草业学报 ›› 2024, Vol. 33 ›› Issue (4): 110-121.DOI: 10.11686/cyxb2023205
• 研究论文 • 上一篇
程鑫宇1,2(), 王继莲1,2, 麦日艳古·亚生null1,2, 李明源1,2()
收稿日期:
2023-06-23
修回日期:
2023-08-28
出版日期:
2024-04-20
发布日期:
2024-01-15
通讯作者:
李明源
作者简介:
E-mail: mingyuan_lee@163.com基金资助:
Xin-yu CHENG1,2(), Ji-lian WANG1,2, Mairiyangu·Yasheng1,2, Ming-yuan LI1,2()
Received:
2023-06-23
Revised:
2023-08-28
Online:
2024-04-20
Published:
2024-01-15
Contact:
Ming-yuan LI
摘要:
为丰富具有产吲哚-3-乙酸(IAA)功能的植物根际促生菌(PGPR),开发高效微生物菌肥,从南疆克孜勒苏柯尔克孜自治州耐盐植物盐爪爪根际土壤中分离产IAA的菌株。结合16S rDNA的限制性片段长度多态性PCR技术(PCR-RFLP)与16S rDNA序列分析进行菌种鉴定,分析高产IAA菌株对玉米和小麦种子发芽的影响,并通过盆栽试验验证其对盐碱胁迫下植株幼苗生长(株高、茎粗、地上干重等)的影响。结果表明,共筛选到67株PGPR菌株,其分泌IAA能力为16.65~71.63 mg·L-1,尤以PM14、PM18分泌量较高。PM14和PM18菌株同时兼具解磷、固氮能力。所有菌株分属6个菌属,以肠杆菌属占绝对优势。接种PM14和PM18均促进了玉米和小麦种子萌发,但菌液浓度高低对种子发芽的影响有显著差异(P<0.05)。接种处理增加了玉米株高、鲜重、地上干重、茎粗和根干重,分别增加了4.7%~37.2%、28.8%~94.5%、15.8%~157.9%、4.4%~35.5%和23.5%~82.4%,但叶绿素含量无显著变化。接种处理增加了小麦株高、茎粗、鲜重和地上干重,分别增加了9.5%~33.1%、13.0%~49.6%、57.4%~112.8%和71.4%~114.3%。除接种灭活的PM14导致小麦根干重与对照相比无显著差异,其他处理均有积极作用,提高了52.8%~69.0%,而所有处理对叶绿素含量均无显著影响。综上,本研究筛选的产IAA菌株提高了植株在盐碱胁迫下的抗性,对开发适用于盐碱地区的微生物菌肥有重要意义。
程鑫宇, 王继莲, 麦日艳古·亚生null, 李明源. 盐爪爪根际土壤产IAA菌株分离及促生特性分析[J]. 草业学报, 2024, 33(4): 110-121.
Xin-yu CHENG, Ji-lian WANG, Mairiyangu·Yasheng, Ming-yuan LI. Isolation and growth-promoting characteristics of rhizobacteria producing indole-3-acetic acid from the rhizosphere soil of Kalidium foliatum[J]. Acta Prataculturae Sinica, 2024, 33(4): 110-121.
