草业学报 ›› 2024, Vol. 33 ›› Issue (9): 60-69.DOI: 10.11686/cyxb2023414
收稿日期:
2023-10-31
修回日期:
2024-01-15
出版日期:
2024-09-20
发布日期:
2024-06-20
通讯作者:
郑琳琳
作者简介:
E-mail: 13856265@qq.com基金资助:
Xiang-qi BU(), Shan-shan LI, Ying-na DUAN, Ying-chun WANG, Lin-lin ZHENG()
Received:
2023-10-31
Revised:
2024-01-15
Online:
2024-09-20
Published:
2024-06-20
Contact:
Lin-lin ZHENG
摘要:
为了探究一氧化氮(nitric oxide,NO)对盐碱胁迫下盐地碱蓬幼苗生长及饲用品质的影响及其作用机制。本研究以盐地碱蓬为材料进行盆栽试验,利用300 mmol·L-1 NaCl,NaHCO3和Na2CO3(1∶1)溶液分别模拟盐、碱胁迫,硝普钠(sodium nitroprusside,SNP)和PTIO(carboxy-PTIO)作为NO的供体和清除剂,分析盐碱胁迫下NO对植物生长指标、抗氧化能力、光合特性、离子含量及饲用品质的影响。结果表明:1)盐碱胁迫显著抑制了盐地碱蓬幼苗的生长状况,降低生物量累积、光合效率和K+含量,提高活性氧含量、抗氧化酶活性、Na+含量和Na+/K+。此外,盐碱胁迫导致盐地碱蓬的饲用品质下降,粗蛋白,粗脂肪、干物质含量降低,纤维素类物质含量增加。2)外施NO显著提高了盐地碱蓬的耐盐碱胁迫能力,具体表现为,幼苗通过进一步增强抗氧化物酶活性,减轻盐碱胁迫造成的氧化损伤;通过增加光合色素含量、提高气孔导度、蒸腾速率和净光合速率,缓解盐碱胁迫导致的光合抑制;通过提高K+含量、降低Na+过量积累和Na+/K+,重建盐碱胁迫下的离子平衡。3)外施NO有效改善了盐地碱蓬的饲用品质,其粗蛋白、粗脂肪和干物质含量升高,增幅最高可达46.0%,纤维类物质含量显著下降,降幅最高可达32.0%。本研究为后续利用盐地碱蓬进行盐碱土壤改善以及家畜饲用提供了理论依据和研究基础。
卜祥琪, 李姗姗, 段莹娜, 王迎春, 郑琳琳. 一氧化氮对盐碱胁迫下盐地碱蓬抗逆性及饲用品质的影响[J]. 草业学报, 2024, 33(9): 60-69.
Xiang-qi BU, Shan-shan LI, Ying-na DUAN, Ying-chun WANG, Lin-lin ZHENG. Effects of nitric oxide on stress resistance and feed quality of Suaeda salsa under saline-alkali stress[J]. Acta Prataculturae Sinica, 2024, 33(9): 60-69.
分组 Groups | 对照 CK | 中性盐 Neutral salt | 中性盐+SNP Neutral salt+SNP | 中性盐+PTIO Neutral salt+PTIO | 碱性盐 Basic salt | 碱性盐+SNP Basic salt+SNP | 碱性盐+PTIO Basic salt+PTIO |
---|---|---|---|---|---|---|---|
蒸馏水Distilled water | + | - | + | + | - | + | + |
0.1 mmol·L-1 SNP | - | - | + | - | - | + | - |
0.2 mmol·L-1 PTIO | - | - | - | + | - | - | + |
300 mmol·L-1 NaCl | - | + | + | + | - | - | - |
NaHCO3+Na2CO3 (1∶1,300 mmol·L-1) | - | - | - | - | + | + | + |
表1 盐地碱蓬幼苗的不同处理
Table 1 Different treatments in S. salsa seedlings
分组 Groups | 对照 CK | 中性盐 Neutral salt | 中性盐+SNP Neutral salt+SNP | 中性盐+PTIO Neutral salt+PTIO | 碱性盐 Basic salt | 碱性盐+SNP Basic salt+SNP | 碱性盐+PTIO Basic salt+PTIO |
---|---|---|---|---|---|---|---|
蒸馏水Distilled water | + | - | + | + | - | + | + |
0.1 mmol·L-1 SNP | - | - | + | - | - | + | - |
0.2 mmol·L-1 PTIO | - | - | - | + | - | - | + |
300 mmol·L-1 NaCl | - | + | + | + | - | - | - |
NaHCO3+Na2CO3 (1∶1,300 mmol·L-1) | - | - | - | - | + | + | + |
图1 不同胁迫处理下盐地碱蓬幼苗的地上鲜重、地下鲜重、株高和根长A: 对照CK; B: 中性盐Neutral salt; C: 中性盐+SNP Neutral salt+SNP; D: 中性盐+PTIO Neutral salt+PTIO; E: 碱性盐Basic salt; F: 碱性盐+SNP Basic salt+SNP; G: 碱性盐+PTIO Basic salt+PTIO. 不同小写字母表示不同处理组之间存在显著差异(P<0.05)。Different lowercase letters indicate significant differences among different treatments (P<0.05).下同The same below.
