草业学报 ›› 2021, Vol. 30 ›› Issue (2): 93-101.DOI: 10.11686/cyxb2020319
范朕连1(), 贾阳杰2, 范远1, 宋慧平1, 冯政君3()
收稿日期:
2020-07-07
修回日期:
2020-09-29
出版日期:
2021-02-20
发布日期:
2021-01-19
通讯作者:
冯政君
作者简介:
E-mail: fzj@sxu.edu.cn基金资助:
Zhen-lian FAN1(), Yang-jie JIA2, Yuan FAN1, Hui-ping SONG1, Zheng-jun FENG3()
Received:
2020-07-07
Revised:
2020-09-29
Online:
2021-02-20
Published:
2021-01-19
Contact:
Zheng-jun FENG
摘要:
盐碱土的改良和利用是人们关注的热点,脱硫石膏是常见的盐碱土改良剂之一。硅钙渣是粉煤灰提铝的副产物,富含钙和硅等有益于抗盐碱的元素,经烟气脱硫后性质与脱硫石膏相似,有应用于盐碱地改良的潜力。采用盆栽试验,探究盐碱土施用硅钙渣(硅钙渣施用量为0、10、25、50 g·kg-1,以50 g·kg-1脱硫石膏处理作为参照)对披碱草生长的影响及机制。结果表明:施用硅钙渣后的披碱草单株生物量增加0.4~1.6 倍,总生物量增加2.8~6.8倍,根长增加3.16%~40.21%,株高增加9.07%~17.35%,以50 g· kg-1的添加量效果最好。硅钙渣改善披碱草在盐碱土上生长的主要机制为:1)硅钙渣显著降低土壤pH并改善土壤的理化性质;2)硅钙渣促进了披碱草对钙(Ca)、硅(Si)等有益于抗盐碱元素的吸收,提高了植物的抗盐碱能力;3)施用硅钙渣后披碱草富钾拒钠的过程得到加强,细胞内 K/Na 提高,渗透压得到改善,减轻了盐碱胁迫对植物的伤害。综上,硅钙渣可有效改良盐碱土性质并促进披碱草的生长,为我国北方地区硅钙渣等煤基固废的资源化利用及盐碱土的改良提供了借鉴。
范朕连, 贾阳杰, 范远, 宋慧平, 冯政君. 盐碱土施用硅钙渣对披碱草生长的影响及机制[J]. 草业学报, 2021, 30(2): 93-101.
Zhen-lian FAN, Yang-jie JIA, Yuan FAN, Hui-ping SONG, Zheng-jun FENG. Growth of Elymus nutans in saline saline-alkali soil amended with calcium silicate slag: Performance and mechanism[J]. Acta Prataculturae Sinica, 2021, 30(2): 93-101.
成分 Component | 含量 Content (WB%) | 成分 Component | 含量 Content (WB%) |
---|---|---|---|
SO3 | 36.95 | TiO2 | 0.60 |
CaO | 31.80 | Na2O | 0.37 |
SiO2 | 20.20 | K2O | 0.17 |
Al2O3 | 3.82 | 其他Others | 3.42 |
Fe2O3 | 1.79 | 总计Total | 100.00 |
MgO | 0.88 |
表1 硅钙渣化学成分组成
Table 1 Chemical composition of silica-calcium slag
成分 Component | 含量 Content (WB%) | 成分 Component | 含量 Content (WB%) |
---|---|---|---|
SO3 | 36.95 | TiO2 | 0.60 |
CaO | 31.80 | Na2O | 0.37 |
SiO2 | 20.20 | K2O | 0.17 |
Al2O3 | 3.82 | 其他Others | 3.42 |
Fe2O3 | 1.79 | 总计Total | 100.00 |
MgO | 0.88 |
成分 Component | 含量 Content (WB%) | 成分 Component | 含量 Content (WB%) |
---|---|---|---|
SO3 | 51.05 | Fe2O3 | 0.31 |
CaO | 44.50 | MgO | 0.20 |
SiO2 | 1.34 | 其他Others | 1.54 |
Al2O3 | 1.06 | 总计Total | 100.00 |
表2 脱硫石膏化学成分组成
Table 2 Chemical composition of desulphurized gypsum
成分 Component | 含量 Content (WB%) | 成分 Component | 含量 Content (WB%) |
---|---|---|---|
SO3 | 51.05 | Fe2O3 | 0.31 |
CaO | 44.50 | MgO | 0.20 |
SiO2 | 1.34 | 其他Others | 1.54 |
Al2O3 | 1.06 | 总计Total | 100.00 |
图1 不同处理组的土壤pH不同小写字母表示各处理间差异显著(P<0.05)。下同。Different lowercase letters mean significant difference among different treatments at 0.05 level. The same below.
