草业学报 ›› 2023, Vol. 32 ›› Issue (6): 30-44.DOI: 10.11686/cyxb2022298
陈彦硕(), 马彦平, 王红梅(), 赵亚楠, 李志丽, 张振杰
收稿日期:
2022-07-25
修回日期:
2022-09-07
出版日期:
2023-06-20
发布日期:
2023-04-21
通讯作者:
王红梅
作者简介:
Corresponding author. E-mail: whm_826@163.com基金资助:
Yan-shuo CHEN(), Yan-ping MA, Hong-mei WANG(), Ya-nan ZHAO, Zhi-li LI, Zhen-jie ZHANG
Received:
2022-07-25
Revised:
2022-09-07
Online:
2023-06-20
Published:
2023-04-21
Contact:
Hong-mei WANG
摘要:
为探究不同年限灌丛引入对荒漠草原土壤细菌群落功能多样性的影响,利用Biolog-ECO法对封育草地(17 a)和不同年限引入灌丛地(6,15,25 a)0~20 cm土层展开土壤细菌群落的碳源利用特征研究。结果表明:荒漠草原不同年限灌丛引入后土壤全碳均有所增加,其中25 a时全碳最高,较封育草地显著增加43.5%(P<0.05),有机碳差异不显著,细菌数量与微生物生物量碳均在引入25 a最高,蔗糖酶活性随灌丛引入年限增加显著升高。土壤细菌群落随灌丛引入年限延长对碳源利用程度显著增大,平均增幅92.75%~181.73%,且对6类碳源利用能力均高于封育草地,其中糖类、氨基酸类、羧酸类是引入过程中细菌优先利用的3类碳源。灌丛引入也显著增加了土壤细菌群落功能多样性,特别是Shannon-Wiener丰富度指数、Shannon均匀度指数和Simpson优势度指数随引入年限延长而增大,且土壤全碳、全氮与细菌群落功能多样性呈显著正相关(P<0.05)。综上,近30 a灌丛引入不仅提高了土壤细菌对不同碳源的利用程度,也改变了主要碳源利用类型,从草地的氨基酸、聚合物类等转向灌丛地糖类、氨基酸类为主。
陈彦硕, 马彦平, 王红梅, 赵亚楠, 李志丽, 张振杰. 荒漠草原不同年限灌丛引入过程土壤细菌碳源利用特征[J]. 草业学报, 2023, 32(6): 30-44.
Yan-shuo CHEN, Yan-ping MA, Hong-mei WANG, Ya-nan ZHAO, Zhi-li LI, Zhen-jie ZHANG. Carbon source utilization by soil bacteria at different lengths of time after introducing shrubs to the desert steppe[J]. Acta Prataculturae Sinica, 2023, 32(6): 30-44.
样地类型 Sample type | 样地概况 Sample situation | 草本生物量 Grass biomass (g·m-2) | 柠条生物量 Shrub biomass (g·m-2) | 经纬度 Longitude and latitude | 优势植物 Dominant plant species |
---|---|---|---|---|---|
EG | 2003年封育 Enclosed in 2003 | 102.62 | 0 | 107°14′ E 37°53′ N | 蒙古冰草 A. mongolicum,猪毛蒿 A. scoparia,白草 Pennisetum centrasiaticum,虫实 Corispermum hyssopifolium,赖草 Aneurolepidium dasystachys |
SY6 | 2014年种植 Planted in 2014 | 149.15 | 795.23 | 107°21′ E 37°50′ N | 猪毛蒿 A. scoparia,柠条锦鸡儿 C. korshinskii,白草P. centrasiaticum,蒙古冰草 A. mongolicum |
SY15 | 2005年种植 Planted in 2005 | 60.03 | 1243.68 | 107°20′ E 37°51′ N | 短花针茅 S. breviflora,牛枝子 L. potaninii,柠条锦鸡儿 C. korshinskii,猪毛蒿 A. scoparia |
SY25 | 1995年种植 Planted in 1995 | 99.49 | 1199.97 | 107°17′ E 37°51′ N | 牛枝子 L. potaninii,柠条锦鸡儿 C. korshinskii,猪毛蒿A. scoparia |
表1 研究样地基本概况
Table 1 General situation of the study sites
样地类型 Sample type | 样地概况 Sample situation | 草本生物量 Grass biomass (g·m-2) | 柠条生物量 Shrub biomass (g·m-2) | 经纬度 Longitude and latitude | 优势植物 Dominant plant species |
---|---|---|---|---|---|
EG | 2003年封育 Enclosed in 2003 | 102.62 | 0 | 107°14′ E 37°53′ N | 蒙古冰草 A. mongolicum,猪毛蒿 A. scoparia,白草 Pennisetum centrasiaticum,虫实 Corispermum hyssopifolium,赖草 Aneurolepidium dasystachys |
SY6 | 2014年种植 Planted in 2014 | 149.15 | 795.23 | 107°21′ E 37°50′ N | 猪毛蒿 A. scoparia,柠条锦鸡儿 C. korshinskii,白草P. centrasiaticum,蒙古冰草 A. mongolicum |
SY15 | 2005年种植 Planted in 2005 | 60.03 | 1243.68 | 107°20′ E 37°51′ N | 短花针茅 S. breviflora,牛枝子 L. potaninii,柠条锦鸡儿 C. korshinskii,猪毛蒿 A. scoparia |
SY25 | 1995年种植 Planted in 1995 | 99.49 | 1199.97 | 107°17′ E 37°51′ N | 牛枝子 L. potaninii,柠条锦鸡儿 C. korshinskii,猪毛蒿A. scoparia |