Fig.1 The shoot fresh weight, root fresh weight, plant height, and root length of S. salsa seedlings under different stress treatments
处理 Treatment | 叶Na+含量 Leaf Na+ content (mg·g-1 DW) | 叶K+含量 Leaf K+ content (mg·g-1 DW) | 叶Na+/K+ Leaf Na+/K+ | 根Na+含量 Root Na+ content (mg·g-1 DW) | 根K+含量 Leaf K+ content (mg·g-1 DW) | 根Na+/K+ Leaf Na+/K+ |
---|---|---|---|---|---|---|
A | 23.04±1.917e | 40.33±2.670a | 0.57±0.011d | 3.36±0.219f | 13.61±0.483a | 0.25±0.017e |
B | 48.09±1.907a | 31.77±3.024b | 1.52±0.179b | 13.85±0.705b | 12.08±0.825b | 1.15±0.119c |
C | 41.62±1.842b | 38.79±0.430a | 1.07±0.056c | 8.31±0.840e | 12.93±0.369ab | 0.64±0.049d |
D | 51.11±1.842a | 23.18±1.039c | 2.21±0.020a | 10.08±0.356d | 8.63±0.585c | 1.17±0.090c |
E | 36.72±2.884c | 26.67±1.448c | 1.38±0.037b | 15.68±0.168a | 8.82±0.448c | 1.78±0.073b |
F | 30.94±0.750d | 30.96±3.269b | 1.01±0.123c | 12.72±0.877c | 11.98±0.694b | 1.06±0.094c |
G | 34.97±2.283c | 22.46±0.457c | 1.56±0.100d | 15.53±0.246a | 7.20±0.976d | 2.19±0.350a |
表2 不同胁迫处理下盐地碱蓬幼苗叶片和根中的Na+和K+含量以及Na+/K+
Table 2 Na+ and K+ contents and Na+/K+ in the leaves and roots of S. salsa seedlings under different stress treatments
处理 Treatment | 叶Na+含量 Leaf Na+ content (mg·g-1 DW) | 叶K+含量 Leaf K+ content (mg·g-1 DW) | 叶Na+/K+ Leaf Na+/K+ | 根Na+含量 Root Na+ content (mg·g-1 DW) | 根K+含量 Leaf K+ content (mg·g-1 DW) | 根Na+/K+ Leaf Na+/K+ |
---|---|---|---|---|---|---|
A | 23.04±1.917e | 40.33±2.670a | 0.57±0.011d | 3.36±0.219f | 13.61±0.483a | 0.25±0.017e |
B | 48.09±1.907a | 31.77±3.024b | 1.52±0.179b | 13.85±0.705b | 12.08±0.825b | 1.15±0.119c |
C | 41.62±1.842b | 38.79±0.430a | 1.07±0.056c | 8.31±0.840e | 12.93±0.369ab | 0.64±0.049d |
D | 51.11±1.842a | 23.18±1.039c | 2.21±0.020a | 10.08±0.356d | 8.63±0.585c | 1.17±0.090c |
E | 36.72±2.884c | 26.67±1.448c | 1.38±0.037b | 15.68±0.168a | 8.82±0.448c | 1.78±0.073b |
F | 30.94±0.750d | 30.96±3.269b | 1.01±0.123c | 12.72±0.877c | 11.98±0.694b | 1.06±0.094c |
G | 34.97±2.283c | 22.46±0.457c | 1.56±0.100d | 15.53±0.246a | 7.20±0.976d | 2.19±0.350a |
分组 Groups | 粗蛋白质 Crude protein | 粗脂肪 Ether extract | 粗纤维 Crude fiber | 中性洗涤纤维 Neutral detergent fiber | 酸性洗涤纤维 Acid detergent fiber | 干物质 Dry matter |
---|---|---|---|---|---|---|
A | 15.44±0.814bc | 6.26±0.046a | 16.05±0.376c | 30.13±0.194d | 22.90±1.390b | 38.05±1.695b |
B | 15.41±0.023bc | 6.02±0.047a | 16.97±0.338c | 37.05±0.523c | 24.94±1.075a | 33.42±1.416c |
C | 24.58±0.025a | 6.55±0.057a | 14.61±0.266d | 25.32±1.349e | 16.81±0.353d | 44.23±0.513a |
D | 14.48±0.225bc | 5.84±0.289a | 20.55±0.072a | 37.82±0.095c | 26.85±0.877a | 30.24±0.616cd |