菌株编号 Strain number | 分泌量 Concentration | 菌株编号 Strain number | 分泌量 Concentration | 菌株编号 Strain number | 分泌量 Concentration | 菌株编号 Strain number | 分泌量 Concentration |
---|---|---|---|---|---|---|---|
PA1 | 16.65±1.52 | PA19 | 30.06±3.17 | PM8 | 27.79±2.82 | PN3 | 39.79±2.92 |
PA2 | 26.01±2.07 | PA20 | 30.01±2.78 | PM9 | 20.93±2.17 | PN4 | 26.23±2.76 |
PA3 | 33.15±3.26 | PA21 | 26.88±2.78 | PM10 | 37.42±3.85 | PN5 | 32.61±3.55 |
PA4 | 33.85±3.08 | PA22 | 30.82±3.13 | PM11 | 19.20±1.53 | PN6 | 25.69±2.35 |
PA5 | 25.20±1.87 | PA23 | 30.88±3.02 | PM12 | 30.98±2.83 | PN7 | 33.15±2.86 |
PA6 | 46.98±4.95 | PA24 | 20.82±1.72 | PM13 | 33.74±2.85 | PN8 | 25.74±1.94 |
PA7 | 20.61±1.94 | PA25 | 26.98±1.84 | PM14 | 62.28±6.81 | PN9 | 38.23±3.73 |
PA8 | 29.85±1.98 | PC1 | 44.34±3.96 | PM15 | 34.88±2.97 | PN10 | 18.28±1.64 |
PA9 | 46.17±4.77 | PC2 | 22.71±1.99 | PM16 | 21.63±2.49 | PN11 | 30.34±3.22 |
PA10 | 23.47±1.52 | PC3 | 22.88±1.83 | PM17 | 24.98±1.88 | PN12 | 33.15±3.17 |
PA11 | 59.74±5.70 | PM1 | 27.47±2.38 | PM18 | 71.63±5.64 | PN14 | 17.36±1.57 |
PA12 | 54.77±5.18 | PM2 | 30.98±2.52 | PM19 | 39.15±3.20 | PN15 | 20.77±1.85 |
PA13 | 26.82±2.21 | PM3 | 23.90±2.75 | PM20 | 18.34±2.03 | PN16 | 33.96±2.86 |
PA14 | 59.52±4.34 | PM4 | 32.01±3.72 | PM21 | 22.66±2.83 | PN17 | 20.82±1.98 |
PA15 | 49.31±4.06 | PM5 | 28.55±1.68 | PM24 | 19.85±1.80 | PN19 | 33.52±1.52 |
PA17 | 24.12±1.87 | PM6 | 28.98±2.82 | PM25 | 27.96±2.77 | PN20 | 43.96±4.22 |
PA18 | 44.17±4.95 | PM7 | 23.58±1.63 | PM26 | 24.44±3.42 |
表1 PGPR菌株IAA分泌量
Table 1 IAA concentration of PGPR strain (mg·L-1)
菌株编号 Strain number | 分泌量 Concentration | 菌株编号 Strain number | 分泌量 Concentration | 菌株编号 Strain number | 分泌量 Concentration | 菌株编号 Strain number | 分泌量 Concentration |
---|---|---|---|---|---|---|---|
PA1 | 16.65±1.52 | PA19 | 30.06±3.17 | PM8 | 27.79±2.82 | PN3 | 39.79±2.92 |
PA2 | 26.01±2.07 | PA20 | 30.01±2.78 | PM9 | 20.93±2.17 | PN4 | 26.23±2.76 |
PA3 | 33.15±3.26 | PA21 | 26.88±2.78 | PM10 | 37.42±3.85 | PN5 | 32.61±3.55 |
PA4 | 33.85±3.08 | PA22 | 30.82±3.13 | PM11 | 19.20±1.53 | PN6 | 25.69±2.35 |
PA5 | 25.20±1.87 | PA23 | 30.88±3.02 | PM12 | 30.98±2.83 | PN7 | 33.15±2.86 |
PA6 | 46.98±4.95 | PA24 | 20.82±1.72 | PM13 | 33.74±2.85 | PN8 | 25.74±1.94 |
PA7 | 20.61±1.94 | PA25 | 26.98±1.84 | PM14 | 62.28±6.81 | PN9 | 38.23±3.73 |
PA8 | 29.85±1.98 | PC1 | 44.34±3.96 | PM15 | 34.88±2.97 | PN10 | 18.28±1.64 |
PA9 | 46.17±4.77 | PC2 | 22.71±1.99 | PM16 | 21.63±2.49 | PN11 | 30.34±3.22 |