图2 灌丛引入过程0~20 cm土层土壤碳氮磷变化特征EG: 封育草地Enclosed grassland; SY6: 6年灌丛 6 years shrubland; SY15: 15年灌丛 15 years shrubland; SY25: 25年灌丛 25 years shrubland. 不同小写字母代表样地之间差异显著(P<0.05). Different lowercase letters represent the significant differentces among differences plots at 0.05 level. 下同The same below.
Fig.2 Variation characteristics of soil carbon, nitrogen and phosphorus of 0-20 cm during the process of shrub introduction
图3 灌丛引入过程土壤细菌、真菌数量、微生物生物量碳、氮变化特征
Fig.3 Variation characteristics of soil bacteria amount, fungus amount, microbial biomass carbon and microbial biomass nitrogen during the process of shrub introduction
样地 Plot | Shannon-Wiener丰富度指数 Richness index | Shannon均匀度指数 Evenness index | Simpson优势度指数 Dominance index | McIntosh指数 Index | 平均颜色变化率 AWCD |
---|---|---|---|---|---|
EG | 2.326±0.038d | 0.726±0.017c | 0.728±0.018c | 2.042±0.014d | 0.254±0.002d |
SY6 | 2.648±0.004c | 0.804±0.005b | 0.905±0.002ab | 5.124±0.013a | 0.725±0.002a |
SY15 | 2.745±0.030b | 0.852±0.005a | 0.889±0.007b | 3.672±0.020b | 0.526±0.003b |
SY25 | 2.913±0.006a | 0.877±0.001a | 0.933±0.000a | 3.371±0.009c | 0.479±0.001c |
表2 灌丛引入过程土壤细菌群落多样性指数
Table 2 Diversity index in soil bacteria community during the process of shrub introduction
样地 Plot | Shannon-Wiener丰富度指数 Richness index | Shannon均匀度指数 Evenness index | Simpson优势度指数 Dominance index | McIntosh指数 Index | 平均颜色变化率 AWCD |
---|---|---|---|---|---|
EG | 2.326±0.038d | 0.726±0.017c | 0.728±0.018c | 2.042±0.014d | 0.254±0.002d |
SY6 | 2.648±0.004c | 0.804±0.005b | 0.905±0.002ab | 5.124±0.013a | 0.725±0.002a |
SY15 | 2.745±0.030b | 0.852±0.005a | 0.889±0.007b | 3.672±0.020b | 0.526±0.003b |
SY25 | 2.913±0.006a | 0.877±0.001a | 0.933±0.000a | 3.371±0.009c | 0.479±0.001c |
图9 灌丛引入过程土壤微生物群落对Biolog ECO板中96 h碳基质平均利用率主成分分析
Fig.9 Principal component analysis of average utilization data of carbon substrate groups at 96 h in Biolog ECO by soil microbial community during the process of shrub introduction
主成分 Principal component | 碳源种类 Carbon source guild | 底物 Substrates | 载荷数 Number of load | 主成分 Principal component | 碳源种类 Carbon source guild | 底物 Substrates | 载荷数 Number of load |
---|---|---|---|---|---|---|---|
PC1 | 糖类Sugar | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 0.767 | PC1 | 聚合物类Polymers | 吐温40 Tween 40 | 0.880 |
I-赤藻糖醇I-erythritol | 0.951 | 其他类Others | 丙酮酸甲酯Pyruvic acid methyl ester | 0.822 | |||
D-甘露醇D-mannitol | 0.941 | D,L-α-甘油D,L-α-glycerol phosphate | 0.739 | ||||
N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | 0.646 | PC2 | 糖类Sugar | D-木糖D-xylose | -0.861 | ||
D-纤维二糖D-cellobiose | 0.934 | N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | -0.696 | ||||
葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.968 | 羧酸类Carboxylic acids | D-半乳糖酸γ内酯D-galactonic acid γ-lactone | -0.852 | |||
羧酸类Carboxylic acids | D-半乳糖醛酸D-galacturonic acid | 0.822 | 2-羟苯甲酸2-Hydroxy benzoic acid | 0.931 | |||
4-羟基苯甲酸4-hydroxy benzoic acid | 0.918 | γ-羟基丁酸γ-hydroxybutyric acid | 0.635 | ||||