Fig.1 The pH of soil with different treatment groups
改良剂添加量 Amount of modifier added (g·kg-1) | 钙元素含量 Calcium content (mg·g-1) | 钠元素含量 Sodium content (mg·g-1) | 镁元素含量 Magnesium content (mg·g-1) | 钾元素含量 Potassium content (mg·g-1) |
---|---|---|---|---|
0 | 0.68±0.01c | 0.34±0.06ab | 0.13±0.01a | 0.017±0.002a |
10 | 0.70±0.08c | 0.37±0.08ab | 0.14±0.01a | 0.014±0.001b |
25 | 1.33±0.01b | 0.51±0.10a | 0.15±0.04a | 0.012±0.001b |
50 | 1.34±0.11b | 0.52±0.04a | 0.16±0.01a | 0.011±0.001b |
50 (DG) | 2.12±0.10a | 0.19±0.03b | 0.06±0.01b | 0.009±0.001b |
表3 不同改良剂处理组的土壤中钾、钙、钠和镁元素含量
Table 3 The content of potassium, calcium, sodium and magnesium in soil of different treatment groups with different modifiers
改良剂添加量 Amount of modifier added (g·kg-1) | 钙元素含量 Calcium content (mg·g-1) | 钠元素含量 Sodium content (mg·g-1) | 镁元素含量 Magnesium content (mg·g-1) | 钾元素含量 Potassium content (mg·g-1) |
---|---|---|---|---|
0 | 0.68±0.01c | 0.34±0.06ab | 0.13±0.01a | 0.017±0.002a |
10 | 0.70±0.08c | 0.37±0.08ab | 0.14±0.01a | 0.014±0.001b |
25 | 1.33±0.01b | 0.51±0.10a | 0.15±0.04a | 0.012±0.001b |
50 | 1.34±0.11b | 0.52±0.04a | 0.16±0.01a | 0.011±0.001b |
50 (DG) | 2.12±0.10a | 0.19±0.03b | 0.06±0.01b | 0.009±0.001b |
改良剂添加量 Amount of modifier added (g·kg-1) | 植物单株生物量 The weight of per plant (g) | 植物总生物量 The total weight of plant (g) | 根长 Root length (cm) | 株高 Plant height (cm) |
---|---|---|---|---|
0 | 0.05±0.01ab | 0.93±0.43d | 4.75±0.75bc | 20.17±0.44c |
10 | 0.07±0.01ab | 3.56±0.37c | 4.90±0.06bc | 22.00±0.50b |
25 | 0.11±0.01a | 5.16±0.39b | 6.23±0.15ab | 23.50±0.29a |
50 | 0.13±0.05a | 7.22±0.18a | 6.66±0.90a | 23.67±0.44a |
50 (DG) | 0.04±0.01b | 7.03±0.26a | 4.22±0.25c | 17.34±0.25d |
表4 不同改良剂处理组的植物株高、根长和生物量
Table 4 The plant height, root length and biomass of plant with different treatment groups
改良剂添加量 Amount of modifier added (g·kg-1) | 植物单株生物量 The weight of per plant (g) | 植物总生物量 The total weight of plant (g) | 根长 Root length (cm) | 株高 Plant height (cm) |
---|---|---|---|---|
0 | 0.05±0.01ab | 0.93±0.43d | 4.75±0.75bc | 20.17±0.44c |
10 | 0.07±0.01ab | 3.56±0.37c | 4.90±0.06bc | 22.00±0.50b |
25 | 0.11±0.01a | 5.16±0.39b | 6.23±0.15ab | 23.50±0.29a |
50 | 0.13±0.05a | 7.22±0.18a | 6.66±0.90a | 23.67±0.44a |
50 (DG) | 0.04±0.01b | 7.03±0.26a | 4.22±0.25c | 17.34±0.25d |
改良剂添加量 Amount of modifier added (g·kg-1) | 钙元素含量 Calcium content (mg·g-1) | 钠元素含量 Sodium content (mg·g-1) | 镁元素含量 Magnesium content (mg·g-1) | 钾元素含量 Potassium content (mg·g-1) |