PA10 | 23.47±1.52 | PC3 | 22.88±1.83 | PM17 | 24.98±1.88 | PN12 | 33.15±3.17 |
PA11 | 59.74±5.70 | PM1 | 27.47±2.38 | PM18 | 71.63±5.64 | PN14 | 17.36±1.57 |
PA12 | 54.77±5.18 | PM2 | 30.98±2.52 | PM19 | 39.15±3.20 | PN15 | 20.77±1.85 |
PA13 | 26.82±2.21 | PM3 | 23.90±2.75 | PM20 | 18.34±2.03 | PN16 | 33.96±2.86 |
PA14 | 59.52±4.34 | PM4 | 32.01±3.72 | PM21 | 22.66±2.83 | PN17 | 20.82±1.98 |
PA15 | 49.31±4.06 | PM5 | 28.55±1.68 | PM24 | 19.85±1.80 | PN19 | 33.52±1.52 |
PA17 | 24.12±1.87 | PM6 | 28.98±2.82 | PM25 | 27.96±2.77 | PN20 | 43.96±4.22 |
PA18 | 44.17±4.95 | PM7 | 23.58±1.63 | PM26 | 24.44±3.42 |
图3 菌株PM14和PM18的解磷能力不同小写字母表示差异显著(P<0.05),下同Different small letters indicate significant differences among the treatments at P<0.05, the same below.
Fig.3 The phosphorus solubilizing efficiency of PM14 and PM18 strains
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 茎长 Stem length (cm) | 根长 Root length (cm) | 侧根数 Lateral root number | 茎粗 Stem diameter (mm) |
---|---|---|---|---|---|---|---|
PM14-H | 87.33±6.11a | 71.33±5.03a | 6.24±0.43a | 7.37±0.72a | 13.02±0.56ab | 7.25±0.95a | 2.93±0.24ab |
PM14-L | 94.00±6.00a | 80.00±4.00a | 6.71±0.43a | 6.02±0.88bc | 11.33±0.92bc | 6.50±0.58ab | 2.49±0.21cd |
PM18-H | 98.00±2.00a | 80.00±7.21a | 7.00±0.14a | 5.52±0.88c | 9.78±1.21cd | 6.50±0.57ab | 3.12±0.39a |
PM18-L | 88.67±6.43a | 49.33±3.06b | 6.33±0.46a | 6.87±0.93ab | 13.80±1.58a | 6.75±0.96ab | 2.66±0.04bc |
CK1 | 87.33±1.15a | 40.67±5.03b | 6.24±0.09a | 4.97±0.38c | 9.07±1.83de | 6.00±0.82ab | 2.52±0.08cd |
CK | 94.67±2.31a | 76.67±1.15a | 6.76±0.17a | 3.45±0.45d | 7.35±0.48e | 5.50±0.57b | 2.21±0.17d |
表2 不同处理对玉米种子萌发的影响
Table 2 Effect of different treatments on maize seed germination
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 茎长 Stem length (cm) | 根长 Root length (cm) | 侧根数 Lateral root number | 茎粗 Stem diameter (mm) |
---|---|---|---|---|---|---|---|
PM14-H | 87.33±6.11a | 71.33±5.03a | 6.24±0.43a | 7.37±0.72a | 13.02±0.56ab | 7.25±0.95a | 2.93±0.24ab |
PM14-L | 94.00±6.00a | 80.00±4.00a | 6.71±0.43a | 6.02±0.88bc | 11.33±0.92bc | 6.50±0.58ab | 2.49±0.21cd |
PM18-H | 98.00±2.00a | 80.00±7.21a | 7.00±0.14a | 5.52±0.88c | 9.78±1.21cd | 6.50±0.57ab | 3.12±0.39a |
PM18-L | 88.67±6.43a | 49.33±3.06b | 6.33±0.46a | 6.87±0.93ab | 13.80±1.58a | 6.75±0.96ab | 2.66±0.04bc |
CK1 | 87.33±1.15a | 40.67±5.03b | 6.24±0.09a | 4.97±0.38c | 9.07±1.83de | 6.00±0.82ab | 2.52±0.08cd |
CK | 94.67±2.31a | 76.67±1.15a | 6.76±0.17a | 3.45±0.45d | 7.35±0.48e | 5.50±0.57b | 2.21±0.17d |