D-苹果酸D-malic acid | 0.966 | D-氨基葡萄糖酸D-glucosaminic acid | -0.781 | ||||
氨基酸类Amino acids | L-精氨酸L-arginine | 0.918 | 聚合物类Polymers | 吐温80 Tween 80 | 0.640 | ||
L-天冬酰胺酸L-asparagine | 0.983 | α-环状糊精α-cyclodextrin | 0.808 | ||||
L-苯基丙氨酸L-phenylalanine | 0.827 | 肝糖Glycogen | 0.930 | ||||
L-丝氨酸L-serine | 0.880 | PC3 | 糖类Sugar | β-甲基-D-葡萄糖苷 β-methyl-D-glucoside | 0.634 | ||
L-苏氨酸L-threonine | 0.882 | α-D-乳糖α-D-lactose | -0.837 | ||||
甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | -0.708 | 羧酸类Carboxylic acids | 衣康酸Itaconic acid | 0.745 | |||
胺类Amines | 苯乙基胺Phenylethylamine | 0.922 | α-丁酮酸α-ketobutyric acid | -0.884 | |||
腐胺Putrescine | 0.955 |
表3 Biolog ECO板中碳基质利用与前3个主成分(PC1、PC2和PC3)之间的相关性
Table 3 Correlations between carbon substrate utilization in Biolog ECO and the principal components (PC1, PC2 and PC3)
主成分 Principal component | 碳源种类 Carbon source guild | 底物 Substrates | 载荷数 Number of load | 主成分 Principal component | 碳源种类 Carbon source guild | 底物 Substrates | 载荷数 Number of load |
---|---|---|---|---|---|---|---|
PC1 | 糖类Sugar | β-甲基-D-葡萄糖苷β-methyl-D-glucoside | 0.767 | PC1 | 聚合物类Polymers | 吐温40 Tween 40 | 0.880 |
I-赤藻糖醇I-erythritol | 0.951 | 其他类Others | 丙酮酸甲酯Pyruvic acid methyl ester | 0.822 | |||
D-甘露醇D-mannitol | 0.941 | D,L-α-甘油D,L-α-glycerol phosphate | 0.739 | ||||
N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | 0.646 | PC2 | 糖类Sugar | D-木糖D-xylose | -0.861 | ||
D-纤维二糖D-cellobiose | 0.934 | N-乙酰基-D-葡萄胺N-acetyl-D-glucosamine | -0.696 | ||||
葡萄糖-1-磷酸盐Glucose-1-phosphate | 0.968 | 羧酸类Carboxylic acids | D-半乳糖酸γ内酯D-galactonic acid γ-lactone | -0.852 | |||
羧酸类Carboxylic acids | D-半乳糖醛酸D-galacturonic acid | 0.822 | 2-羟苯甲酸2-Hydroxy benzoic acid | 0.931 | |||
4-羟基苯甲酸4-hydroxy benzoic acid | 0.918 | γ-羟基丁酸γ-hydroxybutyric acid | 0.635 | ||||
D-苹果酸D-malic acid | 0.966 | D-氨基葡萄糖酸D-glucosaminic acid | -0.781 | ||||
氨基酸类Amino acids | L-精氨酸L-arginine | 0.918 | 聚合物类Polymers | 吐温80 Tween 80 | 0.640 | ||
L-天冬酰胺酸L-asparagine | 0.983 | α-环状糊精α-cyclodextrin | 0.808 | ||||
L-苯基丙氨酸L-phenylalanine | 0.827 | 肝糖Glycogen | 0.930 | ||||
L-丝氨酸L-serine | 0.880 | PC3 | 糖类Sugar | β-甲基-D-葡萄糖苷 β-methyl-D-glucoside | 0.634 | ||
L-苏氨酸L-threonine | 0.882 | α-D-乳糖α-D-lactose | -0.837 | ||||
甘氨酰-L-谷氨酸Glycyl-L-glutamic acid | -0.708 | 羧酸类Carboxylic acids | 衣康酸Itaconic acid | 0.745 | |||
胺类Amines | 苯乙基胺Phenylethylamine | 0.922 | α-丁酮酸α-ketobutyric acid | -0.884 | |||
腐胺Putrescine | 0.955 |
指标 Indication | Shannon-Wiener 丰富度指数 Richness index | Shannon 均匀度指数 Evenness index | Simpson 优势度指数 Dominance index | McIntosh 指数 Index | 平均颜色变化率 AWCD |
---|---|---|---|---|---|
全碳Total carbon | 0.767** | 0.725** | 0.756** | 0.476 | 0.511 |
全氮Total nitrogen | 0.691* | 0.682* | 0.663* | 0.290 | 0.316 |
全磷Total phosphorus | 0.460 | 0.427 | 0.676* | 0.793** | 0.789** |
有机碳Soil organic carbon | 0.301 | 0.263 | 0.203 | -0.047 | -0.026 |
微生物生物量碳Microbial biomass carbon | 0.171 | 0.134 | -0.101 | -0.651* | -0.632* |
