草业学报 ›› 2024, Vol. 33 ›› Issue (7): 84-93.DOI: 10.11686/cyxb2023273
王芳1,2(), 张世子1, 戴镕徽1,2, 杨丽云1,2, 罗丽娟1,2, 蒋凌雁1,2()
收稿日期:
2023-08-05
修回日期:
2023-11-08
出版日期:
2024-07-20
发布日期:
2024-04-08
通讯作者:
蒋凌雁
作者简介:
E-mail: lyjiang@hainanu.edu.cn基金资助:
Fang WANG1,2(), Shi-zi ZHANG1, Rong-hui DAI1,2, Li-yun YANG1,2, Li-juan LUO1,2, Ling-yan JIANG1,2()
Received:
2023-08-05
Revised:
2023-11-08
Online:
2024-07-20
Published:
2024-04-08
Contact:
Ling-yan JIANG
摘要:
丝裂原活化蛋白激酶(MAPK)级联反应在调节植物免疫中起关键作用。柱花草炭疽病是危害柱花草生产的严重病害,柱花草SgMPK6基因具有抗炭疽菌的功能。为探究响应胶孢炭疽菌侵染的柱花草SgMPK6下游互作蛋白,本研究采用酵母双杂交技术,以SgMPK6激酶结构域作为诱饵蛋白,筛选柱花草cDNA文库,共获得74个与SgMPK6激酶结构域潜在的互作蛋白,并通过酵母双杂交点对点试验,验证了候选互作蛋白SgbHLH32、SgbHLH33、SgbHLH44与SgMPK6激酶结构域间的互作关系。磷酸化位点预测显示,3个bHLH转录因子均具有MAPKs潜在的磷酸化位点。柱花草响应炭疽菌侵染的qRT-PCR分析表明,SgbHLH32、SgbHLH33、SgbHLH44转录因子均显著上调,预示互作蛋白可能作为SgMPK6的底物调控柱花草对炭疽病的抗性。本研究为进一步解析SgMPK6响应炭疽菌侵染的分子机制提供了试验依据。
王芳, 张世子, 戴镕徽, 杨丽云, 罗丽娟, 蒋凌雁. 柱花草SgMPK6互作蛋白的筛选与验证[J]. 草业学报, 2024, 33(7): 84-93.
Fang WANG, Shi-zi ZHANG, Rong-hui DAI, Li-yun YANG, Li-juan LUO, Ling-yan JIANG. Screening and verification of SgMPK6-interacting proteins of Stylosanthes[J]. Acta Prataculturae Sinica, 2024, 33(7): 84-93.
引物名称 Primer names | 序列 Sequences (5′-3′) |
---|---|
pGBKT7-SgMPK6-F | CATGGAGGCCGAATTCATGGAAGGAGGAGCTGC |
pGBKT7-SgMPK6-R | GCAGGTCGACGGATCCACTGATATTCCGGGTTAAATGCC |
pGBKT7-SgMPK6-KD-F | CATGGAGGCCGAATTCTTCGAAGTCACCGCCAAATAC |
pGBKT7-SgMPK6-KD-R | GCAGGTCGACGGATCCACGGGTTAAATGCCAGAGACT |
pGADT7-SgbHLH32-F | GGAGGCCAGTGAATTCATGGGGTGCAACAAAGGG |
pGADT7-SgbHLH32-R | CGAGCTCGATGGATCCATTATTGGAACTGTACCAACTCACC |
pGADT7-SgbHLH33-F | GGAGGCCAGTGAATTCATGGAGAGAGACATGCTTCC |
pGADT7-SgbHLH33-R | CGAGCTCGATGGATCCATCACATCATGTCATGGATCCC |
pGADT7-SgbHLH44-F | GGAGGCCAGTGAATTCATGCATATGAGAGGTTTGTTTCC |
pGADT7-SgbHLH44-R | CGAGCTCGATGGATCCACTATGAATGGGTGTTGGATTCAG |
qRT-SgbHLH32-F | AAATCAGGAGCTTGAATCACGT |
qRT-SgbHLH32-R | CACATGCAAATCCACCATCCTC |
qRT-SgbHLH33-F | CGTACCCACTACTGCTGCTG |
qRT-SgbHLH33-R | TGTCAGGTCCGAAATCGAAGG |