---|---|---|---|---|
0 | 0.48±0.02b | 0.35±0.02a | 0.195±0.006b | 0.63±0.02c |
10 | 0.63±0.04a | 0.31±0.01bc | 0.196±0.008b | 0.64±0.02bc |
25 | 0.67±0.02a | 0.35±0.01ab | 0.228±0.006a | 0.68±0.02ab |
50 | 0.72±0.02a | 0.28±0.01c | 0.205±0.005b | 0.70±0.02a |
50 (DG) | 0.18±0.03c | 0.08±0.01d | 0.052±0.002c | 0.30±0.01d |
表5 不同改良剂处理组的植物中钾、钙、钠和镁元素含量
Table 5 The content of potassium, calcium, sodium and magnesium in plant of different treatment groups with different modifiers
改良剂添加量 Amount of modifier added (g·kg-1) | 钙元素含量 Calcium content (mg·g-1) | 钠元素含量 Sodium content (mg·g-1) | 镁元素含量 Magnesium content (mg·g-1) | 钾元素含量 Potassium content (mg·g-1) |
---|---|---|---|---|
0 | 0.48±0.02b | 0.35±0.02a | 0.195±0.006b | 0.63±0.02c |
10 | 0.63±0.04a | 0.31±0.01bc | 0.196±0.008b | 0.64±0.02bc |
25 | 0.67±0.02a | 0.35±0.01ab | 0.228±0.006a | 0.68±0.02ab |
50 | 0.72±0.02a | 0.28±0.01c | 0.205±0.005b | 0.70±0.02a |
50 (DG) | 0.18±0.03c | 0.08±0.01d | 0.052±0.002c | 0.30±0.01d |
1 | Liu J. Comparison of adaptation mechanism to alkali stress and salt stress in sunflower. Changchun: Northeast Normal University, 2011. |
刘杰. 向日葵对碱胁迫和盐胁迫适应机制比较. 长春: 东北师范大学, 2011. | |
2 | Chu L L, Luo C K, Tian L, et al, Research advance in plants’ adaptation to alkali stress. Journal of Plant Genetic Resources, 2019, 20(4): 836-844. |
楚乐乐, 罗成科, 田蕾, 等. 植物对碱胁迫适应机制的研究进展. 植物遗传资源学报, 2019, 20(4): 836-844. | |
3 | Jin W W, Zhang H H, Teng Z Y, et al. Effects of salt and alkali interaction stress on chlorophyll fluorescence in leaves of Sorghumbicolor×S. sudanense. Pratacutural Science, 2017, 34(10): 2090-2098. |
金微微, 张会慧, 滕志远, 等. 盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响. 草业科学, 2017, 34(10): 2090-2098. | |
4 | Yang X H, Jiang W J, Wei M, et al. Review on plant response and resistance mechanism to salt stress. Journal of Shandong Agricultural University (Natural Science Edition), 2006(2): 302-305, 308. |
杨晓慧, 蒋卫杰, 魏珉, 等. 植物对盐胁迫的反应及其抗盐机理研究进展. 山东农业大学学报(自然科学版), 2006(2): 302-305, 308. | |
5 | Wang L X, Fang C, Wang K. Physiological responses of Leymus chinensis to long-term salt, alkali and mixed salt-alkali stresses. Journal of Plant Nutrition, 2015, 38(4): 526-540. |
6 | Ren P F, Shang L X, Cai Q A, et al. Research progress of plant alkali tolerance and its application prospect in soybean. Soybean Science, 2019, 38(6): 977-985. |
任鹏飞, 尚丽霞, 蔡勤安, 等. 植物耐碱性研究进展及其在大豆中的应用展望. 大豆科学, 2019, 38(6): 977-985. | |