微生物生物量氮Microbial biomass nitrogen | -0.264 | -0.298 | -0.489 | -0.795** | -0.802** |
细菌Bacteria | 0.592* | 0.531 | 0.416 | -0.102 | -0.074 |
真菌Fungi | 0.404 | 0.281 | 0.541 | 0.606* | 0.598* |
过氧化氢酶Catalase | 0.606* | 0.688* | 0.452 | -0.073 | -0.027 |
脲酶Urease | -0.225 | -0.174 | -0.350 | -0.537 | -0.530 |
蔗糖酶Invertase | 0.429 | 0.500 | 0.289 | -0.075 | -0.023 |
碱性磷酸酶Alkaline phosphatase | -0.334 | -0.291 | -0.184 | 0.210 | 0.197 |
表4 不同年限灌丛引入过程土壤微生物群落与土壤生化指标的相关系数
Table 4 Correlation coefficients between soil microbial communities and soil biochemical indicators during the process of shrub introduction
指标 Indication | Shannon-Wiener 丰富度指数 Richness index | Shannon 均匀度指数 Evenness index | Simpson 优势度指数 Dominance index | McIntosh 指数 Index | 平均颜色变化率 AWCD |
---|---|---|---|---|---|
全碳Total carbon | 0.767** | 0.725** | 0.756** | 0.476 | 0.511 |
全氮Total nitrogen | 0.691* | 0.682* | 0.663* | 0.290 | 0.316 |
全磷Total phosphorus | 0.460 | 0.427 | 0.676* | 0.793** | 0.789** |
有机碳Soil organic carbon | 0.301 | 0.263 | 0.203 | -0.047 | -0.026 |
微生物生物量碳Microbial biomass carbon | 0.171 | 0.134 | -0.101 | -0.651* | -0.632* |
微生物生物量氮Microbial biomass nitrogen | -0.264 | -0.298 | -0.489 | -0.795** | -0.802** |
细菌Bacteria | 0.592* | 0.531 | 0.416 | -0.102 | -0.074 |
真菌Fungi | 0.404 | 0.281 | 0.541 | 0.606* | 0.598* |
过氧化氢酶Catalase | 0.606* | 0.688* | 0.452 | -0.073 | -0.027 |
脲酶Urease | -0.225 | -0.174 | -0.350 | -0.537 | -0.530 |
蔗糖酶Invertase | 0.429 | 0.500 | 0.289 | -0.075 | -0.023 |
碱性磷酸酶Alkaline phosphatase | -0.334 | -0.291 | -0.184 | 0.210 | 0.197 |
1 | Mazei Y A, Lebedeva N V, Taskaeva A A, et al. What role does human activity play in microbial biogeography: The revealing case of testate amoebae in the soils of Pyramiden, Svalbard. Pedobiologia, 2018, 67: 10-15. |
2 | Ingram L J, Stahl P D, Schuman G E, et al. Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem. Soil Science Society of America Journal, 2008, 72(4): 939-948. |
3 | Turpin-Jelfs T, Michaelides K, Biederman J A, et al. Soil nitrogen response to shrub encroachment in a degrading semi-arid grassland. Biogeosciences, 2019, 16(2): 369-381. |
4 | Ding L, Shang Y, Zhang W, et al. Disentangling the effects of driving forces on soil bacterial and fungal communities under shrub encroachment on the Guizhou Plateau of China. Science of the Total Environment, 2020, 709: 136207. |
5 | Zhao Y N, Du Y Y, Ma Y P, et al. Soil organic carbon dynamics and the prediction of their spatial changes in response to anthropogenically introduced shrub encroachment in desert steppe of the Eastern Ningxia, China. Chinese Journal of Applied Ecology, 2019, 30(6): 1927-1935. |
赵亚楠, 杜艳艳, 马彦平, 等. 宁夏东部荒漠草原灌丛引入过程中土壤有机碳变化及其空间格局预测. 应用生态学报, 2019, 30(6): 1927-1935. | |
6 | Moore T E, Jones C S, Chong C, et al. Impact of rainfall seasonality on intraspecific trait variation in a shrub from a Mediterranean climate. Functional Ecology, 2020, 34(4): 865-876. |