qRT-SgbHLH44-F | GTCGAGCAGGGTGAGGAAGTA |
qRT-SgbHLH44-R | CATGGCTGCTCCAACATCTTC |
UBCE1-F | CAGATCAAGCTGCTGACGAA |
UBCE1-R | GAACAAGCGATCATCAGGTTT |
表1 试验所用引物序列
Table 1 Primer sequences used in the experiment
引物名称 Primer names | 序列 Sequences (5′-3′) |
---|---|
pGBKT7-SgMPK6-F | CATGGAGGCCGAATTCATGGAAGGAGGAGCTGC |
pGBKT7-SgMPK6-R | GCAGGTCGACGGATCCACTGATATTCCGGGTTAAATGCC |
pGBKT7-SgMPK6-KD-F | CATGGAGGCCGAATTCTTCGAAGTCACCGCCAAATAC |
pGBKT7-SgMPK6-KD-R | GCAGGTCGACGGATCCACGGGTTAAATGCCAGAGACT |
pGADT7-SgbHLH32-F | GGAGGCCAGTGAATTCATGGGGTGCAACAAAGGG |
pGADT7-SgbHLH32-R | CGAGCTCGATGGATCCATTATTGGAACTGTACCAACTCACC |
pGADT7-SgbHLH33-F | GGAGGCCAGTGAATTCATGGAGAGAGACATGCTTCC |
pGADT7-SgbHLH33-R | CGAGCTCGATGGATCCATCACATCATGTCATGGATCCC |
pGADT7-SgbHLH44-F | GGAGGCCAGTGAATTCATGCATATGAGAGGTTTGTTTCC |
pGADT7-SgbHLH44-R | CGAGCTCGATGGATCCACTATGAATGGGTGTTGGATTCAG |
qRT-SgbHLH32-F | AAATCAGGAGCTTGAATCACGT |
qRT-SgbHLH32-R | CACATGCAAATCCACCATCCTC |
qRT-SgbHLH33-F | CGTACCCACTACTGCTGCTG |
qRT-SgbHLH33-R | TGTCAGGTCCGAAATCGAAGG |
qRT-SgbHLH44-F | GTCGAGCAGGGTGAGGAAGTA |
qRT-SgbHLH44-R | CATGGCTGCTCCAACATCTTC |
UBCE1-F | CAGATCAAGCTGCTGACGAA |
UBCE1-R | GAACAAGCGATCATCAGGTTT |
图1 pGBKT7-SgMPK6菌落PCR鉴定M:DNA分子标记 DL2000 plus;1~4: 单菌落。下同。 M: DNA Marker DL2000 plus; 1-4: Single colony. The same below.
Fig.1 Colony PCR identification of pGBKT7-SgMPK6
图2 pGBKT7-SgMPK6自激活检测阳性对照Positive control: pGBKT7-53+pGADT7-largeT; 阴性对照Negative control: pGBKT7-Lam+pGADT7-largeT; 100、10-1、10-2、10-3: 稀释倍数Dilution factors. 下同The same below. 自激活检测组Self-activation detection group: pGBKT7-SgMPK6+pGADT7.
Fig.2 Self-activation detection of pGBKT7-SgMPK6
图5 pGBKT7-SgMPK6-KD诱饵载体构建和自激活检测A: 菌落PCR筛选阳性克隆Screening for positive clones by colony PCR; B: pGBKT7-SgMPK6-KD自激活检测pGBKT7-SgMPK6-KDself-activation detection.
Fig.5 Construction of pGBKT7-SgMPK6-KD bait vector and self activation detection
图6 pGBKT7-SgMPK6-KD互作蛋白酵母菌落PCR鉴定1~41: 酵母菌落的PCR产物PCR products of yeast colonies.
