草业学报 ›› 2024, Vol. 33 ›› Issue (11): 30-45.DOI: 10.11686/cyxb2023484
石昊1(), 杨彩红1(), 夏菲3(), 王军强2,3, 魏巍3, 王敬龙3, 薛云尹2, 郑晒坤1, 吴皓阳2, 冉林灵2, 严双2, 姜晓敏1
收稿日期:
2023-12-18
修回日期:
2024-01-03
出版日期:
2024-11-20
发布日期:
2024-09-09
通讯作者:
杨彩红,夏菲
作者简介:
414677849@qq.com基金资助:
Hao SHI1(), Cai-hong YANG1(), Fei XIA3(), Jun-qiang WANG2,3, Wei WEI3, Jing-long WANG3, Yun-yin XUE2, Shai-kun ZHENG1, Hao-yang WU2, Lin-ling RAN2, Shuang YAN2, Xiao-min JIANG1
Received:
2023-12-18
Revised:
2024-01-03
Online:
2024-11-20
Published:
2024-09-09
Contact:
Cai-hong YANG,Fei XIA
摘要:
为了探讨气候变暖对修复过程中藏北高寒草地生产力的影响,以藏北地区自然恢复草地(NR)、免耕补播草地(S)和翻耕补播草地(TS)为研究对象,原生重度退化草地为对照(CK),采用被动式增温法—开顶式气室法(OTC)进行模拟增温,探究植物群落特征、生物量和物种多样性对短期增温的响应。结果表明:1)增温使表层土壤温度平均上升1.34 ℃,土壤湿度平均下降4.18%。2)经短期增温后,植物群落盖度显著增加(P<0.05),高度显著降低(P<0.05);原生重度退化草地生物量向地下部分转移,自然恢复草地、免耕补播草地和翻耕补播草地生物量向地上部分转移;翻耕补播草地地上生物量显著降低(P<0.05)。3)短期增温使禾草的地上生物量和重要值降低(P<0.05),杂草的地上生物量和重要值增加(P<0.05)。4)增温使原生重度退化草地的物种丰富度指数、Shannon-Wiener指数和Simpson指数显著增加了17.65%、18.54%、11.52%(P<0.05),S处理Pielou指数显著降低(P<0.05)。5)短期增温后,地上生物量与物种多样性指数呈极显著负相关(P<0.01);地下生物量与物种多样性指数、群落特征无显著相关性。综上所述,短期增温对藏北原生重度退化草地物种多样性的恢复具有一定积极作用,并使自然恢复草地和免耕补播草地的生产力有所恢复,而抑制并降低了翻耕补播草地的生产力。
石昊, 杨彩红, 夏菲, 王军强, 魏巍, 王敬龙, 薛云尹, 郑晒坤, 吴皓阳, 冉林灵, 严双, 姜晓敏. 短期增温对修复过程中藏北高寒退化草地生产力的初期影响[J]. 草业学报, 2024, 33(11): 30-45.
Hao SHI, Cai-hong YANG, Fei XIA, Jun-qiang WANG, Wei WEI, Jing-long WANG, Yun-yin XUE, Shai-kun ZHENG, Hao-yang WU, Lin-ling RAN, Shuang YAN, Xiao-min JIANG. Initial effects of short-term warming on the productivity of alpine degraded grassland in northern Tibet during the restoration process[J]. Acta Prataculturae Sinica, 2024, 33(11): 30-45.
图1 研究区位置(a)、增温样地照片(b)和试验区设计(c)CK: 对照; NR: 自然恢复; S: 免耕补播; TS: 翻耕补播; OTC: 增温; NO-OTC: 不增温, 下同。CK: Control; NR: Natural recovery; S: No-tillage replanting; TS: Tillage replanting; OTC: Warming; NO-OTC: No warming, the same below.