7 | Batten K M, Scow K M, Davies K F, et al. Two invasive plants alter soil microbial community composition in serpentine grasslands. Biological Invasions, 2006, 8(2): 217-230. |
8 | Hawkes C V, Wren I F, Herman D J, et al. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecology Letters, 2005, 8(9): 976-985. |
9 | Dassonville N, Vanderhoeven S, Vanparys V, et al. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia, 2008, 157(1): 131-140. |
10 | Chen D, Mi J, Chu P, et al. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landscape Ecology, 2014, 30(9): 1669-1682. |
11 | Hu X, Li X Y, Zhao Y, et al. Changes in soil microbial community during shrub encroachment process in the Inner Mongolia grassland of northern China. Catena, 2021, 202(1): 105230. |
12 | Li H, Zhang J, Hu H, et al. Shift in soil microbial communities with shrub encroachment in Inner Mongolia grasslands, China. European Journal of Soil Biology, 2017, 79: 40-47. |
13 | Gao X, Zhao X, Li H, et al. Exotic shrub species (Caragana korshinskii) is more resistant to extreme natural drought than native species (Artemisia gmelinii) in a semiarid revegetated ecosystem. Agricultural and Forest Meteorology, 2018, 263: 207-216. |
14 | Zhao Y N, Yu L, Zhou Y R, et al. Soil moisture dynamics and deficit of desert grassland with anthropogenic introduced shrub encroachment in the eastern Ningxia, China. Acta Ecologica Sinica, 2020, 40(4): 1305-1315. |
赵亚楠, 于露, 周玉蓉, 等. 宁夏东部荒漠草原灌丛引入对土壤水分动态及亏缺的影响. 生态学报, 2020, 40(4): 1305-1315. | |
15 | Yannarell A C, Menning S E, Beck A M. Influence of shrub encroachment on the soil microbial community composition of remnant hill prairies. Microbial Ecology, 2014, 67(4): 897-906. |
16 | Zhou L H, Li H, Shen H H, et al. Shrub-encroachment induced alterations in input chemistry and soil microbial community affect topsoil organic carbon in an Inner Mongolian grassland. Biogeochemistry, 2017, 136(3): 311-324. |
17 | Zhong Z K, Li W J, Lu X Q, et al. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China. Soil Biology and Biochemistry, 2020, 151: 108048. |
18 | Zheng H F, Chen Y M, Liu Y, et al. Effects of litter quality diminish and effects of vegetation type develop during litter decomposition of two shrub species in an alpine treeline ecotone. Ecosystems, 2020, 24(4): 197-210. |
19 | Courtney A C, Timothy R F, Thomas W B, et al. Grassland to woodland transitions: Dynamic response of microbial community structure and carbon use patterns. Journal of Geophysical Research: Biogeosciences, 2016, 121(6): 1675-1688. |
20 | Zheng Q Q, Du L T, Gong F, et al. Landscape characteristics of Caragana intermedia plantation based on GF-1 remote sensing image in Yanchi. Journal of Southwest Forestry University (Natural Sciences), 2019, 39(1): 152-159. |
郑琪琪, 杜灵通, 宫菲, 等. 基于GF-1遥感影像的宁夏盐池柠条人工林景观特征研究. 西南林业大学学报(自然科学), 2019, 39(1): 152-159. | |
21 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agricultural Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
