草业学报 ›› 2024, Vol. 33 ›› Issue (11): 46-57.DOI: 10.11686/cyxb2024055
田晴华(), 刘丹(), 廖小琴, 宋小艳, 胡雷, 王长庭
收稿日期:
2024-02-26
修回日期:
2024-04-08
出版日期:
2024-11-20
发布日期:
2024-09-09
通讯作者:
刘丹
作者简介:
E-mail: liudan_ucas@163. com基金资助:
Qing-hua TIAN(), Dan LIU(), Xiao-qin LIAO, Xiao-yan SONG, Lei HU, Chang-ting WANG
Received:
2024-02-26
Revised:
2024-04-08
Online:
2024-11-20
Published:
2024-09-09
Contact:
Dan LIU
摘要:
近年来,人类活动和气候变化影响使高寒草地土壤结构遭到破坏。土壤团聚体作为土壤的基本结构单元,其稳定性主要取决于生物胶结物质的含量。然而,草地土壤团聚体特征与生物胶结物质的关系研究较少。为了明确不同施氮量下土壤团聚体稳定性差异及其影响因素,以红原高寒草地为研究对象,采用随机区组设计7个氮添加[CO(NH2)2,46.7% N]梯度,分别为0、10、20、30、40、50、60 g·m-2(N0、N10、N20、N30、N40、N50、N60)。测定并分析了土壤团聚体组成差异及稳定性与生物胶结物质含量的关系。结果表明:1)高寒草地以2~4 mm的土壤团聚体为主,相对含量为34.22%。不同施氮梯度对土壤养分含量、团聚体的组成和稳定性影响显著(P<0.05)。2)不同施氮梯度下生物胶结物质[土壤孢子密度、菌丝密度、易提取球囊霉素(EEG)、难提取球囊霉素(DEG)及总球囊霉素(TG)]含量变化显著(P<0.05)。其中,孢子密度在N10下达到最高值,为72.33 ind·g-1、菌丝密度在N60下达到最低值,为0.48 m·g-1,TG在N60处理下达到最高值,为6.84 mg·g-1。3)相关分析表明,菌丝密度与2~4 mm土壤团聚体重量百分数稳定性显著正相关、与0.25~1.00 mm土壤团聚体重量百分数极显著负相关;0.25~1.00 mm土壤团聚体重量百分数与球囊霉素显著正相关。逐步回归分析发现,EEG是影响<0.25 mm土壤团聚体重量百分数变化的重要因子(R2=0.26)。通径分析表明,菌丝密度对平均质量直径(MWD)和几何平均直径(GMD)有最大的直接正效应,为0.79、0.78。研究结果表明,施氮降低了高寒草地土壤团聚体的稳定性,菌丝密度和EEG对土壤团聚体组成及稳定性影响最为显著(P<0.05)。
田晴华, 刘丹, 廖小琴, 宋小艳, 胡雷, 王长庭. 施氮对高寒草地土壤团聚体生物胶结物质及稳定性的影响[J]. 草业学报, 2024, 33(11): 46-57.
Qing-hua TIAN, Dan LIU, Xiao-qin LIAO, Xiao-yan SONG, Lei HU, Chang-ting WANG. Effects of nitrogen fertilization on soil aggregate biological binding agents and stability in an alpine grassland[J]. Acta Prataculturae Sinica, 2024, 33(11): 46-57.