Fig.1 Location of the study area (a), photograph of the warming plot (b) and the design of experimental plots (c)
月份 Month | CK | NR | S | TS | ||||
---|---|---|---|---|---|---|---|---|
不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | |
4 | 9.75 | 4.34 | 12.67 | 7.67 | 10.42 | 5.21 | 10.40 | 7.47 |
5 | 10.23 | 4.35 | 12.26 | 6.79 | 9.90 | 3.45 | 10.63 | 8.33 |
6 | 12.15 | 6.63 | 13.46 | 7.16 | 11.16 | 6.22 | 11.61 | 5.36 |
7 | 11.93 | 6.59 | 14.11 | 6.77 | 12.76 | 5.41 | 11.36 | 5.96 |
8 | 17.53 | 13.88 | 13.37 | 11.59 | 10.55 | 9.60 | 10.58 | 10.00 |
9 | 15.92 | 14.30 | 13.63 | 11.10 | 11.01 | 9.67 | 11.30 | 10.52 |
平均值Mean | 12.92 | 8.35 | 13.25 | 8.51 | 10.97 | 6.59 | 10.98 | 7.94 |
表1 不同处理下植物生长季节(5-9月)土壤湿度的变化
Table 1 Changes in soil moisture during plant growing season (May-September) under different treatments (%)
月份 Month | CK | NR | S | TS | ||||
---|---|---|---|---|---|---|---|---|
不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | |
4 | 9.75 | 4.34 | 12.67 | 7.67 | 10.42 | 5.21 | 10.40 | 7.47 |
5 | 10.23 | 4.35 | 12.26 | 6.79 | 9.90 | 3.45 | 10.63 | 8.33 |
6 | 12.15 | 6.63 | 13.46 | 7.16 | 11.16 | 6.22 | 11.61 | 5.36 |
7 | 11.93 | 6.59 | 14.11 | 6.77 | 12.76 | 5.41 | 11.36 | 5.96 |
8 | 17.53 | 13.88 | 13.37 | 11.59 | 10.55 | 9.60 | 10.58 | 10.00 |
9 | 15.92 | 14.30 | 13.63 | 11.10 | 11.01 | 9.67 | 11.30 | 10.52 |
平均值Mean | 12.92 | 8.35 | 13.25 | 8.51 | 10.97 | 6.59 | 10.98 | 7.94 |
处理 Treatment | 植物种类名称 Species name | 相对高度 Relative height | 相对密度 Relative density | 相对盖度 Relative coverage | 相对地上生物量 Relative aboveground biomass | ||||
---|---|---|---|---|---|---|---|---|---|
不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | ||
CK | 丝颖针茅 Stipa capillacea | 0.20 | / | 0.02 | / | 0.15 | / | 0.25 | / |
二裂委陵菜 P. bifurca | 0.04 | 0.05 | 0.15 | 0.20 | 0.15 | 0.15 | 0.11 | 0.16 | |
藏豆 S. tibetica | 0.07 | 0.05 | 0.21 | 0.17 | 0.25 | 0.29 | 0.26 | 0.33 | |
早熟禾 P. annua | 0.19 | 0.10 | 0.04 | 0.10 | 0.05 | 0.22 | 0.07 | 0.15 | |
火绒草 L. leontopodioides | 0.01 | 0.03 | 0.84 | 0.38 | 0.60 | 0.27 | 0.46 | 0.29 | |
洽草 K. macrantha | 0.09 | 0.03 | 0.29 | 0.04 | 0.30 | 0.08 | 0.28 | 0.03 | |
香藜 D. botrys | 0.02 | 0.03 | 0.01 | 0.21 | 0.01 | 0.04 | 0.12 | 0.03 | |
披碱草 E. dahuricus | / | 0.10 | / | 0.04 | / | 0.09 | / | 0.13 | |
紫花针茅 S. purpurea | 0.22 | 0.01 | 0.01 | 0.02 | 0.05 | 0.01 | 0.02 | 0.01 | |
肉果草 L. tibetica | 0.02 | 0.01 | 0.04 | 0.06 | 0.02 | 0.08 | 0.02 | 0.06 | |
藏蒿草 Carex tibetikobresia | / | 0.03 | / | 0.03 | / | 0.03 | / | 0.03 | |
NR | 洽草 K. macrantha | 0.05 | 0.16 | 0.16 | 0.24 | 0.08 | 0.19 | 0.12 | 0.55 |
早熟禾 P. annua | 0.10 | 0.09 | 0.13 | 0.22 | 0.07 | 0.14 | 0.24 | 0.22 | |
藏三毛 Trisetum spicatum subsp. tibeticum | 0.16 | 0.10 | 0.28 | 0.26 | 0.24 | 0.30 | 0.27 | 0.39 | |
肉果草 L. tibetica | 0.01 | 0.01 | 0.24 | 0.06 | 0.19 | 0.08 | 0.10 | 0.02 | |
二裂委陵菜 P. bifurca | 0.02 | 0.04 | 0.01 | 0.09 | 0.04 | 0.09 | 0.02 | 0.11 | |
火绒草 L. leontopodioides | 0.02 | 0.02 | 0.03 | 0.04 | 0.05 | 0.05 | 0.02 | 0.01 | |