E | 14.44±0.158bc | 5.00±0.115a | 18.25±0.877b | 39.52±0.169b | 26.79±0.122a | 28.93±0.356d |
F | 19.81±0.016ab | 6.22±0.055a | 13.86±0.113e | 32.00±1.884d | 22.51±0.549c | 42.34±0.381a |
G | 13.83±0.057c | 4.22±0.010a | 19.93±0.096a | 42.29±0.425a | 26.90±0.282a | 22.56±1.199e |
表3 不同胁迫处理下盐地碱蓬幼苗的粗蛋白质、粗脂肪、粗纤维、中性洗涤纤维、酸性洗涤纤维、干物质含量
Table 3 Crude protein, ether extract, crude fiber, neutral detergent fiber, acid detergent fiber, and dry matter content of S. salsa seedlings under different stress treatments (%)
分组 Groups | 粗蛋白质 Crude protein | 粗脂肪 Ether extract | 粗纤维 Crude fiber | 中性洗涤纤维 Neutral detergent fiber | 酸性洗涤纤维 Acid detergent fiber | 干物质 Dry matter |
---|---|---|---|---|---|---|
A | 15.44±0.814bc | 6.26±0.046a | 16.05±0.376c | 30.13±0.194d | 22.90±1.390b | 38.05±1.695b |
B | 15.41±0.023bc | 6.02±0.047a | 16.97±0.338c | 37.05±0.523c | 24.94±1.075a | 33.42±1.416c |
C | 24.58±0.025a | 6.55±0.057a | 14.61±0.266d | 25.32±1.349e | 16.81±0.353d | 44.23±0.513a |
D | 14.48±0.225bc | 5.84±0.289a | 20.55±0.072a | 37.82±0.095c | 26.85±0.877a | 30.24±0.616cd |
E | 14.44±0.158bc | 5.00±0.115a | 18.25±0.877b | 39.52±0.169b | 26.79±0.122a | 28.93±0.356d |
F | 19.81±0.016ab | 6.22±0.055a | 13.86±0.113e | 32.00±1.884d | 22.51±0.549c | 42.34±0.381a |
G | 13.83±0.057c | 4.22±0.010a | 19.93±0.096a | 42.29±0.425a | 26.90±0.282a | 22.56±1.199e |
1 | Wan Q, Yuan J H, Xu R K, et al. Pyrolysis temperature influences ameliorating effects of biochars on acidic soil. Environmental Science & Pollution Research, 2014, 21(4): 2486-2495. |
2 | Liu J, Guo W Q, Shi D C. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions. Photosynthetica, 2010, 48(2): 278-286. |
3 | Liu J, Shi D C. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. Photosynthetica, 2010, 48(1): 127-134. |
4 | Shi L, Ma S, Fang Y, et al. Crucial variations in growth and ion homeostasis of Glycine gracilis seedlings under two types of salt stresses. Journal of Soil Science and Plant Nutrition, 2015, 15(4): 1007-1023. |
5 | Deinlein U, Stephan A B, Horie T, et al. Plant salt-tolerance mechanisms. Trends in Plant Science, 2014, 19(6): 371-379. |
6 | Chen L L. Effect of different levels of Suaeda oil on ruminal fermentation and nutrition digestive rate of sheep. Harbin: Northeast Agricultural University, 2012. |
陈丽丽. 盐生植物碱蓬籽油对绵羊瘤胃发酵及日粮养分消化的影响. 哈尔滨: 东北农业大学, 2012. | |
7 | Lei C S, Xue H J, Gao L Q. A preparation method for mixed silage feed of halophytes: China. CN105053550A. 2015-11-18. |
雷春生, 薛红娟, 高力群. 一种盐生植物混合青贮饲料的制备方法: 中国. CN105053550A. 2015-11-18. | |