项目 Item | 有机碳 Organic carbon (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | 总磷 Total phosphorus (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | pH | 含水量 Moisture content (%) |
---|---|---|---|---|---|---|---|
N0 | 45.43±1.71b | 3.43±0.22b | 1.95±0.08abc | 24.19±1.58ab | 9.51±0.35b | 5.70±0.05ab | 30.22±0.52ab |
N10 | 45.77±1.32b | 3.27±0.15b | 1.85±0.03bc | 23.76±0.94ab | 8.56±0.32b | 5.88±0.03a | 32.93±0.54a |
N20 | 42.03±1.75b | 3.03±0.30b | 1.76±0.01c | 25.52±0.88ab | 7.86±0.69b | 5.67±0.04ab | 32.25±0.69a |
N30 | 45.57±2.01b | 3.60±0.26b | 1.75±0.03c | 35.71±5.56ab | 8.81±0.80b | 5.26±0.12b | 31.17±0.36a |
N40 | 66.93±0.49a | 6.17±0.15a | 2.25±0.04a | 22.29±1.96ab | 11.60±0.36ab | 5.33±0.07b | 25.09±0.13b |
N50 | 63.13±1.88a | 5.90±0.23a | 2.21±0.02a | 20.48±0.85b | 9.44±0.29b | 5.37±0.06ab | 26.54±0.40b |
N60 | 63.53±1.25a | 6.00±0.17a | 2.14±0.04ab | 46.90±5.29a | 15.19±0.37a | 5.19±0.02b | 24.76±0.68b |
表1 不同施氮量下土壤理化性质
Table 1 Variations of soil physiochemical properties under different nitrogen fertilization rates
项目 Item | 有机碳 Organic carbon (g·kg-1) | 总氮 Total nitrogen (g·kg-1) | 总磷 Total phosphorus (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | pH | 含水量 Moisture content (%) |
---|---|---|---|---|---|---|---|
N0 | 45.43±1.71b | 3.43±0.22b | 1.95±0.08abc | 24.19±1.58ab | 9.51±0.35b | 5.70±0.05ab | 30.22±0.52ab |
N10 | 45.77±1.32b | 3.27±0.15b | 1.85±0.03bc | 23.76±0.94ab | 8.56±0.32b | 5.88±0.03a | 32.93±0.54a |
N20 | 42.03±1.75b | 3.03±0.30b | 1.76±0.01c | 25.52±0.88ab | 7.86±0.69b | 5.67±0.04ab | 32.25±0.69a |
N30 | 45.57±2.01b | 3.60±0.26b | 1.75±0.03c | 35.71±5.56ab | 8.81±0.80b | 5.26±0.12b | 31.17±0.36a |
N40 | 66.93±0.49a | 6.17±0.15a | 2.25±0.04a | 22.29±1.96ab | 11.60±0.36ab | 5.33±0.07b | 25.09±0.13b |
N50 | 63.13±1.88a | 5.90±0.23a | 2.21±0.02a | 20.48±0.85b | 9.44±0.29b | 5.37±0.06ab | 26.54±0.40b |
N60 | 63.53±1.25a | 6.00±0.17a | 2.14±0.04ab | 46.90±5.29a | 15.19±0.37a | 5.19±0.02b | 24.76±0.68b |
图1 施氮对土壤孢子和菌丝密度的影响不同小写字母表示不同施氮量间差异显著,下同。Different lowercase letters mean significant differences among different nitrogen fertilization rates, the same below.
Fig.1 Effects of nitrogen fertilization on soil spore and hyphal density
图2 施氮对土壤球囊霉素的影响EEG: 易提取球囊霉素 Easily extractable glomalin; DEG: 难提取球囊霉素Difficultly extractable glomalin; TG: 总球囊霉素 Total glomalin. 下同 The same below.
Fig.2 Effects of nitrogen fertilization on soil glomalin
图3 施氮对土壤团聚体重量百分数及稳定性的影响MWD: 平均质量直径Mean weight diameter; GMD: 几何平均直径Geometric mean diameter. 下同 The same below.
Fig.3 Effects of nitrogen fertilization on the weight percent of soil aggregates and stability
图4 施氮下土壤团聚体与生物胶结物质特征的相关性分析*: P<0.05; **: P<0.01. Spore density: 孢子密度; Hyphal density: 菌丝密度。<0.25 mm、0.25~1.00 mm、1~2 mm、2~4 mm代表土壤团聚体重量百分数。<0.25 mm, 0.25-1.00 mm, 1-2 mm, 2-4 mm represent the percentage of soil aggregate weight.