Fig.6 Identification of pGBKT7-SgMPK6-KD interacting proteins in yeast colony by PCR
基因ID Gene ID | 拟南芥编号Arabidopsis number | 蛋白质名称Protein name |
---|---|---|
Unigene15192_SG | AT1G74110.1 | 细胞色素P450家族蛋白 Cytochrome P450 family protein |
CL672.Contig2_SG | AT1G12860.1 | bHLH转录因子33 bHLH transcription factor 33 |
Unigene44350_SG | AT2G42380.2 | bZIP转录因子家族蛋白 bZIP transcription factor family protein |
CL7251.Contig3_SG | AT5G66540.1 | U3小核仁核糖核蛋白 U3 small nucleolar ribonucleoprotein |
Unigene29237_SG | AT5G17820.1 | 过氧化物酶超家族蛋白 Peroxidase superfamily protein |
CL1493.Contig6_SG | AT3G25710.1 | bHLH转录因子32 bHLH transcription factor 32 |
Unigene3271_SG | AT3G25230.1 | FK506结合蛋白62 FK506 binding protein 62 |
CL3082.Contig4_SG | AT4G16190.1 | 半胱氨酸蛋白酶RD19C Cysteine protease RD19C |
CL3756.Contig1_SG | AT1G18400.1 | bHLH转录因子44 bHLH transcription factor 44 |
表2 酵母阳性克隆序列部分结果分析
Table 2 Partial results of sequence analysis of yeast positive clones
基因ID Gene ID | 拟南芥编号Arabidopsis number | 蛋白质名称Protein name |
---|---|---|
Unigene15192_SG | AT1G74110.1 | 细胞色素P450家族蛋白 Cytochrome P450 family protein |
CL672.Contig2_SG | AT1G12860.1 | bHLH转录因子33 bHLH transcription factor 33 |
Unigene44350_SG | AT2G42380.2 | bZIP转录因子家族蛋白 bZIP transcription factor family protein |
CL7251.Contig3_SG | AT5G66540.1 | U3小核仁核糖核蛋白 U3 small nucleolar ribonucleoprotein |
Unigene29237_SG | AT5G17820.1 | 过氧化物酶超家族蛋白 Peroxidase superfamily protein |
CL1493.Contig6_SG | AT3G25710.1 | bHLH转录因子32 bHLH transcription factor 32 |
Unigene3271_SG | AT3G25230.1 | FK506结合蛋白62 FK506 binding protein 62 |
CL3082.Contig4_SG | AT4G16190.1 | 半胱氨酸蛋白酶RD19C Cysteine protease RD19C |
CL3756.Contig1_SG | AT1G18400.1 | bHLH转录因子44 bHLH transcription factor 44 |
图7 SgbHLH32、SgbHLH33、SgbHLH44与SgMPK6-KD点对点验证互作互作组Interaction group: pGBKT7-SgMPK6-KD+pGADT7-bHLH32, pGBKT7-SgMPK6-KD+pGADT7-bHLH33, pGBKT7-SgMPK6-KD+pGADT7-bHLH44.