7 | Gong B, Wang X F, Wei M, et al. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 124(2): 377-391. |
8 | Ma H, Yang H, Lü X, et al. Does high pH give a reliable assessment of the effect of alkaline soil on seed germination? A case study with Leymus chinensis (Poaceae). Plant and Soil, 2015, 394(1/2): 35-43. |
9 | Yan H, Zhao W, Sheng Y M, et al. Effects of alkali-stress on Aneurolepidium chinense and Helianthus annuus. Chinese Journal of Applied Ecology, 2005(8): 1497-1501. |
颜宏, 赵伟, 盛艳敏, 等. 碱胁迫对羊草和向日葵的影响. 应用生态学报, 2005(8): 1497-1501. | |
10 | Wang S J, Chen Q, Li Y, et al. Research on saline-alkali soil amelioration with FGD gypsum. Resources, Conservation & Recycling, 2016, 121: 82-92. |
11 | Peter M K. Interactions between Ca, Mg, Na and K: Alleviation of toxicity in saline solutions. Plant and Soil, 2012, 352(1/2): 353-362. |
12 | Fu J J, Sun P Y, Luo Y L, et al. Brassinosteroids enhance cold tolerance in Elymus nutans via mediating redox homeostasis and proline biosynthesis. Environmental and Experimental Botany, 2019, 167: 1-11. |
13 | Chen J H, Wang P, Wang P, et al. Comparison of chilling resistance of six Elymus germplasms. Pratacultural Science, 2019, 36(6): 1591-1599. |
陈玖红, 王沛, 王平, 等. 6份披碱草属牧草种质材料抗寒性的比较. 草业科学, 2019, 36(6): 1591-1599. | |
14 | Feng R Z, Long R J, Shang Z H, et al. Establishment of Elymus natans improves soil quality of a heavily degraded alpine meadow in Qinghai-Tibetan Plateau, China. Plant and Soil, 2010, 327(1): 403-411. |
15 | Yang Z J, Sun J M, Diao M L, et al. Discussion on reaction mechanism of flue gas desulfurization with silicate-calcium slag generated in process of extracting alumina from fly ash. Light Metals, 2018(9): 17-20. |
杨志杰, 孙俊民, 刁美玲, 等. 粉煤灰提铝后硅钙渣用于烟气脱硫反应机理探讨. 轻金属, 2018(9): 17-20. | |
16 | Yang R, Julie A H, Bobby R G. Calcium silicate slag reduces drought stress in rice (Oryza sativa L.). Journal of Agronomy and Crop Science, 2019, 205(4): 253-361. |
17 | Wang M, Wang J J, Tafti N D. Effect of alkali-enhanced biochar on silicon uptake and suppression of gray leaf spot development in perennial ryegrass. Crop Protection, 2019, 119: 9-16. |
18 | Yang H G. Impacts of calcium silicate slag on the availability of silicon and trace contaminants in rice (Oryza sativa L.). Communications in Soil Science and Plant Analysis, 2019, 50(2): 173-184. |
19 | Alvarez J, Snyder G H, Anderson D L, et al. Economics of calcium silicate slag application in a rice-sugarcane rotation in the everglades. Agricultural Systems, 1988, 28(3): 179-188. |