Fig.4 Pearson correlations between soil aggregate and properties of biological binding agents
因变量 Dependent variable | 回归方程 Equation | F | R2 | 自变量R2 R2 of each independent variable |
---|---|---|---|---|
Wi (<0.25 mm) | y=8.59+15.10EEG | 6.67 | 0.260* | EEG (0.260*) |
Wi (0.25~1.00 mm) | y=38.66-9.61Hyphal density+0.09Spore density | 13.75 | 0.604** | Hyphal density (0.54*), Spore density (0.07) |
Wi (1~2 mm) | y=14.08+4.00Hyphal density-0.06Spore density | 2.30 | 0.203 | Hyphal density (0.20*), Spore density (0.001) |
Wi (2~4 mm) | y=24.834+7.10Hyphal density | 16.37 | 0.463** | Hyphal density (0.46**) |
MWD | y=1.57+0.20Hyphal density-0.001Spore density-0.41EEG | 13.48 | 0.704** | Hyphal density (0.45**), Spore density (0.19**), EEG (0.06) |
GMD | y=1.09+0.14Hyphal density-0.001Spore density-0.44EEG | 17.36 | 0.750** | Hyphal density (0.44**), Spore density (0.18**), EEG (0.13**) |
表2 土壤团聚体粒径重量百分数和稳定性与生物胶结物质间的多元逐步回归分析
Table 2 Stepwise multiple linear regressions between soil aggregate weight percent as well as stability and properties of biological binding agents
因变量 Dependent variable | 回归方程 Equation | F | R2 | 自变量R2 R2 of each independent variable |
---|---|---|---|---|
Wi (<0.25 mm) | y=8.59+15.10EEG | 6.67 | 0.260* | EEG (0.260*) |
Wi (0.25~1.00 mm) | y=38.66-9.61Hyphal density+0.09Spore density | 13.75 | 0.604** | Hyphal density (0.54*), Spore density (0.07) |
Wi (1~2 mm) | y=14.08+4.00Hyphal density-0.06Spore density | 2.30 | 0.203 | Hyphal density (0.20*), Spore density (0.001) |
Wi (2~4 mm) | y=24.834+7.10Hyphal density | 16.37 | 0.463** | Hyphal density (0.46**) |
MWD | y=1.57+0.20Hyphal density-0.001Spore density-0.41EEG | 13.48 | 0.704** | Hyphal density (0.45**), Spore density (0.19**), EEG (0.06) |
GMD | y=1.09+0.14Hyphal density-0.001Spore density-0.44EEG | 17.36 | 0.750** | Hyphal density (0.44**), Spore density (0.18**), EEG (0.13**) |
因变量 Dependent variable | 自变量 Independent variable | 与因变量的相关系数Correlation coefficient with dependent variable | 直接通径系数Direct path coefficient | 间接通径系数Indirect path coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SOC | AP | EEG | TG | Spore density | Hyphal density | 合计 Total | ||||
MWD | SOC | -0.80** | -0.61 | - | 0.33 | -0.01 | -0.08 | 0.20 | -0.63 | -0.19 |
AP | -0.49* | 0.47 | -0.43 | - | 0 | -0.06 | 0.13 | -0.59 | -0.96 | |
EEG | -0.63** | -0.02 | -0.41 | 0.14 | - | -0.06 | 0.18 | -0.46 | -0.61 | |
TG | -0.71** | -0.10 | -0.47 | 0.28 | -0.01 | - | 0.26 | -0.66 | -0.61 | |
Spore density | 0.43 | -0.38 | 0.32 | -0.16 | 0.01 | 0.07 | - | 0.57 | 0.81 | |
Hyphal density | 0.79** | 0.83 | 0.46 | -0.33 | 0.01 | 0.08 | -0.26 | - | -0.04 | |
因变量 Dependent variable | 自变量 Independent variable | 与因变量的相关系数Correlation coefficient with dependent variable | 直接通径系数Direct path coefficient | 间接通径系数Indirect path coefficient | ||||||
SOC | NH4+-N | EEG | TG | Spore density | Hyphal density | 合计 Total | ||||