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 茎长 Stem length (cm) | 根长 Root length (cm) | 侧根数 Lateral root number | 茎粗 Stem diameter (mm) |
---|---|---|---|---|---|---|---|
PM14-H | 91.33±3.06a | 60.67±5.03c | 6.52±0.21a | 12.72±0.44ab | 9.63±0.52a | 5.67±0.51a | 1.59±0.14a |
PM14-L | 98.67±1.15a | 82.00±3.46a | 7.05±0.08a | 10.87±0.54c | 4.88±0.71b | 4.83±0.41a | 1.36±0.04bc |
PM18-H | 91.33±5.03a | 68.33±3.21bc | 6.52±0.36a | 13.15±0.41a | 9.72±0.90a | 5.67±0.51a | 1.49±0.10ab |
PM18-L | 99.33±1.15a | 72.67±2.31b | 7.09±0.08a | 12.03±0.48b | 9.08±0.65a | 5.33±0.51a | 1.19±0.15cd |
CK1 | 98.00±2.00a | 70.67±2.31b | 7.00±0.14a | 8.68±0.56d | 3.27±0.72b | 4.83±0.41a | 0.98±0.15d |
CK | 98.00±3.46a | 76.67±1.15b | 7.00±0.25a | 9.20±0.74d | 3.98±0.97b | 5.33±0.51a | 1.10±0.14d |
表3 不同处理对小麦种子萌发的影响
Table 3 Effect of different treatments on wheat seed germination
处理 Treatment | 发芽率 Germination rate (%) | 发芽势 Germination potential (%) | 发芽指数 Germination index | 茎长 Stem length (cm) | 根长 Root length (cm) | 侧根数 Lateral root number | 茎粗 Stem diameter (mm) |
---|---|---|---|---|---|---|---|
PM14-H | 91.33±3.06a | 60.67±5.03c | 6.52±0.21a | 12.72±0.44ab | 9.63±0.52a | 5.67±0.51a | 1.59±0.14a |
PM14-L | 98.67±1.15a | 82.00±3.46a | 7.05±0.08a | 10.87±0.54c | 4.88±0.71b | 4.83±0.41a | 1.36±0.04bc |
PM18-H | 91.33±5.03a | 68.33±3.21bc | 6.52±0.36a | 13.15±0.41a | 9.72±0.90a | 5.67±0.51a | 1.49±0.10ab |
PM18-L | 99.33±1.15a | 72.67±2.31b | 7.09±0.08a | 12.03±0.48b | 9.08±0.65a | 5.33±0.51a | 1.19±0.15cd |
CK1 | 98.00±2.00a | 70.67±2.31b | 7.00±0.14a | 8.68±0.56d | 3.27±0.72b | 4.83±0.41a | 0.98±0.15d |
CK | 98.00±3.46a | 76.67±1.15b | 7.00±0.25a | 9.20±0.74d | 3.98±0.97b | 5.33±0.51a | 1.10±0.14d |
1 | Ajay S. Soil salinization management for sustainable development: A review. Journal of Environmental Management, 2021, 277: 111383. |
2 | Gong S F, Xiao N W, Ding W H, et al. Characteristics of chemical fertilizer application and environmental risk assessment in the core water source area of the Danjiangkou Reservoir. Resources and Environment in the Yangtze Basin, 2022, 31(10): 2259-2271. |
龚世飞, 肖能武, 丁武汉, 等. 丹江口水库核心水源区化肥施用分布特征及其环境风险评价. 长江流域资源与环境, 2022, 31(10): 2259-2271. | |
3 | Guo Y Z, Wang J Y. Spatiotemporal changes of chemical fertilizer application and its environmental risks in China from 2000 to 2019. International Journal of Environmental Research and Public Health, 2021, 18(22): 11911. |