20 | Brecht M O, Datnoff L E, Kucharek T A, et al. Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustinegrass. Plant Disease, 2004, 88(4): 338-344. |
21 | Shu L Z, Liu Y H. Effects of silicon on membrane lipid peroxidation and protective systems in the leaves of maize seedlings under salt stress. Journal of Xiamen University (Natural Science Edition), 2001(6): 1295-1300. |
束良佐, 刘英慧. 硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响. 厦门大学学报(自然科学版), 2001(6): 1295-1300. | |
22 | Zhu Y X. Alleviative effects and mechanisms of silicon on salt stress-induced damage in cucumber seedlings. Yangling: Northwest A&F University, 2016. |
朱永兴. 硅对黄瓜幼苗盐胁迫损伤的缓解效应及机理研究. 杨凌: 西北农林科技大学, 2016. | |
23 | Yang S H, Ji J, Wang G. Effects of salt stress on plants and the mechanism of salt tolerance. World Science and Technology Research and Development, 2006, 28(4): 70-76. |
杨少辉, 季静, 王罡. 盐胁迫对植物的影响及植物的抗盐机理. 世界科技研究与发展, 2006, 28(4): 70-76. | |
24 | Wang B, Xiao G J, Yang J, et al. Effects of coal-fired flue gas desulfurated waste residue application on sweet sorghum cultivation on alkali soil. Agricultural Research in the Arid Areas, 2010, 28(6): 206-211. |
王彬, 肖国举, 杨涓, 等. 燃煤烟气脱硫废弃物施用对碱化土壤种植甜高粱的影响. 干旱地区农业研究, 2010, 28(6): 206-211. | |
25 | Jiang T X, Chen H, Zhang Y L, et al. Safety evaluation of different application rates of desulfurization gypsum on saline-alkali land improvement. Xinjiang Agricultural Sciences, 2019, 56(3): 438-445. |
姜同轩, 陈虹, 张玉龙, 等. 脱硫石膏不同施用量对盐碱地改良安全性评价. 新疆农业科学, 2019, 56(3): 438-445. | |
26 | Zhou Y. Research on effects of desulfurization gypsum and humic acid on saline soil improvement. Hohhot: Inner Mongolia Agricultural University, 2016. |
周阳. 脱硫石膏与腐植酸改良盐碱土效果研究. 呼和浩特: 内蒙古农业大学, 2016. | |
27 | Zhang W H, Chen Y H, Liu Y L. Calcium action signal transduction in plant cells under salt stress. Plant Physiology Newsletter, 2000(2): 146-153. |
章文华, 陈亚华, 刘友良. 钙在植物细胞盐胁迫信号转导中的作用. 植物生理学通讯, 2000(2): 146-153. | |
28 | Wang J, Xu X, Xiao G J, et al. Effect of typical takyr solonetzs reclamation with flue flue gas desulphurization gypsum and its security assessment. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 141-147. |
王静, 许兴, 肖国举, 等. 脱硫石膏改良宁夏典型龟裂碱土效果及其安全性评价. 农业工程学报, 2016, 32(2): 141-147. | |
29 | Chen Y W, Ma K, Hu J T, et al. Effect of desulphurization waste on rice growing development and soil. Journal of Ningxia University (Natural Science Edition), 2011, 32(3): 288-292. |