22 | Guan S Y. Soil enzymes and its research. Beijing: China Agriculture Press, 1986. |
关松荫. 土壤酶及其研究法 . 北京: 中国农业出版社, 1986. | |
23 | Lu R K. Soil agricultural chemical analysis method. Beijing: China Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. | |
24 | Liu Z F, Liu G H, Fu B J, et al. Dynamics of soil microbial biomass C, N along restoration chronosequences in Pine plantations. Acta Ecologica Sinica, 2007, 27(3): 1011-1018. |
刘占锋, 刘国华, 傅伯杰, 等. 人工油松林(Pinus tabulaeformis)恢复过程中土壤微生物生物量C、N的变化特征. 生态学报, 2007, 27(3): 1011-1018. | |
25 | Xu G H. Soil microbiological analysis methods manual. Beijing: China Agriculture Press, 1986. |
许光辉. 土壤微生物分析方法手册. 北京: 中国农业出版社, 1986. | |
26 | Zhang M L, Chang H L, Ma M. Comparison of functional diversity of rhizosphere soil microorganisms between the exotic plant Xanthium italicum and its native partner Xanthium sibiricum by the Biolog method. Acta Prataculturae Sinica, 2017, 26(10):179-187. |
张明莉, 常宏磊, 马淼. 基于Biolog技术的外来种意大利苍耳与本地种苍耳根际土壤微生物功能多样性的比较. 草业学报, 2017, 26(10): 179-187. | |
27 | Eldridge D J, Bowker M A, Maestre F T, et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 2011, 14(7): 709-722. |
28 | Ehrenfeld J G. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 2003, 6(6): 503-523. |
29 | Li H, Shen H H, Zhou L H, et al. Shrub encroachment increases soil carbon and nitrogen stocks in temperate grasslands in China. Land Degradation & Development, 2019, 30(7): 756-767. |
30 | Pellegrini E, Boscutti F, Alberti G, et al. Stand age, degree of encroachment and soil characteristics modulate changes of C and N cycles in dry grassland soils invaded by the N2-fixing shrub Amorpha fruticose. Science of the Total Environment, 2021, 792: 148295. |
31 | McCulley R L, Archer S R, Boutton T W, et al. Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology, 2004, 85(10): 2804-2817. |
32 | Gao X L, Li X G, Zhao L, et al. Regulation of soil phosphorus cycling in grasslands by shrubs. Soil Biology and Biochemistry, 2019, 133: 1-11. |
33 | Gao X L, Li X G, Zhao L, et al. Shrubs magnify soil phosphorus depletion in Tibetan meadows: Conclusions from C∶N∶P stoichiometry and deep soil profiles. Science of the Total Environment, 2021, 785: 147320. |
34 | Bragazza L, Bardgett R D, Mitchell E A D, et al. Linking soil microbial communities to vascular plant abundance along a climate gradient. New Phytologist, 2015, 205(3): 1175-1182. |
35 | Hu Y, Xiang D, Veresoglou S D, et al. Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China. Soil Biology and Biochemistry, 2014, 77: 51-57. |
36 | Jin Y T, Li X F, Cai Y, et al. Effects of straw returning with chemical fertilizer on soil enzyme activities and microbial community structure in rice-rape rotation. Environmental Science, 2021, 42(8): 3985-3996. |
靳玉婷, 李先藩, 蔡影, 等. 秸秆还田配施化肥对稻-油轮作土壤酶活性及微生物群落结构的影响. 环境科学, 2021, 42(8): 3985-3996. | |
37 | Sun Z C, Zhou Y R, Zhao Y N, et al. Responses of soil microbial mineralization to the anthropogenic introduced shrub encroachment and water gradients in the desert steppe. Acta Ecologica Sinica, 2021, 41(4): 1537-1550. |