GMD | SOC | -0.77** | -0.23 | - | 0 | -0.24 | -0.05 | 0.15 | -0.40 | -0.54 |
NH4+-N | -0.25 | -0.07 | -0.01 | - | -0.01 | -0.02 | 0.08 | -0.22 | -0.18 | |
EEG | -0.71** | -0.36 | -0.15 | 0 | - | -0.04 | 0.14 | -0.29 | -0.35 | |
TG | -0.69** | -0.06 | -0.17 | -0.02 | -0.21 | - | 0.19 | -0.42 | -0.63 | |
Spore density | 0.43 | -0.28 | 0.12 | 0.02 | 0.17 | 0.04 | - | 0.36 | 0.71 | |
Hyphal density | 0.78** | 0.52 | 0.17 | 0.03 | 0.20 | 0.05 | -0.20 | - | 0.26 |
表3 球囊霉素及环境因子对MWD和GMD的直接和间接影响
Table 3 Direct and indirect effects of glomalin and environmental properties on MWD and GMD
因变量 Dependent variable | 自变量 Independent variable | 与因变量的相关系数Correlation coefficient with dependent variable | 直接通径系数Direct path coefficient | 间接通径系数Indirect path coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SOC | AP | EEG | TG | Spore density | Hyphal density | 合计 Total | ||||
MWD | SOC | -0.80** | -0.61 | - | 0.33 | -0.01 | -0.08 | 0.20 | -0.63 | -0.19 |
AP | -0.49* | 0.47 | -0.43 | - | 0 | -0.06 | 0.13 | -0.59 | -0.96 | |
EEG | -0.63** | -0.02 | -0.41 | 0.14 | - | -0.06 | 0.18 | -0.46 | -0.61 | |
TG | -0.71** | -0.10 | -0.47 | 0.28 | -0.01 | - | 0.26 | -0.66 | -0.61 | |
Spore density | 0.43 | -0.38 | 0.32 | -0.16 | 0.01 | 0.07 | - | 0.57 | 0.81 | |
Hyphal density | 0.79** | 0.83 | 0.46 | -0.33 | 0.01 | 0.08 | -0.26 | - | -0.04 | |
因变量 Dependent variable | 自变量 Independent variable | 与因变量的相关系数Correlation coefficient with dependent variable | 直接通径系数Direct path coefficient | 间接通径系数Indirect path coefficient | ||||||
SOC | NH4+-N | EEG | TG | Spore density | Hyphal density | 合计 Total | ||||
GMD | SOC | -0.77** | -0.23 | - | 0 | -0.24 | -0.05 | 0.15 | -0.40 | -0.54 |
NH4+-N | -0.25 | -0.07 | -0.01 | - | -0.01 | -0.02 | 0.08 | -0.22 | -0.18 | |
EEG | -0.71** | -0.36 | -0.15 | 0 | - | -0.04 | 0.14 | -0.29 | -0.35 | |
TG | -0.69** | -0.06 | -0.17 | -0.02 | -0.21 | - | 0.19 | -0.42 | -0.63 | |
Spore density | 0.43 | -0.28 | 0.12 | 0.02 | 0.17 | 0.04 | - | 0.36 | 0.71 | |
Hyphal density | 0.78** | 0.52 | 0.17 | 0.03 | 0.20 | 0.05 | -0.20 | - | 0.26 |
1 | Hao A H, Xue X, Peng F, et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2020, 40(3): 964-975. |
郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究. 生态学报, 2020, 40(3): 964-975. | |
2 | Jin P, Liu M, Xu X, et al. Gross mineralization and nitrification in degraded alpine grassland soil. Rhizosphere, 2023, 27: 100778. |
3 | Zhang J Q, Li Q, Ren Z W, et al. Effects of nitrogen addition on species richness and relationship between species richness and aboveground productivity of alpine meadow of the Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 2010, 34(10): 1125-1131. |
张杰琦, 李奇, 任正炜, 等. 氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响. 植物生态学报, 2010, 34(10): 1125-1131. | |