8 | Qi T, Sun J S, Liu Y, et al. Effects of different halophyte plants on soil desalination under drip irrigation conditions. Xinjiang Agricultural Sciences, 2011, 48(12): 2309-2314. |
祁通, 孙九胜, 刘易, 等. 滴灌条件下不同盐生植物对盐渍化土壤的脱盐效果研究. 新疆农业科学, 2011, 48(12): 2309-2314. | |
9 | Zhang F H, Li F M, Cui S S, et al. Effect of feeding Suaeda salsa on slaughter performance of Altay sheep. China Feed, 2018(19): 70-73. |
张福海, 李凤鸣, 崔松山, 等. 饲喂盐地碱蓬对阿勒泰羊屠宰性能的影响. 中国饲料, 2018(19): 70-73. | |
10 | Liu J P, Gao B, Li X, et al. The effects of salinity and drought interaction on seed germination and seedling growth of Suaeda salsa L. from different habitats. Acta Ecologica Sinica, 2010, 30(20): 5485-5490. |
刘金平, 高奔, 李欣, 等. 盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响. 生态学报, 2010, 30(20): 5485-5490. | |
11 | Li J S, Hussain T, Feng X H, et al. Comparative study on the resistance of Suaeda glauca and Suaeda salsa to drought, salt, and alkali stresses. Ecological Engineering, 2019, 140: 105593. |
12 | Ma Y, Zhang H J, Kudusi A D, et al. Effects of salt and alkali stresses on the growth, accumulation of organic acids and other solutes and their physiological functions of Suaeda salsa. Acta Agrestia Sinica, 2021, 29(9): 1934-1940. |
麻莹, 张洪嘉, 库都斯·阿布都沙拉木, 等. 盐碱胁迫对盐地碱蓬生长、有机酸等溶质积累及其生理功能的影响. 草地学报, 2021, 29(9): 1934-1940. | |
13 | Liu X J, Yang Y M, Li W Q, et al. Interactive effects of sodium chloride and nitrogen on growth and ion accumulation of a halophyte. Communication in Soil Science and Plant Analysis, 2004, 35(15/16): 2111-2123. |
14 | Wu Y, Shan F B, Li J, et al. Mitigative effect of exogenous spermidine on sunflower seedlings under saline-alkali stress. Chinese Journal of Oil Crop Sciences, 2023, 45(3): 567-573. |
武悦, 单飞彪, 李军, 等. 外源亚精胺对向日葵幼苗盐碱胁迫的缓解效应. 中国油料作物学报, 2023, 45(3): 567-573. | |
15 | Zhao Q, Shen W Z, Gu Y H, et al. Exogenous melatonin mitigates saline-alkali stress by decreasing DNA oxidative damage and enhancing photosythetic carbon metabolism in soybean (Glycine max [L.] Merr.) leaves. Physiologia Plantarum, 2023, 175(4): 13983. |
16 | Zhu C Q, Wei Q Q, Dang C X, et al. Salicylic acid alleviates low phosphorus stress in rice via a nitric oxide-dependent manner. Chinese Journal of Rice Science, 2022, 36(5): 476-486. |
朱春权, 魏倩倩, 党彩霞, 等. 水杨酸通过一氧化氮途径调控水稻缓解低磷胁迫. 中国水稻科学, 2022, 36(5): 476-486. | |
17 | Kumar B, Lamba J S, Dhaliwal S S, et al. Exogenous application of bio-regulators improves grain yield and nutritional quality of forage cowpea (Vigna unguiculata). International Journal of Agriculture and Biology, 2014, 16(4): 759-765. |