狗娃花 A. hispidus | 0.03 | 0.05 | 1.00 | 0.09 | 0.02 | 0.26 | 0.01 | 0.08 | |
藏豆 S. tibetica | 0.03 | 0.05 | 0.27 | 0.34 | 0.41 | 0.28 | 0.37 | 0.29 | |
马先蒿 Pedicularis tibetica | 0.00 | / | 0.03 | / | 0.02 | / | 0.00 | / | |
青藏苔草 C. thibetica | 0.04 | 0.06 | 0.03 | 0.12 | 0.01 | 0.16 | 0.04 | 0.09 | |
香藜 D. botrys | 0.01 | / | 0.03 | / | 0.07 | / | 0.01 | / | |
S | 披碱草 E. dahuricus | 0.20 | 0.16 | 0.43 | 0.20 | 0.56 | 0.20 | 0.48 | 0.32 |
藏豆 S. tibetica | 0.02 | 0.03 | 0.25 | 0.08 | 0.09 | 0.11 | 0.04 | 0.05 | |
早熟禾 P. annua | 0.12 | 0.14 | 0.32 | 0.62 | 0.35 | 0.51 | 0.37 | 0.52 | |
藏三毛 T. spicatum subsp. tibeticum | 0.05 | / | 0.25 | / | 0.10 | / | 0.39 | / | |
二裂委陵菜 P. bifurca | / | 0.02 | / | 0.20 | / | 0.32 | / | 0.19 | |
TS | 披碱草 E. dahuricus | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
表2 短期增温后不同处理植物种群与特征值的变化
Table 2 Changes in plant populations and eigenvalues in different treatments after short-term warming
处理 Treatment | 植物种类名称 Species name | 相对高度 Relative height | 相对密度 Relative density | 相对盖度 Relative coverage | 相对地上生物量 Relative aboveground biomass | ||||
---|---|---|---|---|---|---|---|---|---|
不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | 不增温 NO-OTC | 增温 OTC | ||
CK | 丝颖针茅 Stipa capillacea | 0.20 | / | 0.02 | / | 0.15 | / | 0.25 | / |
二裂委陵菜 P. bifurca | 0.04 | 0.05 | 0.15 | 0.20 | 0.15 | 0.15 | 0.11 | 0.16 | |
藏豆 S. tibetica | 0.07 | 0.05 | 0.21 | 0.17 | 0.25 | 0.29 | 0.26 | 0.33 | |
早熟禾 P. annua | 0.19 | 0.10 | 0.04 | 0.10 | 0.05 | 0.22 | 0.07 | 0.15 | |
火绒草 L. leontopodioides | 0.01 | 0.03 | 0.84 | 0.38 | 0.60 | 0.27 | 0.46 | 0.29 | |
洽草 K. macrantha | 0.09 | 0.03 | 0.29 | 0.04 | 0.30 | 0.08 | 0.28 | 0.03 | |
香藜 D. botrys | 0.02 | 0.03 | 0.01 | 0.21 | 0.01 | 0.04 | 0.12 | 0.03 | |
披碱草 E. dahuricus | / | 0.10 | / | 0.04 | / | 0.09 | / | 0.13 | |
紫花针茅 S. purpurea | 0.22 | 0.01 | 0.01 | 0.02 | 0.05 | 0.01 | 0.02 | 0.01 | |
肉果草 L. tibetica | 0.02 | 0.01 | 0.04 | 0.06 | 0.02 | 0.08 | 0.02 | 0.06 | |
藏蒿草 Carex tibetikobresia | / | 0.03 | / | 0.03 | / | 0.03 | / | 0.03 | |
NR | 洽草 K. macrantha | 0.05 | 0.16 | 0.16 | 0.24 | 0.08 | 0.19 | 0.12 | 0.55 |
早熟禾 P. annua | 0.10 | 0.09 | 0.13 | 0.22 | 0.07 | 0.14 | 0.24 | 0.22 | |
藏三毛 Trisetum spicatum subsp. tibeticum | 0.16 | 0.10 | 0.28 | 0.26 | 0.24 | 0.30 | 0.27 | 0.39 | |
肉果草 L. tibetica | 0.01 | 0.01 | 0.24 | 0.06 | 0.19 | 0.08 | 0.10 | 0.02 | |
二裂委陵菜 P. bifurca | 0.02 | 0.04 | 0.01 | 0.09 | 0.04 | 0.09 | 0.02 | 0.11 | |
火绒草 L. leontopodioides | 0.02 | 0.02 | 0.03 | 0.04 | 0.05 | 0.05 | 0.02 | 0.01 | |
狗娃花 A. hispidus | 0.03 | 0.05 | 1.00 | 0.09 | 0.02 | 0.26 | 0.01 | 0.08 | |
藏豆 S. tibetica | 0.03 | 0.05 | 0.27 | 0.34 | 0.41 | 0.28 | 0.37 | 0.29 | |
马先蒿 Pedicularis tibetica | 0.00 | / | 0.03 | / | 0.02 | / | 0.00 | / | |
青藏苔草 C. thibetica | 0.04 | 0.06 | 0.03 | 0.12 | 0.01 | 0.16 | 0.04 | 0.09 | |
香藜 D. botrys | 0.01 | / | 0.03 | / | 0.07 | / | 0.01 | / | |
S | 披碱草 E. dahuricus | 0.20 | 0.16 | 0.43 | 0.20 | 0.56 | 0.20 | 0.48 | 0.32 |