陈永伟, 马琨, 胡景田, 等. 脱硫废弃物改良盐碱地对水稻生长发育及土壤的影响. 宁夏大学学报(自然科学版), 2011, 32(3): 288-292. | |
30 | Zhu X, Shi L, He L Q. Effects of aluminum-extracion residues of fly ash: The silicate-calcium slag on soil nutrient and the growth and quality of celery . Journal of Northwest Normal University (Natural Science), 2019, 55(3): 98-104. |
朱潇, 石林, 何柳青. 粉煤灰提铝渣对土壤养分及芹菜生长与品质的影响. 西北师范大学学报(自然科学版), 2019, 55(3): 98-104. | |
31 | Zhang Q, Li X J, Zhang S Y. Effects of silicon on growth and osmotic regulation of cotton seedlings under salt stress. Acta Agriculturae Boreali-Sinica, 2019, 34(6): 110-117. |
张倩, 李笑佳, 张淑英. 硅对盐胁迫下棉花幼苗生长和渗透调节系统的影响.华北农学报, 2019, 34(6): 110-117. | |
32 | Li Y B, Xu Q T, Gao B, et al. Effect of desulfurization gypsum improvement on the growth of alfalfa. Jiangsu Agricultural Sciences, 2015, 43(3): 188-190. |
李玉波, 许清涛, 高标, 等. 脱硫石膏改良盐碱地对紫花苜蓿生长的影响. 江苏农业科学, 2015, 43(3): 188-190. |
[1] | 陈雅琦, 苏楷淇, 陈泰祥, 李春杰. 混合盐碱胁迫对醉马草种子萌发及幼苗生理特性的影响[J]. 草业学报, 2021, 30(3): 137-157. |
[2] | 申午艳, 冯政君, 秦文芳, 范远. 盐碱胁迫下黑麦草生长及离子微区分布特征[J]. 草业学报, 2020, 29(2): 52-63. |
[3] | 王沛, 陈玖红, 王平, 马清, 田莉华, 陈有军, 周青平. 披碱草属植物抗逆性研究现状和存在的问题[J]. 草业学报, 2019, 28(5): 151-162. |
[4] | 梁坤伦, 贾存智, 孙金豪, 王明艳, 傅华, 毛祝新. 高寒地区垂穗披碱草种质对低温胁迫的生理响应及其耐寒性评价[J]. 草业学报, 2019, 28(3): 111-121. |
[5] | 赵颖, 魏小红, 赫亚龙, 赵枭飞, 韩厅, 岳凯, 辛夏青, 宿梅飞, 马文静, 骆巧娟. 混合盐碱胁迫对藜麦种子萌发和幼苗抗氧化特性的影响[J]. 草业学报, 2019, 28(2): 156-167. |
[6] | 陈仕勇, 马啸, 张新全, 陈智华, 周青平. 基于SSR标记的小麦族St、H、Y基因组六倍体物种遗传变异及种间亲缘关系研究[J]. 草业学报, 2018, 27(9): 142-151. |
[7] | 蔺永和, 吴景, 方江平, 张卫红, 苗彦军, 李勇胜. 铝胁迫对西藏野生垂穗披碱草种子萌发及幼苗生长的影响[J]. 草业学报, 2018, 27(7): 155-165. |
[8] | 薛博晗, 李娜, 宋桂龙, 李诗刚, 濮阳雪华, 李金波. 外源柠檬酸、苹果酸和草酸对披碱草镉耐受及富集的影响[J]. 草业学报, 2018, 27(6): 128-136. |
[9] | 罗文蓉, 栗文瀚, 干珠扎布, 闫玉龙, 李钰, 曹旭娟, 何世丞, 旦久罗布, 高清竹, 胡国铮. 施氮对藏北垂穗披碱草人工草地叶片功能性状和种群特征的影响[J]. 草业学报, 2018, 27(5): 51-60. |
[10] | 徐雅梅, 王传旗, 武俊喜, 张文静, 王小川, 赤列催珍, 徐德飞, 包赛很那, 苗彦军. Mn2+、Pb2+对野生垂穗披碱草种子萌发与幼苗生长的影响[J]. 草业学报, 2018, 27(3): 194-200. |
[11] | 麻莹, 王晓苹, 姜海波, 石德成. 盐碱胁迫下碱地肤体内的有机酸积累及其草酸代谢特点[J]. 草业学报, 2017, 26(7): 158-165. |
[12] | 张强, 刘宁芳, 向佐湘, 杨知建, 蒋元利, 胡龙兴. 盐碱胁迫对草地早熟禾生长和生理代谢的影响[J]. 草业学报, 2017, 26(12): 67-76. |
[13] | 李莉, 张一弓, 贾纳提, 李学森. 盐碱胁迫下新疆野豌豆种子萌发及幼苗生理响应[J]. 草业学报, 2016, 25(9): 46-53. |
[14] | 陈仕勇, 马啸, 张新全, 陈智华, 周凯. 不同来源SSR和EST-SSR在披碱草属和鹅观草属物种中的通用性分析[J]. 草业学报, 2016, 25(2): 132-140. |
[15] | 王茜,校亮,唐翔宇,徐青,衣华鹏,田海凤. 盐碱胁迫和氮素供给对盐地碱蓬种子发芽与幼苗生长的影响[J]. 草业学报, 2015, 24(9): 216-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||