18 | Zhao Y, Wei X H, Li T T. Effects of exogenous nitric oxide on seed germination and seedling growth of Chenopodium quinoa under complex saline-alkali stress. Acta Prataculturae Sinica, 2020, 29(4): 92-101. |
赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响. 草业学报, 2020, 29(4): 92-101. | |
19 | Zhang Y M, Zhao X D, Ma M C, et al. Effects of mixed salt alkali stress on seed germination of Suaeda salsa in saline soil. Agricultural Science-technology and Information, 2020(22): 47-53. |
张焱梅, 赵晓东, 马梦慈, 等. 混合盐碱胁迫对盐地碱蓬种子萌发的影响. 农业科技与信息, 2020(22): 47-53. | |
20 | Li H L, Wang J L, Xue Z J, et al. Effects of sodium nitroprusside (SNP) on nitrate accumulation and nutritional quality in the leaves of Chinese chive. Journal of Agricultural University of Hebei, 2014, 37(4): 53-57, 68. |
李红利, 王俊玲, 薛占军, 等. 硝普钠对韭菜叶片硝酸盐累积及营养品质的影响. 河北农业大学学报, 2014, 37(4): 53-57, 68. | |
21 | Lu Q, Song T Q, Pan W, et al. Effects of application of NO on plant growth and quality of pakchoi (Brassica chinensis L.). Journal of Plant Nutrition and Fertilizers, 2019, 25(3): 453-460. |
卢琪, 宋天琦, 潘维, 等. NO浓度对小白菜生长和品质的影响. 植物营养与肥料学报, 2019, 25(3): 453-460. | |
22 | Gao Z Q. Transcriptomic analysis and physiological regulation mechanism of salt tolerance in Nitraria tangutorum under adversity stress. Hohhot: Inner Mongolia University, 2021. |
高子奇. 逆境胁迫下唐古特白刺转录组学分析及耐盐生理调控机制研究. 呼和浩特: 内蒙古大学, 2021. | |
23 | Cheng K. A study on the physiological response and dynamic changes of feeding quality of two species of Ceratoides to abiotic stress. Hohhot: Inner Mongolia University, 2021. |
程凯. 驼绒藜属两种植物对非生物胁迫的生理响应及饲用品质动态变化的研究. 呼和浩特: 内蒙古大学, 2021. | |
24 | Zhao M. Study on the mechanism of calcium, iron, and zinc nutrient formation in Leymus chinensis and establishment of VIGS system. Hohhot: Inner Mongolia University, 2020. |
赵曼. 羊草钙铁锌营养形成机理研究及VIGS体系建立. 呼和浩特: 内蒙古大学, 2020. | |
25 | Wang B P, Dong X Y, Dong K H. Effect of salt alkali stress on the physiological characteristics of alfalfaseedlings. Acta Agrestia Sinica, 2013, 21(6): 1124-1129. |
王保平, 董晓燕, 董宽虎. 盐碱胁迫对紫花苜蓿幼苗生理特性的影响. 草地学报, 2013, 21(6): 1124-1129. | |
26 | Wang H, Takano T, Liu S. Screening and evaluation of saline-alkaline tolerant germplasm of rice (Oryza sativa L.) in soda saline-alkali soil. Agronomy, 2018, 8(10): 205. |
27 | Zhang Q, He M R, Chen W F, et al. Effects of exogenous nitric oxide and salicylic acid on physiological properties of wheatseedlings under salt stress. Acta Pedologica Sinica, 2018, 55(5): 1254-1263. |
张倩, 贺明荣, 陈为峰, 等. 外源一氧化氮与水杨酸对盐胁迫下小麦幼苗生理特性的影响. 土壤学报, 2018, 55(5): 1254-1263. | |
28 | Ketehouli T, Zhou Y G, Dai S Y, et al. A soybean calcineurin B-like protein-interacting protein kinase, GmPKS4, regulates plant responses to salt and alkali stresses. Journal of Plant Physiology, 2021, 256: 153331. |