4 | Gonzalez-Ollauri A, Hudek C, Mickovski S B, et al. Describing the vertical root distribution of alpine plants with simple climate, soil, and plant attributes. CATENA, 2021, 203: 105305. |
5 | Ma Z, Yue Y, Feng M, et al. Mitigation of ammonia volatilization and nitrate leaching via loss control urea triggered H-bond forces. Scientific Reports, 2019, 9(1): 15140. |
6 | Jiang S, Liu Y, Luo J, et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem. The New Phytologist, 2018, 220(4): 1222-1235. |
7 | Gispert M, Emran M, Pardini G, et al. The impact of land management and abandonment on soil enzymatic activity, glomalin content and aggregate stability. Geoderma, 2013, 202/203: 51-61. |
8 | Jing H, Shi J Y, Wang G L, et al. Distribution of the glomalin-related soil protein and aggregate fractions in different restoration communities after clear-cutting Pinus tabulaeformis plantation. China Environmental Science, 2017, 37(8): 3056-3063. |
景航, 史君怡, 王国梁, 等. 皆伐油松林不同恢复措施下团聚体与球囊霉素分布特征. 中国环境科学, 2017, 37(8): 3056-3063. | |
9 | Gan J W, Han X Z, Zou W X. Glomalin and its role in soil ecosystems: A review. Soils and Crops, 2022, 11(1): 41-53. |
甘佳伟, 韩晓增, 邹文秀. 球囊霉素及其在土壤生态系统中的作用. 土壤与作物, 2022, 11(1): 41-53. | |
10 | Guo W, Zhou Y P, Chen M Q, et al. Effects of long-term different N application rates on aggregate distribution and fungal community composition in fluvo-aquic soil. Acta Pedologica Sinica, 2024, 61(3): 824-835. |
郭伟, 周云鹏, 陈美淇, 等. 长期不同氮肥施用量对潮土团聚体分布和真菌群落组成的影响. 土壤学报, 2024, 61(3): 824-835. | |
11 | Yin Y, Wang L, Liang C, et al. Soil aggregate stability and iron and aluminium oxide contents under different fertiliser treatments in a long-term solar greenhouse experiment. Pedosphere, 2016, 26(5): 760-767. |
12 | Xiao D, Che R, Liu X, et al. Arbuscular mycorrhizal fungi abundance was sensitive to nitrogen addition but diversity was sensitive to phosphorus addition in karst ecosystems. Biology and Fertility of Soils, 2019, 55(5): 457-469. |
13 | Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance? Biogeochemistry, 2006, 77(1): 25-56. |
14 | Jeewani P H, Luo Y, Yu G, et al. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biology and Biochemistry, 2021, 162: 108417. |
15 | Wright S F, Upadhyaya A, Buyer J S. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary electrophoresis. Soil Biology and Biochemistry, 1998, 30(13): 1853-1857. |
16 | Emran M, Gispert M, Pardini G. Patterns of soil organic carbon, glomalin and structural stability in abandoned Mediterranean terraced lands. European Journal of Soil Science, 2012, 63(5): 637-649. |
17 | Wright S F, Anderson R L. Aggregate stability and glomalin in alternative crop rotations for the central Great Plains. Biology and Fertility of Soils, 2000, 31(3/4): 249-253. |
18 | Huang Y, Wang D W, Cai J L, et al. Review of glomalin-related soil protein and its environmental function in the rhizosphere. Acta Phytoecologica Sinica, 2011, 35(2): 232-236. |
