欢迎访问《草业学报》官方网站,今天是 分享到:

草业学报 ›› 2020, Vol. 29 ›› Issue (2): 52-63.DOI: 10.11686/cyxb2019323

• 研究论文 • 上一篇    下一篇

盐碱胁迫下黑麦草生长及离子微区分布特征

申午艳1, 冯政君1, 秦文芳2, 范远1,*   

  1. 1.山西大学资源与环境工程研究所,国家环境保护煤炭废弃物资源化高效利用技术重点实验室,山西资源循环与生态环境创新基地,山西 太原 030006;
    2.山西大学环境与资源学院,山西 太原 030006
  • 收稿日期:2019-07-16 修回日期:2019-10-10 出版日期:2020-02-20 发布日期:2020-02-20
  • 通讯作者: E-mail: fanyuan@sxu.edu.cn
  • 作者简介:申午艳(1995-),女,山西祁县人,在读硕士。E-mail: 798444676@qq.com
  • 基金资助:
    国家青年科学基金项目(31701369)和山西省青年面上基金项目(201701D221218)资助

Effects of saline-alkali stress on the growth and ion micro-distribution of ryegrass plants

SHEN Wu-yan1, FENG Zheng-jun1, QIN Wen-fang2, FAN Yuan1,*   

  1. 1.Institute of Resources and Environmental Engineering, Shanxi University, State Environmental protection Key Laboratory of Efficient Utilisation Technology of Coal Waste Resources, Shanxi Collaborative Innovation Center of High Value-added Utilisation of Coal-related Wastes, Taiyuan 030006, China;
    2.Institute of Environment and Resources, Shanxi University, Taiyuan 030006, China
  • Received:2019-07-16 Revised:2019-10-10 Online:2020-02-20 Published:2020-02-20
  • Contact: E-mail: fanyuan@sxu.edu.cn

摘要: 盐碱生境通过离子毒害和渗透胁迫等抑制植物的生长发育。离子微区分布调控主要通过调整盐分在不同部位的分布来减轻Na+等高浓度离子对重要组织器官的毒害作用,是盐碱胁迫下植物生存的重要策略之一。为探究黑麦草在盐碱胁迫下的离子微区分布特征,本研究通过水培法,采用不同盐碱浓度(0、50、100、200 mmol·L-1)培养液处理黑麦草植株,考察其生长、离子吸收、运输选择性和微区分布变化,揭示黑麦草对盐碱胁迫的适应机制。结果表明:1) 盐碱胁迫下,植株的相对含水率、叶绿素含量逐渐降低,电解质外渗率显著升高;当盐碱浓度大于100 mmol·L-1时,根长、株高和生物量均显著降低,即黑麦草的耐盐阈值是100~200 mmol·L-1;2) 盐碱浓度为50 mmol·L-1时,植株根中K+/Na+较空白升高了48.3%,Ca2+/Na+升高了54.1%,说明黑麦草根部可通过增强K+、Ca2+的吸收来维持细胞渗透压并缓解高浓度Na+的毒性;3) 在50~200 mmol·L-1的盐碱浓度下,黑麦草叶片中可溶性组分及细胞壁中Na+的相对含量较对照显著增加,但细胞器内Na+的相对含量降低,说明叶部将Na+富集在液泡和细胞壁中,以减少Na+对细胞器的毒害作用;4) 叶片微观结构的SEM电镜图片显示,盐碱胁迫下叶片表皮增厚、导管数量减少和孔径缩小。综上所述,盐碱胁迫下黑麦草不同器官的适应机理不同,根部主要通过强化K+、Ca2+的吸收,降低对Na+的吸收,并将Na+区隔化在液泡中以降低离子毒害和维持渗透调节,而叶片主要通过将Na+区隔在液泡及细胞壁中,以及微观结构的变化来保护细胞器免受离子毒害。本研究可为黑麦草的耐盐碱适应机制及其在盐碱土上的种植提供理论依据。

关键词: 盐碱胁迫, 黑麦草, 离子微区分布

Abstract: Saline-alkali habitats inhibit the normal growth and development of many plant species through ionic toxicity and osmotic stress. Regulation of ion distribution between different tissues is one of the important survival strategies of plants in saline-alkali stress environments. Under this strategy salt is concentrated into particular plant organs so as to reduce the adverse effect of high Na+ ion concentration on more important organs. In order to explore the adaptation mechanism of ryegrass under saline-alkali stress, ryegrass plants in hydroponic culture were treated with different saline-alkali Na+ concentrations (0, 50, 100, and 200 mmol·L-1). The growth, ion absorption, transport selectivity and ion compartmentalization were studied. Results showed that: 1) With increasing saline-alkali stress, the relative water content and chlorophyll content of the ryegrass plants showed a decreasing trend, and the electrolyte leakage rate increased 28.6%. The root length, plant height and biomass were significantly decreased at 200 mmol·L-1, suggesting that the salt tolerance threshold of ryegrass was between 100 and 200 mmol·L-1; 2) When the saline-alkali Na+ concentrations was 50 mmol·L-1, the K+/Na+ in the roots increased by 48.3%, and the Ca2+/Na+ increased by 54.1% without major change in Na+ concentration, indicating that the ryegrass roots alleviated the Na+ toxicity by increasing the absorption of K+ and Ca2+ ; 3) Under 50-200 mmol·L-1 concentrations, the relative contents of Na+ in the soluble components and cell wall in ryegrass leaves were increased compared to the control, while the relative content of Na+ in cell organelles was decreased, indicating that Na+ was compartmentalized in leaf cell vacuoles and cell walls to reduce the toxic effects of Na+ on organelles; 4) Scanning electron micrographs of the leaf cross-section showed that the leaf tissue structure changed significantly under saline-alkali stress. Notable changes were thickening of the leaf epidermis and reduction in the number of vessels and in the diameter of the vessels. In summary, the roots in ryegrass plants increased absorption of K+ and Ca2+ to alleviate the toxicity caused by excessive Na+, while changes in microstructure and Na+ compartmentalization in leaves of ryegrass plants protected intracellular organelles from ion toxicity. This study provides scientific details of the adaptation mechanisms of ryegrass to environmental saline-alkali stress.

Key words: saline-alkali stress, ryegrass, micro-distribution of ions