Fig.7 Verification of the interactions between SgbHLH32, SgbHLH33, SgbHLH44 and SgMPK6-KD
蛋白 Protein | 磷酸化位点 Phosphorylation site | 磷酸化肽段 Phosphorylation peptides | 可信值Trusted value |
---|---|---|---|
SgbHLH32 | 124 S | LNAI | 0.506 |
SgbHLH33 | 393 T | LQPL | 0.615 |
SgbHLH44 | 16 S | QLHN | 0.512 |
SgbHLH44 | 47 T | QRQQ | 0.533 |
表3 MAPK底物磷酸化位点及得分统计
Table 3 Phosphorylation sites and score statistics of MAPK substrates
蛋白 Protein | 磷酸化位点 Phosphorylation site | 磷酸化肽段 Phosphorylation peptides | 可信值Trusted value |
---|---|---|---|
SgbHLH32 | 124 S | LNAI | 0.506 |
SgbHLH33 | 393 T | LQPL | 0.615 |
SgbHLH44 | 16 S | QLHN | 0.512 |
SgbHLH44 | 47 T | QRQQ | 0.533 |
图8 SgMPK6、SgbHLH32、SgbHLH33、SgbHLH44在炭疽菌侵染后不同时间点的表达模式采用T-test方差分析,*与**分别表示柱花草未接种与接种炭疽菌后基因表达量在统计学上具有显著差异(P<0.05)或极显著差异(P<0.01)。Using T-test analysis of variance, * and ** respectively indicate that there is a statistically significant difference (P<0.05) or extremely significant difference (P<0.01) in gene expression between the uninoculated and inoculated stylo.
Fig.8 Expression analysis of SgMPK6, SgbHLH32, SgbHLH33, SgbHLH44 at different time points after Colletotrichum infection
1 | Zou X, Wang C, Chen X Y, et al. Effects of eucalyptus oil and rosemary oil on silage quality of stylo. Chinese Journal of Grassland, 2022, 44(2): 89-97. |
邹璇, 王成, 陈晓阳, 等. 桉叶油和迷迭香油对柱花草青贮品质的影响. 中国草地学报, 2022, 44(2): 89-97. | |
2 | Zhang Y, Yan L L, Yu D G, et al. Response to drought stress in seedling stage of five Stylosanthes varieties. Seed, 2019, 38(2): 100-104. |
张瑜, 严琳玲, 虞道耿, 等. 5个柱花草品种苗期对干旱胁迫的响应. 种子, 2019, 38(2): 100-104. | |
3 | Liang Y Q, Wu W H, Xi J G, et al. Biocontrol effects and mechanism of antagonistic bacterial strain JNC2 against Colletotrichum gloeosporioides on Stylosanthes. Genomics and Applied Biology, 2020, 39(12): 5567-5573. |
梁艳琼, 吴伟怀, 习金根, 等. 生防菌JNC2对柱花草炭疽病的生防效果及其机理作用. 基因组学与应用生物学, 2020, 39(12): 5567-5573. | |
4 | Xu P D, Zheng X L, Zhao Y, et al. Molecular characterization of the flanking gene of T-DNA insertional, pathogenicity defective Colletotrichum gloeosporioides mutant strain 1869. Acta Prataculturae Sinica, 2015, 24(8): 142-149. |
许沛冬, 郑肖兰, 赵艳, 等. 柱花草炭疽菌致病力丧失突变菌株1869的T-DNA插入位点侧翼序列的克隆. 草业学报, 2015, 24(8): 142-149. | |
5 | Manna M, Rengasamy B, Sinha A K. Revisiting the role of MAPK signaling pathway in plants and its manipulation for crop improvement. Plant Cell and Environment, 2023, 46(8): 2277-2295. |
6 | Zhang M M, Zhang S J. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 2022, 64(2): 301-341. |
7 | Zhang M M, Su J B, Zhang Y, et al. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Current Opinion in Plant Biology, 2018, 45: 1-10. |
8 | Meng X Z, Zhang S J. MAPK cascades in plant disease resistance signaling. Annual Review of Phytopathology, 2013, 51: 245-266. |