藏豆 S. tibetica | 0.02 | 0.03 | 0.25 | 0.08 | 0.09 | 0.11 | 0.04 | 0.05 | |
早熟禾 P. annua | 0.12 | 0.14 | 0.32 | 0.62 | 0.35 | 0.51 | 0.37 | 0.52 | |
藏三毛 T. spicatum subsp. tibeticum | 0.05 | / | 0.25 | / | 0.10 | / | 0.39 | / | |
二裂委陵菜 P. bifurca | / | 0.02 | / | 0.20 | / | 0.32 | / | 0.19 | |
TS | 披碱草 E. dahuricus | 0.33 | 0.33 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
图4 短期增温后不同处理下植物盖度、高度的变化ns表示同一修复措施的不增温和增温之间无显著性差异; *表示同一修复措施的不增温和增温之间有显著性差异(P<0.05); 不同小写字母表示在不增温处理下的不同修复措施之间存在显著性差异(P<0.05); 不同大写字母表示在增温处理下的不同修复措施之间存在显著性差异(P<0.05), 下同。ns indicates that there is no significant difference between non-warming and warming of the same restoration measure; * indicates that there is a significant difference (P<0.05) between non-warming and warming of the same restoration measure; Different lower-case letters indicate that there is a significant difference (P<0.05) among different restoration measures under the non-warming treatment; Different upper-case letters indicate that there is a significant different (P<0.05) among different restoration measures under the warming treatment, the same below.
Fig.4 Changes in plant coverage and height under different treatments after short-term warming
影响因子 Impact factor | 修复措施 Restoration measures | 增温 OTC | 修复措施×增温 Restoration measures×OTC |
---|---|---|---|
盖度Coverage | 62.198** | 5.982* | 3.391* |
高度Height | 17.914** | 1.212 | 2.758* |
表3 修复措施和增温对群落盖度、高度的双因素方差分析
Table 3 Two-factor ANOVA of the effects of restoration measures and warming on community coverage and height
影响因子 Impact factor | 修复措施 Restoration measures | 增温 OTC | 修复措施×增温 Restoration measures×OTC |
---|---|---|---|
盖度Coverage | 62.198** | 5.982* | 3.391* |
高度Height | 17.914** | 1.212 | 2.758* |
处理 Treatment | 不同功能群地上生物量 Aboveground biomass of different functional groups | 总地上生物量 Total aboveground biomass | 地下生物量 Below-ground biomass | ||||
---|---|---|---|---|---|---|---|
不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | ||
CK | 禾草Grass | 26.27±17.79e | 19.40±12.87d | 81.39±23.89c | 78.72±0.87c | 223.67±88.64ab | 290.00±94.12a |
豆科Legume | 23.09±20.51a | 23.25±5.60a | |||||
杂草Forb | 32.03±3.45a | 36.07±9.41a | |||||
NR | 禾草Grass | 41.39±4.89e | 40.80±4.64de | 87.37±16.46c | 94.88±4.78bc | 368.67±65.62a | 293.67±32.72b |
豆科Legume | 31.65±14.36a | 32.21±4.87a | |||||
杂草Forb | 14.33±3.07b | 21.87±4.73a | |||||
S | 禾草Grass | 110.40±7.32c | 94.21±11.92cd | 113.55±8.32c | 113.61±17.92c | 389.33±62.66a | 269.00±84.50b |
豆科Legume | 3.15±1.46a | 3.89±1.22a | |||||
杂草Forb | / | 15.51±3.79 | |||||
TS | 禾草Grass | 879.08±69.68a | 800.81±37.40b | 879.08±69.68a | 800.81±37.40b | 567.33±162.72c | 272.33±97.09d |
豆科Legume | / | / | |||||
杂草Forb | / | / |
表4 短期增温后不同处理生物量的变化
Table 4 Changes in biomass of different treatments after short-term warming (g·m-2)
处理 Treatment | 不同功能群地上生物量 Aboveground biomass of different functional groups | 总地上生物量 Total aboveground biomass | 地下生物量 Below-ground biomass | ||||
---|---|---|---|---|---|---|---|