孙忠超, 周玉蓉, 赵亚楠, 等. 荒漠草原土壤微生物矿化对灌丛引入过程及水分的响应. 生态学报, 2021, 41(4): 1537-1550. | |
38 | Sharma S K, Ramesh A, Sharma M P, et al. Microbial community structure and diversity as indicators for evaluating soil quality. Biodiversity, Biofuels, Agroforestry and Conservation Agriculture, 2010, 5: 317-358. |
39 | Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359. |
40 | Mazía N, Moyano J, Perez L, et al. The sign and magnitude of tree-grass interaction along a global environmental gradient. Global Ecology and Biogeography, 2016, 25(12): 1510-1519. |
41 | Xie L N, Santiago S, Eric A, et al. Woody species have stronger facilitative effects on soil biota than on plants along an aridity gradient. Journal of Vegetation Science, 2021, 32(3): e13034. |
42 | Yang J F, Zhang T R, Zhang R Q, et al. Long-term cover cropping seasonally affects soil microbial carbon metabolism in an apple orchard. Bioengineered, 2019, 10(1): 207-217. |
43 | Banning N C, Lalor B M, Cookson W R, et al. Analysis of soil microbial community level physiological profiles in native and post-mining rehabilitation forest: Which substrates discriminate? Applied Soil Ecology, 2012, 56: 27-34. |
44 | Graham M H, Haynes R J. Organic matter status and the size, activity and metabolic diversity of the soil microflora as indicators of the success of rehabilitation of mined sand dunes. Biology and Fertility of Soils, 2004, 39(6): 429-437. |
45 | Zhang H F, Li G, Song X L, et al. Changes in soil microbial functional diversity under different vegetation restoration patterns for Hulunbeier Sandy Land. Acta Ecologica Sinica, 2013, 33(1): 38-44. |
46 | Sun Y H, Yang Z H, Zhao J J, et al. Functional diversity of microbial communities in cludge-amended soils. Physics Procedia, 2012, 33: 726-731. |
47 | Gong C J, Xu J, Fang Z G, et al. Carbon metabolic characteristics of airborne microbes in Hangzhou. Environmental Science, 2014, 35(2): 753-758. |
龚婵娟, 许晶, 方治国, 等. 杭州市空气微生物群落碳代谢特征研究. 环境科学, 2014, 35(2): 753-758. | |
48 | Sun H F, Li X L, Jin L Q, et al. Change over time in soil microbial diversity of artificial grassland in the Yellow River source zone. Acta Prataculturae Sinica, 2021, 30(2): 46-58. |
孙华方, 李希来, 金立群, 等. 黄河源人工草地土壤微生物多样性对建植年限的响应. 草业学报, 2021, 30(2): 46-58. | |
49 | Kim J W, Rehmann L, Ray M B. Development of microalgal bioassay based on the community level physiological profiling (CLPP). Algal Research, 2017, 25: 47-53. |
50 | Wu L K, Lin X M, Lin W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 2014, 38(3): 298-310. |
51 | Zhang T Y, Wu Y H, Zhuang L L, et al. Screening heterotrophic microalgal strains by using the Biolog method for biofuel production from organic wastewater. Algal Research, 2014, 6: 175-179. |
52 | Li H, Li X M, Yao Q Z, et al. Biolog-ECO analysis of rhizosphere soil microbial community characteristics of five different plants in two different grasslands. Microbiology China, 2020, 47(9): 2947-2958. |