9 | Jagodzik P, Tajdel-Zielinska M, Ciesla A, et al. Mitogen-activated protein kinase cascades in plant hormone signaling. Frontiers in Plant Science, 2018, 9: 1387. |
10 | Dóczi R, Bögre L. The quest for MAP kinase substrates: Gaining momentum. Trends in Plant Science, 2018, 23(10): 918-932. |
11 | Tabassum N, Eschen-Lippold L, Athmer B, et al. Phosphorylation-dependent control of an RNA granule-localized protein that fine-tunes defence gene expression at a post-transcriptional level. The Plant Journal, 2020, 101(5): 1023-1039. |
12 | Gao H, Jiang L Y, Du B H, et al. GmMKK4-activated GmMPK6 stimulates GmERF113 to trigger resistance to Phytophthora sojae in soybean. The Plant Journal, 2022, 111(2): 473-495. |
13 | Wang L H, Chen J, Zhao Y Q, et al. OsMAPK6 phosphorylates a zinc finger protein OsLIC to promote downstream OsWRKY30 for rice resistance to bacterial blight and leaf streak. Journal of Integrative Plant Biology, 2022, 64(5): 1116-1130. |
14 | Zhang S Z, Yang L Y, Gao J, et al. Differential phosphoproteomic analysis of Stylosanthes in response to Colletotrichum gloeosporioides. Acta Agrestia Sinica, 2023, 31(3): 699-709. |
张世子, 杨丽云, 高静, 等. 柱花草响应炭疽菌侵染的差异磷酸化蛋白质组学分析. 草地学报, 2023, 31(3): 699-709. | |
15 | Zhang S Z. Phosphoproteomic analysis of Stylosanthes in response to Colletotrichum gloeosporioides infection and function analysis of SgMPK6 in the resistance against anthracnose. Haikou: Hainan University, 2023. |
张世子. 柱花草响应炭疽菌侵染磷酸蛋白组学分析及SgMPK6抗炭疽病功能初探. 海口: 海南大学, 2023. | |
16 | Jiang L Y, Wu P P, Yang L Y, et al. Transcriptomics and metabolomics reveal the induction of flavonoid biosynthesis pathway in the interaction of Stylosanthes-Colletotrichum gloeosporioides. Genomics, 2021, 113(4): 2702-2716. |
17 | Giancaspro A, Gadaleta A, Blanco A. Real-time PCR for the detection of precise transgene copy number in wheat. Methods in Molecular Biology, 2017, 1679: 251-257. |
18 | Silva-Sanchez C, Li H Y, Chen S X. Recent advances and challenges in plant phosphoproteomics. Proteomics, 2015, 15(5/6): 1127-1141. |
19 | Thulasi D K, Li X, Zhang Y L. MAP kinase signalling: Interplays between plant PAMP and effector-triggered immunity. Cellular and Molecular Life Sciences, 2018, 75(16): 2981-2989. |
20 | Wang W, Feng B, Zhou J M, et al. Plant immune signaling: Advancing on two frontiers. Journal of Integrative Plant Biology, 2020, 62(1): 2-24. |
21 | Persak H, Pitzschke A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One, 2013, 8(2): e57547. |
22 | Wang C, He X W, Li Y Z, et al. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade. Molecular Plant Pathology, 2018, 19(7): 1624-1638. |
23 | Meng X Z, Xu J, He Y X, et al. Phosphorylation of an ERF transcription factor by Arabidopsis MPK3/MPK6 regulates plant defense gene induction and fungal resistance.ThePlant Cell, 2013, 25(3): 1126-1142. |