4 | Chand K K, Barkha S, Sharon N, et al. Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development. Frontiers in Plant Science, 2023, 13: 1101862. |
5 | Hanum F K, Rochimi M S, Natalie B F, et al. Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Frontiers in Microbiology, 2022, 13: 905210. |
6 | Ali B, Wang X K, Saleem M H, et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants, 2022, 11(3): 345. |
7 | Rubén C, Eduardo M, Karin L. Auxin metabolism in plants. Cold Spring Harbor Perspectives in Biology, 2021, 13(3): A039867. |
8 | Gong C J, Zhou X F, Yang Y, et al. Remediation of Ni and Cd compound contaminated soil by IAA producing bacteria and biochar. Environmental Science & Technology, 2021, 44(5): 140-147. |
龚诚君, 周昕霏, 杨昳, 等. 产IAA菌与生物炭对镍和镉复合污染土壤的修复. 环境科学与技术, 2021, 44(5): 140-147. | |
9 | Chai J L, Yao T, Wang Z L, et al. Screening and characterization of plant growth-promoting rhizobacteria from rhizosphere of forage species in an alpine region. Pratacultural Science, 2022, 39(9): 1752-1762. |
柴加丽, 姚拓, 王振龙, 等. 高寒地区牧草根际促生菌的筛选与特性. 草业科学, 2022, 39(9): 1752-1762. | |
10 | Zhang H X, Wang Z H, Niu B, et al. Screening, identification and broad-spectrum application of efficient IAA-producing bacteria dissolving phosphorus and potassium. Biotechnology Bulletin, 2022, 38(5): 100-111. |
张昊鑫, 王中华, 牛兵, 等. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用. 生物技术通报, 2022, 38(5): 100-111. | |
11 | Saleem S, Iqbal A, Ahmed F, et al. Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in Gossypium hirsutum. Saudi Journal of Biological Sciences, 2021, 28(9): 5317-5324. |
12 | Li M Y, Wang J L, Zhou Q, et al. Analysis on the rhizosphere fungal community structure of four halophytes in Southern Xinjiang. Acta Ecologica Sinica, 2021, 41(21): 8484-8495. |
李明源, 王继莲, 周茜, 等. 南疆四种盐生植物根际土壤真菌群落结构特征. 生态学报, 2021, 41(21): 8484-8495. | |
13 | Zhang Z D, Gu M Y, Tang Q Y, et al. Screening of salt-tolerant and growth-promoting bacteria in the rhizosphere of Kalidium foliatum and the functional identification in pot experiments. Journal of Agricultural Science and Technology, 2021, 23(3): 186-192. |
张志东, 顾美英, 唐琦勇, 等. 盐爪爪根际耐盐促生菌的筛选及穴栽验证. 中国农业科技导报, 2021, 23(3): 186-192. | |
14 | Liang X Y, Gu X, Liu W H, et al. Screening and identification of saline-alkaline tolerance growth-promoting rhizobacteria of halophytes in saline-alkali soil. Journal of Agricultural Sciences, 2021, 42(4): 1-6, 11. |
梁翔宇, 顾欣, 刘文辉, 等. 盐碱地盐生植物根际耐盐促生菌的筛选及鉴定. 农业科学研究, 2021, 42(4): 1-6, 11. | |