黄艺, 王东伟, 蔡佳亮, 等. 球囊霉素相关土壤蛋白根际环境功能研究进展. 植物生态学报, 2011, 35(2): 232-236. | |
19 | Zhong X, Li J, Li X, et al. Physical protection by soil aggregates stabilizes soil organic carbon under simulated N deposition in a subtropical forest of China. Geoderma, 2017, 285: 323-332. |
20 | Rezáčová V, Czakó A, Stehlík M, et al. Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi. Scientific Reports, 2021, 11(1): 12548. |
21 | Zheng Y, Kim Y, Tian X, et al. Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiology Ecology, 2014, 89(3): 594-605. |
22 | Johnson N C, Rowland D L, Corkidi L, et al. Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology (Durham), 2003, 84(7): 1895-1908. |
23 | Gerdemann J W, Nicolson T H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 1963, 46(2): 235-244. |
24 | Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil, 1998, 198(1): 97-107. |
25 | Yang C, Liu N, Zhang Y. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma, 2019, 337: 444-452. |
26 | Liu J L, Liu W Y, Zhao X T, et al. Effects of planting duration of Dendrocalamus brandisii on soil aggregate stability and organic matter composition. World Bamboo and Rattan, 2024, 22(1): 30-38. |
刘佳林, 刘蔚漪, 赵秀婷, 等. 甜龙竹种植年限对土壤团聚体稳定性及有机质组分的影响. 世界竹藤通讯, 2024, 22(1): 30-38. | |
27 | Zhang W, Fu Y, Li J F, et al. Comparative study on kjeldahl method and dumas combustion method for total nitrogen measurement in soil. Chinese Agricultural Science Bulletin, 2015, 31(35): 172-175. |
张薇, 付昀, 李季芳, 等. 基于凯氏定氮法与杜马斯燃烧法测定土壤全氮的比较研究. 中国农学通报, 2015, 31(35): 172-175. | |
28 | Zhang X S. Analysis of the factors affecting the available P content in the fermentation liquid of P bacteria determined by Mo-Sb colorimetry. Journal of Anhui Agricultural Sciences, 2008, 36(12): 4822-4823. |
张祥胜. 钼锑抗比色法测定磷细菌发酵液中有效磷含量测定值的影响因素分析. 安徽农业科学, 2008, 36(12): 4822-4823. | |
29 | Zhan X Y, Liu C H, Fan H Y, et al. Comparison between two N-ammoniacal measurements in water-Napierian reagent colorimetric method and indophenol-blue colorimetric method. Environmental Science and Management, 2010, 35(11): 132-134. |
詹晓燕, 刘臣辉, 范海燕, 等. 水体中氨氮测定方法的比较-纳氏试剂光度法、靛酚蓝比色法. 环境科学与管理, 2010, 35(11): 132-134. | |
30 | Qimanguli·P L T, Liu D, Mao J, et al. Soil carbon, nitrogen, phosphorus and their eco-stoichiometric characteristics of alpine grasslands under different degradation degrees. Chinese Journal of Ecology, 2023, 2(10): 1-11. |
其曼古丽·帕拉提, 刘丹, 毛军, 等. 不同退化程度高寒草地土壤碳氮磷含量及其生态化学计量特征. 生态学杂志, 2023, 2(10): 1-11. | |
31 | Han Y, Feng J, Han M, et al. Responses of arbuscular mycorrhizal fungi to nitrogen addition: A meta-analysis. Global Change Biology, 2020, 26(12): 7229-7241. |
32 | Liu Y, Shi G, Mao L, et al. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194(2): 523-535. |
33 | Babalola B J, Li J, Willing C E, et al. Nitrogen fertilisation disrupts the temporal dynamics of arbuscular mycorrhizal fungal hyphae but not spore density and community composition in a wheat field. The New Phytologist, 2022, 234(6): 2057-2072. |