29 | Li Y, Zhang M, Ning P, et al. Effect of exogenous NO on the physiological characteristics of Hedera nepalensis var. under salt stress. Plant Physiology Journal, 2022, 58(1): 207-213. |
李燕, 张敏, 宁朋, 等. 外源NO对盐胁迫下中华常春藤生理特性的影响. 植物生理学报, 2022, 58(1): 207-213. | |
30 | Liu B S, Zhong C L. The changes of morphologic characteristics and antioxidant enzyme activity of Leymus chinensis under different levels of salt-alkali stress. Science Technology and Engineering, 2016, 16(34): 158-161. |
刘滨硕, 钟春玲. 盐碱胁迫对羊草形态性状及抗氧化酶活性的影响. 科学技术与工程, 2016, 16(34): 158-161. | |
31 | Ahmad P, Latef A A A, Hashem A, et al.Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Frontiers in Plant Science, 2016, 7: 347. |
32 | Manai J, Kalai T, Gouia H, et al.Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. Journal of Soil Science and Plant Nutrition, 2014, 14(2): 433-446. |
33 | Qi X, Zhang L L, Shi Y, et al.Influence of salt-alkali stress on physiological index and leaf ultrastructure ofpotato. Crops, 2014(4): 125-129. |
祁雪, 张丽莉, 石瑛, 等. 盐碱胁迫对马铃薯生理和叶片超微结构的影响. 作物杂志, 2014(4): 125-129. | |
34 | Hu G, Liu Y, Zhang X, et al.Physiological evaluation of alkali-salt tolerance of thirty switchgrass (Panicum virgatum) lines. PLoS One, 2015, 10(7): e0125305. |
35 | Qin Y, Bai J, Wang Y, et al. Comparative effects of salt and alkali stress on photosynthesis and root physiology of oat at anthesis. Archives of Biological Sciences, 2018, 70(2): 329-338. |
36 | Liu J X, Wang X, Li B P. Effects of exogenous nitric oxide donors on photosynthesis and Xanthophyll cycle of Peganum multiflorum seedlings under salt stress. Journal of Desert Research, 2011, 31(1): 137-141. |
刘建新, 王鑫, 李博萍. 外源一氧化氮供体对盐胁迫下多裂骆驼蓬幼苗光合作用和叶黄素循环的影响. 中国沙漠, 2011, 31(1): 137-141. | |
37 | Hu M L. Physiological response of rapeseed seedlings under sustained stress of different NaCl concentrations. Yangzhou: Yangzhou University, 2014. |
胡慕兰. 不同NaCl浓度持续胁迫下油菜幼苗的生理响应. 扬州: 扬州大学, 2014. | |
38 | Chen S Y, Xia G M, Chen H M, et al. Studies on NaCl-tolerant among somatic hybrid lines of wheat and Agropyron elangatum with their parents. Acta Botanica Boreali-Occidentalia Sinica, 2000(3): 327-332. |
陈穗云, 夏光敏, 陈惠民, 等. 小麦与高冰草(长穗偃麦草)体细胞杂种株系与其亲本幼苗抗盐性的比较. 西北植物学报, 2000(3): 327-332. | |
39 | Cai W, Liu W, Wang W S, et al.Overexpression of rat neurons nitric oxide synthase in rice enhances drought and salt tolerance. PLoS One, 2015, 10(6): e0131599. |