15 | Chai J L, Yao T. Characteristics and identification of plant growth promoting rhizobacteria of Astragalus polycladus in alpine meadow. Chinese Journal of Grassland, 2022, 44(10): 68-74. |
柴加丽, 姚拓. 高寒草甸多枝黄耆根际促生菌特性研究与鉴定. 中国草地学报, 2022, 44(10): 68-74. | |
16 | Man J, Tang B, Deng B, et al. lsolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis. Acta Prataculturae Sinica, 2021, 30(1): 59-71. |
漫静, 唐波, 邓波, 等. 羊草根际促生菌的分离筛选及促生作用研究. 草业学报, 2021, 30(1): 59-71. | |
17 | Lu L X, Jiang M M, Wang Y, et al. Isolation, screening and identification of endophytic bacteria from Cinnamomum camphora that promote growth and antagonistic pathogen. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 128-136. |
陆蓝翔, 江明明, 王焱, 等. 两株樟树促生抗病内生细菌的分离、筛选及鉴定. 南京林业大学学报(自然科学版), 2018, 42(6): 128-136. | |
18 | Chen D, Rui K, Zeng T, et al. Isolation, identification and functional evaluation of an IAA producing Bacillus amyloliquefaciens strain. China Tropical Agriculture, 2021, 100(3): 50-58. |
陈迪, 芮凯, 曾涛, 等. 一株具有产IAA能力的解淀粉芽孢杆菌的分离鉴定及功能评价. 中国热带农业, 2021, 100(3): 50-58. | |
19 | Shao D K, Lv Z Y, Li W H, et al. Isolation, identification and growth-promoting characteristics of an endophytic bacteria from JUNCAO. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(1): 33-40. |
邵登科, 吕正阳, 李望豪, 等. 一株菌草内生细菌的分离鉴定及促生特性. 福建农林大学学报(自然科学版), 2023, 52(1): 33-40. | |
20 | Li M Y, Wang J L, Gulibahaer·Sawuti. Culturable bacterial diversity in snow, ice and meltwater of the Yangbark Glacier, Muztag Ata. Journal of Glaciology and Geocryology, 2015, 37(6): 1634-1641. |
李明源, 王继莲, 古丽巴哈尔·萨吾提. 新疆东帕米尔高原慕士塔格峰洋布拉克冰川雪冰及融水中可培养细菌多样性分析. 冰川冻土, 2015, 37(6): 1634-1641. | |
21 | Li F Y, Liu X Y, Yan J T, et al. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects. Acta Agriculturae Zhejiangensis, 2021, 33(5): 873-884. |
李福艳, 刘晓玉, 颜静婷, 等. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用. 浙江农业学报, 2021, 33(5): 873-884. | |
22 | Chen J, Cai J F. Screening of Carya cathayensis germplasm with high photosynthetic rate and high chlorophyll content. Jiangsu Agricultural Science, 2021, 49(19): 164-167. |
陈军, 蔡金峰. 高光合速率与高叶绿素含量薄壳山核桃种质筛选. 江苏农业科学, 2021, 49(19): 164-167. | |
23 | Jiang M Y, Zhou Y, Liu R L, et al. Screening and plant growth promoting of grow-promoting bacteria in rhizosphere bacteria of Angelica dahurica var. formosana. Biotechnology Bulletin, 2022, 38(8): 167-178. |
江美彦, 周杨, 刘仁浪, 等. 白芷根际促生菌的筛选及其促生效果研究. 生物技术通报, 2022, 38(8): 167-178. | |