34 | Li X, Han S, Luo X, et al. Arbuscular mycorrhizal-like fungi and glomalin-related soil protein drive the distributions of carbon and nitrogen in a large scale. Journal of Soils and Sediments, 2020, 20(2): 963-972. |
35 | Yang M, Shi Z Y, Lu S C, et al. Effect of warming on soil glomalin in grassland of the Qinghai-Tibet Plateau. Ecology and Environmental Sciences, 2020, 29(4): 650-656. |
杨梅, 石兆勇, 卢世川, 等. 增温对青藏高原草地生态系统土壤球囊霉素含量的影响. 生态环境学报, 2020, 29(4): 650-656. | |
36 | Yang X, Li Y, Niu B, et al. Temperature and precipitation drive elevational patterns of microbial beta diversity in alpine grasslands. Microbial Ecology, 2022, 84(4): 1141-1153. |
37 | Wilson G W T, Rice C W, Rillig M C, et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 2009, 12(5): 452-461. |
38 | Li B W. Effect of fertilization on GRSP and environmental factors in alpine meadows on the Qinghai-Tibetan Plateau. Lanzhou: Lanzhou University, 2016. |
李博文. 施肥对青藏高原高寒草甸球囊霉素土壤相关蛋白及其环境因子的影响. 兰州: 兰州大学, 2016. | |
39 | Wu Q, Cao M, Zou Y, et al. Direct and indirect effects of glomalin, mycorrhizal hyphae and roots on aggregate stability in rhizosphere of trifoliate orange. Scientific Reports, 2014, 4(1): 5823. |
40 | Zhang X, Ren H Y, Han G D. Effects of warming and nitrogen application on soil aggregate stability and carbon content in the desert grassland of Inner Mongolia. Grassland and Prataculture, 2020, 32(2): 22-26. |
张欣, 任海燕, 韩国栋. 增温和施氮对内蒙古荒漠草原土壤团聚体稳定性及碳含量的影响. 草原与草业, 2020, 32(2): 22-26. | |
41 | Bai J, Zhang S, Huang S, et al. Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study. Journal of Integrative Agriculture, 2023, 22(11): 3517-3534. |
42 | Zhou C C, Chen Z J, Zhao S X, et al. Effects of different cultivating patterns and nitrogen fertilizer application on soil aggregates. Agricultural Research in the Arid Areas, 2013, 31(3): 100-105. |
周从从, 陈竹君, 赵世翔, 等. 不同栽培模式及施氮量对土壤团聚体的影响. 干旱地区农业研究, 2013, 31(3): 100-105. | |
43 | Yao J H, Wu J N, Wang C Y, et al. Changes in aggregates stability and organic carbon content of black soil following the use of different long-term nitrogen application rates. Journal of Agro-Environment Science, 2024, 43(1): 102-110. |
姚俊红, 武俊男, 王呈玉, 等. 长期不同施氮量下黑土团聚体稳定性及有机碳含量的变化. 农业环境科学学报, 2024, 43(1): 102-110. | |
44 | Nimmo J R, Deason J, Izbicki J A, et al. Evaluation of unsaturated zone water fluxes in heterogeneous alluvium at a Mojave Basin Site. Water Resources Research, 2002, 38(10): 31-33. |
45 | Liu W, Wei Y, Li R, et al. Improving soil aggregates stability and soil organic carbon sequestration by no-till and legume-based crop rotations in the North China Plain. Science of the Total Environment, 2022, 847: 157518. |
46 | Guo H B, Yuan Y H, Wu J P, et al. Distribution of water-stable aggregates and organic carbon in response to simulated nitrogen deposition in a Chinese fir plantation. Journal of Soil and Water Conservation, 2013, 27(4): 268-272. |