40 | Zhao Z, Shi H, Wang M, et al. Effect of nitrogen and phosphorus deficiency on transcriptional regulation of genes encoding key enzymes of starch metabolism in duckweed (Landoltia punctata). Plant Physiology and Biochemistry, 2015, 86: 72-81. |
41 | Su F Y, Hao M D, Guo H H, et al.Effects of nitrogen fertilizer on the yield and nutrition absorption of artificial Leymus chinensis grassland. Acta Agrestia Sinica, 2015, 23(4): 894-896. |
苏富源, 郝明德, 郭慧慧, 等. 施用氮肥对人工羊草草地产量及养分吸收的影响. 草地学报, 2015, 23(4): 894-896. | |
42 | Xu N X, Gu H R, Ding C L, et al.A study of salt tolerance and feeding quality of Italian ryegrass varieties under salinized-soil conditions. Acta Prataculturae Sinica, 2013, 22(4): 89-98. |
许能祥, 顾洪如, 丁成龙, 等. 多花黑麦草耐盐性及其在盐土条件下饲用品质的研究. 草业学报, 2013, 22(4): 89-98. | |
43 | Yu H R, Jia Y S, Jia P F, et al. Comprehensive evaluation of growth, yield and quality of alfalfa in different saline-alkali soil. Chinese Journal of Grassland, 2019, 41(4): 143-149. |
于浩然, 贾玉山, 贾鹏飞, 等. 不同盐碱度对紫花苜蓿产量及品质的影响. 中国草地学报, 2019, 41(4): 143-149. | |
44 | Li M M, Wu G H, Zhao Z Y, et al. Feeding value evaluation of Xinjiang five chenopod halophytes. Pratacultural Science, 2017, 34(2): 361-368. |
李梅梅, 吴国华, 赵振勇, 等. 新疆5种藜科盐生植物的饲用价值. 草业科学, 2017, 34(2): 361-368. |
[1] | 李中利, 蒋丛泽, 马仁诗, 高玮, 受娜, 沈禹颖, 杨宪龙. 陇东旱塬区5个饲用甜高粱品种生产适宜性评价[J]. 草业学报, 2024, 33(8): 50-62. |
[2] | 伍国强, 于祖隆, 魏明. PGPR调控植物响应逆境胁迫的作用机制[J]. 草业学报, 2024, 33(6): 203-218. |
[3] | 程鑫宇, 王继莲, 麦日艳古·亚生null, 李明源. 盐爪爪根际土壤产IAA菌株分离及促生特性分析[J]. 草业学报, 2024, 33(4): 110-121. |
[4] | 刘建新, 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜. 盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响[J]. 草业学报, 2023, 32(2): 119-130. |
[5] | 李瑞强, 王玉祥, 孙玉兰, 张磊, 陈爱萍. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报, 2023, 32(1): 99-111. |
[6] | 苗阳阳, 张艳蕊, 宋标, 刘旭桐, 张安琪, 吕金泽, 张浩, 张小华, 欧阳佳慧, 李旺, 曲善民. 碱蓬根际和内生细菌菌株对盐碱胁迫下苜蓿生长的影响[J]. 草业学报, 2022, 31(9): 107-117. |
[7] | 刘彩婷, 毛丽萍, 阿依谢木, 于应文, 沈禹颖. 紫花苜蓿与垂穗披碱草混播比例对其抗寒生长生理特征的影响[J]. 草业学报, 2022, 31(7): 133-143. |
[8] | 赵颖, 辛夏青, 魏小红. 一氧化氮对干旱胁迫下紫花苜蓿氮代谢的影响[J]. 草业学报, 2021, 30(9): 86-96. |
[9] | 蔡元, 罗玉柱, 臧荣鑫, 李春阳, 扎西英派. 妊娠早期饲粮中添加N-氨甲酰谷氨酸对母羊早期胚胎存活及相关血液指标的影响[J]. 草业学报, 2021, 30(6): 170-179. |
[10] | 张小芳, 魏小红, 刘放, 朱雪妹. PEG胁迫下紫花苜蓿幼苗内源激素对NO的响应[J]. 草业学报, 2021, 30(4): 160-169. |
[11] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
[12] | 范朕连, 贾阳杰, 范远, 宋慧平, 冯政君. 盐碱土施用硅钙渣对披碱草生长的影响及机制[J]. 草业学报, 2021, 30(2): 93-101. |
[13] | 赵颖, 魏小红, 李桃桃. 外源NO对混合盐碱胁迫下藜麦种子萌发和幼苗生长的影响[J]. 草业学报, 2020, 29(4): 92-101. |
[14] | 申午艳, 冯政君, 秦文芳, 范远. 盐碱胁迫下黑麦草生长及离子微区分布特征[J]. 草业学报, 2020, 29(2): 52-63. |
[15] | 王沛, 陈玖红, 王平, 马清, 田莉华, 陈有军, 周青平. 披碱草属植物抗逆性研究现状和存在的问题[J]. 草业学报, 2019, 28(5): 151-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||