24 | Zhu T C, Zhou J C, Duan X, et al. Screening and identification of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Ormosia henryi and their growth-promoting characteristics. Journal of Central South University of Forestry & Technology, 2023, 43(1): 43-49. |
朱天才, 周洁尘, 段翔, 等. 花榈木根际促生菌的筛选鉴定及促生特性. 中南林业科技大学学报, 2023, 43(1): 43-49. | |
25 | Zhao T L, Deng X L, Xiao Q Z, et al. IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Industrial Crops and Products, 2020, 155: 112788. |
26 | Saini S, Sharma I, Kaur N, et al. Auxin: A master regulator in plant root development. Plant Cell Reports, 2013(32):741-757. |
27 | Huang C, Liang Y P, Han L J, et al. ldentification and growth promotion analysis of a salt-alkali tolerant endophyte strain isolated from Lespedeza daurica. Microbiology China, 2023, 50(1): 218-234. |
黄臣, 梁银萍, 韩玲娟, 等. 一株达乌里胡枝子耐盐碱内生细菌的鉴定和促生特性. 微生物学通报, 2023, 50(1): 218-234. | |
28 | Zhao S D, Li J H. The study on screening and characteristics of rhizosphere growth-promoting bacteria of Poa alpigena L. Acta Agrestia Sinica, 2021, 29(9): 1885-1891. |
赵树栋, 李建宏. 高原早熟禾根际促生菌分离筛选及特性研究. 草地学报, 2021, 29(9): 1885-1891. | |
29 | Shah R, Chaudhari K, Patel P, et al. Isolation, characterization, and optimization of indole acetic acid-producing Providencia species (7MM11) and their effect on tomato (Lycopersicon esculentum) seedlings. Biocatalysis and Agricultural Biotechnology, 2020, 28: 101732. |
30 | Umapathi M, Chandrasekhar C N, Senthil A, et al. Isolation, characterization and plant growth-promoting effects of sorghum [Sorghum bicolor (L.) moench] root-associated rhizobacteria and their potential role in drought mitigation. Archives of Microbiology, 2022, 204(6): 354. |
31 | Sheela C, Kazim A, Madhumita K. Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. Journal of Genetic Engineering and Biotechnology, 2018, 16(2): 581-586. |
32 | Feng C C, Gao J, Xu L F, et al. Effects of exogenous auxin on growth and development of flue-cured tobacco seedlings. Chinese Tobacco Science, 2020, 41(2): 27-31. |
冯长春, 高峻, 许立峰, 等. 外源生长素对烤烟幼苗生长发育的影响. 中国烟草科学, 2020, 41(2): 27-31. | |
33 | Cao M, Chen R, Li P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature, 2019, 568(7751): 240-243. |
34 | Cai G L, Zhou S, Zhao C S, et al. Identification on heavy metal-resistant Enterobacter ludwigii GL-2 and effects on growth of wheat. Hubei Agricultural Sciences, 2021, 60(23): 44-48. |
蔡高磊, 周炀, 赵昌松, 等. 耐重金属肠杆菌GL-2鉴定及对小麦促生作用的研究. 湖北农业科学, 2021, 60(23): 44-48. | |