24 | Kishi-Kaboshi M, Seo S, Takahashi A, et al. The MAMP-responsive MYB transcription factors MYB30, MYB55 and MYB110 activate the HCAA synthesis pathway and enhance immunity in rice. Plant and Cell Physiology, 2018, 59(5): 903-915. |
25 | Wang X, Zhou Y L, Xu Y Y, et al. A novel gene LbHLH from the halophyte Limonium bicolor enhances salt tolerance via reducing root hair development and enhancing osmotic resistance. BMC Plant Biology, 2021, 21(1): 284. |
26 | Wei K F, Chen H Q. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant Biology, 2018, 18(1): 1-21. |
27 | Meng F W, Yang C, Cao J D, et al. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. Journal of Integrative Plant Biology, 2020, 62(10): 1552-1573. |
28 | Cheng Q, Dong L D, Gao T J, et al. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. Journal of Experimental Botany, 2018, 69(10): 2527-2541. |
29 | Putarjunan A, Ruble J, Srivastava A, et al. Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS. NaturePlants, 2019, 5(7): 742-754. |
30 | Sun T F. Regulation of stomatal switching by MAPK signaling during plant immunity. Hangzhou: Zhejiang University, 2015. |
孙铁峰. MAPK信号在植物免疫过程中对气孔开关的调控. 杭州: 浙江大学, 2015. | |
31 | Yao T S, Xie R J, Zhou C Y, et al. Roles of brossinosteroids signaling in biotic and abiotic stresses. Journal of Agricultural and Food Chemistry, 2023, 71(21): 7947-7960. |
[1] | 田静, 曹彩霞, 黄莉莹, 吴娟燕, 张建国. 耐低营养乳酸菌筛选及对难青贮牧草发酵品质的影响[J]. 草业学报, 2023, 32(9): 222-230. |
[2] | 张适阳, 刘凤民, 崔均涛, 何磊, 冯月燕, 张伟丽. 三种外源物质对低温胁迫下柱花草生理与荧光特性的影响[J]. 草业学报, 2023, 32(6): 85-99. |
[3] | 刘福, 陈诚, 张凯旋, 周美亮, 张新全. 日本百脉根LjbHLH34基因克隆及耐旱功能鉴定[J]. 草业学报, 2023, 32(1): 178-191. |
[4] | 高莉娟, 张正社, 文裕, 宗西方, 闫启, 卢丽燕, 易显凤, 张吉宇. 象草全基因组bHLH转录因子家族鉴定及表达分析[J]. 草业学报, 2022, 31(3): 47-59. |
[5] | 李法喜, 王琼, 段廷玉, 聂斌, 封成智. 不同杀菌剂及其复配对箭筈豌豆炭疽病的防治研究[J]. 草业学报, 2021, 30(12): 172-183. |
[6] | 张梨梨, 史敏, 李彦忠. 炭疽病对沙尔沁地区苜蓿产量和品质的影响[J]. 草业学报, 2020, 29(6): 117-126. |
[7] | 王琼, 段廷玉, 南志标. 箭筈豌豆炭疽病病原菌分离鉴定[J]. 草业学报, 2020, 29(6): 127-136. |
[8] | 刘攀道, 罗佳佳, 白昌军, 陈志坚, 刘国道. 过量锰处理对苗期柱花草生长及抗氧化酶活性的影响[J]. 草业学报, 2018, 27(9): 194-200. |
[9] | 刘攀道, 郇恒福, 刘一明, 刘国道, 白昌军, 陈志坚. 低磷胁迫对太空诱变耐低磷柱花草酸性磷酸酶活性和磷效率的影响[J]. 草业学报, 2018, 27(8): 78-85. |
[10] | 杨成德, 卞静, 陈泰祥, 陈秀蓉, 王涵琦, 杨小利, 王艳. 当归炭疽病菌的生物学特性研究[J]. 草业学报, 2017, 26(6): 139-144. |
[11] | 陈彩虹, 钏秀娟, 王荟, 贾艳星, 陈志坚, 刘国道, 罗丽娟. 农杆菌侵染条件对柱花草遗传转化效率的影响[J]. 草业学报, 2016, 25(6): 102-108. |
[12] | T-DNA插入位点侧翼序列的克隆. 柱花草炭疽菌致病力丧失突变菌株1869的[J]. 草业学报, 2015, 24(8): 142-149. |
[13] | 卞静,陈泰祥,陈秀蓉,王涵琦,杨小利,王艳. 当归新病害——炭疽病病原鉴定及发病规律研究[J]. 草业学报, 2014, 23(6): 266-273. |
[14] | 周清,李保同,汤丽梅. 大蒜素对辣椒炭疽病和辣椒疫病病菌的室内抑制活性测定及田间防效研究[J]. 草业学报, 2014, 23(3): 262-268. |
[15] | 崔航,李立颖,谢小林,朱红惠,姚青. 不同基因型柱花草的根系构型差异及其磷效率[J]. 草业学报, 2013, 22(5): 265-271. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||