郭虎波, 袁颖红, 吴建平, 等. 氮沉降对杉木人工林土壤团聚体及其有机碳分布的影响. 水土保持学报, 2013, 27(4): 268-272. | |
47 | Curtin D, Smillie G W. Effects of incubation and pH on soil solution and exchangeable cation ratios. Soil Science Society of America Journal, 1995, 59: 1006-1011. |
48 | Okebalama C B, Marschner B. Reapplication of biochar, sewage waste water, and NPK fertilizers affects soil fertility, aggregate stability, and carbon and nitrogen in dry-stable aggregates of semi-arid soil. Science of the Total Environment, 2023, 866: 161203. |
49 | Sun L, Wang G, Jing H, et al. Nitrogen addition increases the contents of glomalin-related soil protein and soil organic carbon but retains aggregate stability in a Pinus tabulaeformis forest. PeerJ, 2018, 6: e5039. |
50 | Zhu R, Zheng Z, Li T, et al. Effect of tea plantation age on the distribution of glomalin-related soil protein in soil water-stable aggregates in southwestern China. Environmental Science and Pollution Research, 2019, 26(2): 1973-1982. |
51 | Wang Q, Hong H, Liao R, et al. Glomalin-related soil protein: The particle aggregation mechanism and its insight into coastal environment improvement. Ecotoxicology and Environmental Safety, 2021, 227: 112940. |
[1] | 徐玲玲, 牛犇, 张宪洲, 何永涛, 石培礼, 宗宁, 武建双, 王向涛. 藏北两个临近不同高寒草地碳通量对气候条件的响应[J]. 草业学报, 2024, 33(6): 1-16. |
[2] | 石昊, 杨彩红, 夏菲, 王军强, 魏巍, 王敬龙, 薛云尹, 郑晒坤, 吴皓阳, 冉林灵, 严双, 姜晓敏. 短期增温对修复过程中藏北高寒退化草地生产力的初期影响[J]. 草业学报, 2024, 33(11): 30-45. |
[3] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[4] | 李林芝, 张德罡, 马源, 罗珠珠, 林栋, 海龙, 白兰鸽. 不同退化程度高寒草甸土壤团聚体养分及生态化学计量特征研究[J]. 草业学报, 2023, 32(8): 48-60. |
[5] | 郭鑫, 罗欢, 许雪梅, 马爱霞, 尚振艳, 韩天虎, 牛得草, 文海燕, 李旭东. 不同品质凋落物分解对黄土高原草地土壤有机碳及其稳定性的影响[J]. 草业学报, 2023, 32(5): 83-93. |
[6] | 雷石龙, 廖李容, 王杰, 张路, 叶振城, 刘国彬, 张超. 高寒草地植物多样性与Godron群落稳定性关系及其环境驱动因素[J]. 草业学报, 2023, 32(3): 1-12. |
[7] | 李彤瑶, 周青平, 陈有军, 詹圆, 汪辉. 氮肥用量对披碱草属牧草种子产量和氮肥利用效率的影响[J]. 草业学报, 2023, 32(3): 80-90. |
[8] | 钱文武, 郭鹏, 朱慧森, 张士敏, 李德颖. 草地早熟禾叶片表皮特征、解剖结构及光合特性对不同施氮量的响应[J]. 草业学报, 2023, 32(1): 131-143. |
[9] | 张勇, 王海娣, 高玉红, 吴兵, 剡斌, 王一帆, 崔政军, 文泽东. 多元胡麻轮作模式对土壤团聚体特征及氮素含量的影响[J]. 草业学报, 2023, 32(1): 75-88. |
[10] | 高玮, 受娜, 蒋丛泽, 马仁诗, 沈禹颖, 杨宪龙. 施氮量对饲用高粱干物质积累、分配及水分利用效率的影响[J]. 草业学报, 2022, 31(9): 26-35. |
[11] | 周大梁, 石薇, 蒋紫薇, 魏正业, 梁欢欢, 贾倩民. 沟垄集雨下密度和施氮对黄土高原青贮玉米叶片酶活性及水氮利用的影响[J]. 草业学报, 2022, 31(8): 126-143. |
[12] | 蒋紫薇, 刘桂宇, 安昊云, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 种植密度与施氮对玉米/秣食豆间作系统饲草产量、品质和氮肥利用的影响[J]. 草业学报, 2022, 31(7): 157-171. |
[13] | 王亚妮, 胡宜刚, 王增如, 李以康, 张振华, 周华坤. 沙化和人工植被重建对高寒草地土壤细菌群落特征的影响[J]. 草业学报, 2022, 31(5): 26-39. |
[14] | 周磊, 魏雪, 王长庭, 吴鹏飞. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3): 34-46. |
[15] | 孙彩彩, 董全民, 刘文亭, 冯斌, 时光, 刘玉祯, 俞旸, 张春平, 张小芳, 李彩弟, 杨增增, 杨晓霞. 放牧方式对青藏高原高寒草地土壤节肢动物群落结构和多样性的影响[J]. 草业学报, 2022, 31(2): 62-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||