35 | Naqqash T, Fatima M, Bukhat S, et al. Plant growth-promoting rhizobacteria significantly improves growth attributes and photosynthetic machinery in wheat. Journal of Plant Growth Regulation, 2022(41): 3372-3386. |
36 | Ma C K, Yuan S, Xie B, et al. IAA plays an important role in alkaline stress tolerance by modulating root development and ROS detoxifying systems in rice plants. International Journal of Molecular Sciences, 2022, 23(23): 14817. |
37 | Ma X L, Zhou H K, Zhang Z F, et al. The effects of exogenous IAA on seed germination and seedling growth of Onobrychis viciifolia Scop. under the drought stress. Acta Agrestia Sinica, 2023, 31(3): 796-803. |
马小兰, 周华坤, 张正芳, 等. 外源IAA对干旱胁迫下红豆草种子萌发及幼苗生长的影响. 草地学报, 2023, 31(3): 796-803. | |
38 | Kloepper J W, Beauchamp C J. A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology, 1992, 38(12): 1219-1232. |
39 | Zhang Y C, Yao T, Zhao G Q, et al. Screening and identification of salt-tolerant growth promoting rhizobacteria and its effects on oat growth under salt stress. Acta Agrestia Sinica, 2021, 29(12): 2645-2652. |
张银翠, 姚拓, 赵桂琴, 等. 耐盐促生菌筛选鉴定及对盐胁迫燕麦生长的影响. 草地学报, 2021, 29(12): 2645-2652. |
[1] | 孟超楠, 赵玉洁, 陈佳欣, 张旖璐, 王彦佳, 冯丽荣, 孙玉刚, 郭长虹. 2株青贮玉米根际固氮菌的筛选鉴定及促生作用研究[J]. 草业学报, 2024, 33(3): 174-185. |
[2] | 刘建新, 刘瑞瑞, 刘秀丽, 欧晓彬, 贾海燕, 卜婷, 李娜. 盐碱胁迫下外源硫化氢对裸燕麦叶片氨基酸代谢过程的影响[J]. 草业学报, 2023, 32(2): 119-130. |
[3] | 李瑞强, 王玉祥, 孙玉兰, 张磊, 陈爱萍. 盐胁迫对5份无芒雀麦苗期生长和生理生化的影响及综合性评价[J]. 草业学报, 2023, 32(1): 99-111. |
[4] | 苗阳阳, 张艳蕊, 宋标, 刘旭桐, 张安琪, 吕金泽, 张浩, 张小华, 欧阳佳慧, 李旺, 曲善民. 碱蓬根际和内生细菌菌株对盐碱胁迫下苜蓿生长的影响[J]. 草业学报, 2022, 31(9): 107-117. |
[5] | 刘晓婷, 姚拓. 高寒草地耐低温植物根际促生菌的筛选鉴定及特性研究[J]. 草业学报, 2022, 31(8): 178-187. |
[6] | 陈意超, 孙晓莹, 解智杰, 周攀, 张露, 高雪莉, 李东, 刘晓风. 根际促生菌的筛选及其在尾矿改良中的应用[J]. 草业学报, 2022, 31(7): 50-63. |
[7] | 吴慧丽, 田薇, 纪燕玲, 娄来清, 蔡庆生. 促进镉吸收积累的植物根际促生菌的筛选及其对一年生黑麦草的影响[J]. 草业学报, 2021, 30(7): 53-61. |
[8] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
[9] | 范朕连, 贾阳杰, 范远, 宋慧平, 冯政君. 盐碱土施用硅钙渣对披碱草生长的影响及机制[J]. 草业学报, 2021, 30(2): 93-101. |
[10] | 漫静, 唐波, 邓波, 李佳欢, 何玉娟, 张佳良. 羊草根际促生菌的分离筛选及促生作用研究[J]. 草业学报, 2021, 30(1): 59-71. |
[11] | 周瀚洋, 孙鹏越, 尉欣荣, 周雨, 张智伟, 高金柱, 赵东豪, 罗艺岚, 呼天明, 付娟娟. 琥珀酸黄杆菌缓解遮阴对多年生黑麦草胁迫的效应[J]. 草业学报, 2020, 29(6): 137-143. |
[12] | 申午艳, 冯政君, 秦文芳, 范远. 盐碱胁迫下黑麦草生长及离子微区分布特征[J]. 草业学报, 2020, 29(2): 52-63. |
[13] | 高亚敏, 罗慧琴, 姚拓, 张建贵, 李海云, 杨琰珊, 兰晓君. 高寒退化草地委陵菜根围丛枝菌根菌(AMF)分离鉴定及促生效应[J]. 草业学报, 2020, 29(1): 145-154. |
[14] | 李文彬, 宁楚涵, 李伟, 李峰, 郭绍霞. 菲和芘胁迫下AMF和PGPR对高羊茅生理生态的响应[J]. 草业学报, 2019, 28(8): 84-94. |
[15] | 李建宏, 李雪萍, 李昌宁, 韩冰, 徐万里, 姚拓. 一株植物根际促生菌Gnyt1的特性研究及分类地位的确定[J]. 草业学报, 2019, 28(5): 55-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||