报, 2006(3): 334-339, 345. | |
28 | Sun X F. Effects of exogenous MeJA and nitrogen on drought resistance of Cynodon dactylon. Urumqi: Xinjiang Agricultural University, 2021. |
孙晓梵. 外源MeJA、氮素对狗牙根抗旱性影响. 乌鲁木齐: 新疆农业大学, 2021. | |
29 | Sun H, Zhang Y P, Wu J C, et al. Effect of drought stress and shading on growth and carbon-nitrogen metabolism of Azadirachta indica seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(3): 463-470. |
孙恒, 张燕平, 吴疆翀, 等. 干旱胁迫和遮光对印楝幼苗生长及碳氮代谢的影响. 西北植物学报, 2020, 40(3): 463-470. | |
30 | Wang T T, He Z G, Han R L, et al. Effects of drought stress on the activities of nitrogen metabolism-related enzymes in Pinellia ternata. Journal of Zhejiang Agricultural Sciences, 2018, 59(7): 1138-1141. |
王彤彤, 何志贵, 韩蕊莲, 等. 干旱胁迫对半夏氮代谢相关酶活性的影响. 浙江农业科学, 2018, 59(7): 1138-1141. | |
31 | Shen Q R, Tang L, Xu Y C. A review on the behavior of nitrate in vacuoles of plants. Acta Pedologica Sinica, 2003(3): 465-470. |
沈其荣, 汤利, 徐阳春. 植物液泡中硝酸盐行为的研究概况. 土壤学报, 2003(3): 465-470. | |
32 | Xu L H, Yao B Q, Wang W Y, et al. Nitrogen absorption and distribution characteristics in different organs of the main plants in Kobresia humilis meadow. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(5): 957-966. |
徐隆华, 姚步青, 王文颖, 等. 矮嵩草草甸主要植物不同器官对氮素的吸收及分配特征研究. 西北植物学报, 2018, 38(5): 957-966. |
[1] | 李艳鹏, 魏娜, 翟庆妍, 李杭, 张吉宇, 刘文献. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111. |
[2] | 张一龙, 喻启坤, 李雯, 李培英, 孙宗玖. 不同抗旱性狗牙根地上地下表型特征及内源激素对干旱胁迫的响应[J]. 草业学报, 2023, 32(3): 163-178. |
[3] | 郭丽珠, 孟慧珍, 范希峰, 滕珂, 滕文军, 温海峰, 岳跃森, 张辉, 武菊英. 野牛草雌雄株对不同形态氮素的生理响应差异[J]. 草业学报, 2023, 32(2): 65-74. |
[4] | 李变变, 张凤华, 赵亚光. 刈割高度对油莎豆氮代谢及产量和品质的影响[J]. 草业学报, 2023, 32(2): 84-96. |
[5] | 刘福, 陈诚, 张凯旋, 周美亮, 张新全. 日本百脉根LjbHLH34基因克隆及耐旱功能鉴定[J]. 草业学报, 2023, 32(1): 178-191. |
[6] | 曾令霜, 李培英, 孙宗玖, 孙晓梵. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
[7] | 金祎婷, 刘文辉, 刘凯强, 梁国玲, 贾志锋. 全生育期干旱胁迫对‘青燕1号’燕麦叶绿素荧光参数的影响[J]. 草业学报, 2022, 31(6): 112-126. |
[8] | 苏世平, 李毅, 刘小娥, 种培芳, 单立山, 后有丽. 外源脯氨酸对缓解红砂干旱胁迫的机理研究[J]. 草业学报, 2022, 31(6): 127-138. |
[9] | 孙晓梵, 张一龙, 李培英, 孙宗玖. 不同施氮量对干旱下狗牙根抗氧化酶活性及渗透调节物质含量的影响[J]. 草业学报, 2022, 31(6): 69-78. |
[10] | 卫宏健, 丁杰, 张巨明, 杨文, 王咏琪, 刘天增. 践踏胁迫下狗牙根草坪土壤真菌群落结构的变化特征[J]. 草业学报, 2022, 31(4): 102-112. |
[11] | 任雪锋, 邓亚博, 臧国长, 郑轶琦. 基于SSR标记的河南省狗牙根遗传多样性及群体遗传结构分析[J]. 草业学报, 2022, 31(3): 60-70. |
[12] | 王志恒, 魏玉清, 赵延蓉, 王悦娟. 基于转录组学比较研究甜高粱幼苗响应干旱和盐胁迫的生理特征[J]. 草业学报, 2022, 31(3): 71-84. |
[13] | 高鹏飞, 张静, 范卫芳, 高冰, 郝宏娟, 吴建慧. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响[J]. 草业学报, 2022, 31(2): 203-212. |
[14] | 吴雨涵, 刘文辉, 刘凯强, 张永超. 干旱胁迫对燕麦幼苗叶片光合特性及活性氧清除系统的影响[J]. 草业学报, 2022, 31(10): 75-86. |
[15] | 魏娜, 李艳鹏, 马艺桐, 刘文献. 全基因组水平紫花苜蓿TCP基因家族的鉴定及其在干旱胁迫下表达模式分析[J]. 草业学报, 2022, 31(1): 118-130. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 220
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||