李慧, 李雪梦, 姚庆智, 等. 基于Biolog-ECO方法的两种不同草原中5种不同植物根际土壤微生物群落特征. 微生物学通报, 2020, 47(9): 2947-2958. | |
53 | Wang R, Zhu K, Li G, et al. Metabolic characteristics of responses of soil fungi to land-use changes in the hilly regions of northeast China. Journal of Agro-Environment Science, 2018, 37(9): 1925-1932. |
王蕊, 朱珂, 李刚, 等.东北丘陵区林地、耕地和草地土壤真菌群落代谢特征. 农业环境科学学报, 2018, 37(9): 1925-1932. | |
54 | Zhao W, Yin Y L, Li S X, et al. Effects of vegetation reconstruction on vegetation and microbial community characteristics of black soil beach grassland. Ecology and Environmental Sciences, 2020, 29(1): 71-80. |
赵文, 尹亚丽, 李世雄, 等. 植被重建对黑土滩草地植被及微生物群落特征的影响. 生态环境学报, 2020, 29(1): 71-80. | |
55 | Wang Y, Zhang C, Zhang G N, et al. Carbon input manipulations affecting microbial carbon metabolism in temperate forest soils-A comparative study between broadleaf and coniferous plantations. Geoderma, 2019, 355: 113914. |
56 | Li J, Cooper J M, Lin Z, et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain. Applied Soil Ecology, 2015, 96: 75-87. |
57 | Diego N C, Romina A V, Emiliano J M, et al. Soil microbial functionality in response to the inclusion of cover crop mixtures in agricultural systems. Spanish Journal of Agricultural Research, 2016, 14(2): e0304. |
58 | Wu D, Chi Q, Sui X, et al. Metabolic diversity and seasonal variation of soil microbial communities in natural forested wetlands. Journal of Forestry Research, 2021, 32(6): 2619-2631. |
[1] | 胡宇霞, 龚吉蕊, 朱趁趁, 矢佳昱, 张子荷, 宋靓苑, 张魏圆. 基于生态系统服务簇的内蒙古荒漠草原生态系统服务的空间分布特征[J]. 草业学报, 2023, 32(4): 1-14. |
[2] | 虎雅玲, 哈斯额尔敦, 满良, 杨一, 张萍. 小叶锦鸡儿灌丛地植被对沙源供给的响应[J]. 草业学报, 2023, 32(1): 26-35. |
[3] | 牛伟玲, 陈辉, 侯慧新, 郭晨睿, 马娇林, 武建双. 10年禁牧未改变藏西北高寒荒漠植物水氮利用效率[J]. 草业学报, 2022, 31(8): 35-48. |
[4] | 刘万龙, 许冬梅, 史佳梅, 许爱云. 不同群落生境蒙古冰草种群株丛结构和叶片功能性状的变化[J]. 草业学报, 2022, 31(8): 72-80. |
[5] | 郭文章, 井长青, 邓小进, 陈宸, 赵苇康, 侯志雄, 王公鑫. 新疆天山北坡荒漠草原碳通量特征及其对环境因子的响应[J]. 草业学报, 2022, 31(5): 1-12. |
[6] | 金玲, 陆颖, 马红彬, 谢应忠, 沈艳. 内蒙古鄂托克前旗荒漠草原植物群落的数量分类与排序[J]. 草业学报, 2022, 31(4): 12-21. |
[7] | 倪芳芳, 吕世杰, 屈志强, 白璐, 孟彪, 张博涵, 李治国. 不同载畜率下荒漠草原非生长季植物群落特征对近地面风沙通量的影响[J]. 草业学报, 2022, 31(3): 26-33. |
[8] | 程燕明, 马红彬, 马菁, 马子元, 刘进娣, 周瑶, 彭文栋. 不同放牧方式对荒漠草原土壤碳氮储量及固持的影响[J]. 草业学报, 2022, 31(10): 18-27. |
[9] | 郭志霞, 刘任涛, 赵文智. 荒漠灌丛和土壤动物关系及对降水变化的响应研究进展[J]. 草业学报, 2022, 31(10): 206-216. |
[10] | 王春雯, 赵芳, 张晨, 解李娜, 马成仓. 小叶锦鸡儿灌丛对草地土壤固氮微生物群落的影响[J]. 草业学报, 2022, 31(10): 28-40. |
[11] | 陈林, 陈高路, 宋乃平, 李学斌, 万红云, 何文强. 宁夏东部荒漠草原猪毛蒿光合特征和水分利用效率对降水变化的响应[J]. 草业学报, 2022, 31(10): 87-98. |
[12] | 马文明, 刘超文, 周青平, 邓增卓玛, 唐思洪, 迪力亚尔·莫合塔尔null, 侯晨. 高寒草地灌丛化对土壤团聚体生态化学计量学及酶活性的影响[J]. 草业学报, 2022, 31(1): 57-68. |
[13] | 张峰, 孙嘉伟, 孙宇, 郑佳华, 乔荠瑢, 赵萌莉. 不同载畜率对短花针茅荒漠草原优势物种间关系及其空间分布特征的影响[J]. 草业学报, 2021, 30(8): 1-11. |
[14] | 吴旭东, 蒋齐, 任小玢, 俞鸿千, 王占军, 何建龙, 季波, 杜建民. 降水水平对荒漠草原生物土壤结皮碳、氮和微生物的影响[J]. 草业学报, 2021, 30(7): 34-43. |
[15] | 刘小娥, 苏世平, 李毅. 兰州市南北两山典型灌丛土壤理化性质[J]. 草业学报, 2021, 30(6): 28-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||