不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | 不增温NO-OTC | 增温OTC | ||
CK | 禾草Grass | 26.27±17.79e | 19.40±12.87d | 81.39±23.89c | 78.72±0.87c | 223.67±88.64ab | 290.00±94.12a |
豆科Legume | 23.09±20.51a | 23.25±5.60a | |||||
杂草Forb | 32.03±3.45a | 36.07±9.41a | |||||
NR | 禾草Grass | 41.39±4.89e | 40.80±4.64de | 87.37±16.46c | 94.88±4.78bc | 368.67±65.62a | 293.67±32.72b |
豆科Legume | 31.65±14.36a | 32.21±4.87a | |||||
杂草Forb | 14.33±3.07b | 21.87±4.73a | |||||
S | 禾草Grass | 110.40±7.32c | 94.21±11.92cd | 113.55±8.32c | 113.61±17.92c | 389.33±62.66a | 269.00±84.50b |
豆科Legume | 3.15±1.46a | 3.89±1.22a | |||||
杂草Forb | / | 15.51±3.79 | |||||
TS | 禾草Grass | 879.08±69.68a | 800.81±37.40b | 879.08±69.68a | 800.81±37.40b | 567.33±162.72c | 272.33±97.09d |
豆科Legume | / | / | |||||
杂草Forb | / | / |
影响因子Impact factor | 修复措施Restoration measures | 增温OTC | 修复措施×增温Restoration measures×OTC |
---|---|---|---|
总地上生物量Total aboveground biomass | 29.077** | 1.892* | 4.047* |
总地下生物量Total below-ground biomass | 1.938 | 4.267* | 2.787** |
禾草地上生物量Grass aboveground biomass | 106.992** | 3.553* | 2.566 |
豆科地上生物量Legume aboveground biomass | 1.689 | 0.051 | 0.343 |
杂草地上生物量Forb aboveground biomass | 17.432** | 2.480 | 1.124* |
表5 修复措施和增温对生物量的双因素方差分析
Table 5 Two-way ANOVA of biomass by restoration measures and warming
影响因子Impact factor | 修复措施Restoration measures | 增温OTC | 修复措施×增温Restoration measures×OTC |
---|---|---|---|
总地上生物量Total aboveground biomass | 29.077** | 1.892* | 4.047* |
总地下生物量Total below-ground biomass | 1.938 | 4.267* | 2.787** |
禾草地上生物量Grass aboveground biomass | 106.992** | 3.553* | 2.566 |
豆科地上生物量Legume aboveground biomass | 1.689 | 0.051 | 0.343 |
杂草地上生物量Forb aboveground biomass | 17.432** | 2.480 | 1.124* |
图7 禾草(a)、豆科(b)和杂草(c)在短期增温后不同处理下重要值的变化
Fig.7 Changes in importance values of grasses (a), legumes (b) and forbs (c) under different treatments after short-term warming
影响因子Impact factor | 修复措施Restoration measures | 增温OTC | 修复措施×增温Restoration measures×OTC |
---|---|---|---|
物种丰富度指数Species richness index | 19.320** | 0.082 | 0.354 |
香农-威纳指数Shannon-Wiener index | 45.297** | 0.402 | 0.492 |
辛普森指数Simpson index | 82.105** | 0.398 | 0.917 |
Pielou指数Pielou index | 64.213** | 0.521 | 1.654* |
表6 修复措施和增温对物种多样性的双因素方差分析
Table 6 Two-way ANOVA of species diversity by restoration measures and warming
影响因子Impact factor | 修复措施Restoration measures | 增温OTC | 修复措施×增温Restoration measures×OTC |
---|---|---|---|
物种丰富度指数Species richness index | 19.320** | 0.082 | 0.354 |
香农-威纳指数Shannon-Wiener index | 45.297** | 0.402 | 0.492 |
辛普森指数Simpson index | 82.105** | 0.398 | 0.917 |
Pielou指数Pielou index | 64.213** | 0.521 | 1.654* |
图9 不增温(a)、增温(b)条件下群落特征、生物量、物种多样性指数的相关性分析*表示相关性显著(P<0.05), **表示相关性极显著(P<0.01)。* denotes significant correlation (P<0.05), ** denotes extremely significant correlation (P<0.01). A: 地上生物量Above-ground biomass; B: 地下生物量Below-ground biomass; S: 物种丰富度指数Species richness index; H: 香农-威纳指数Shannon-Wiener index; D: 辛普森指数Simpson index; EP: Pielou指数Pielou index; GV: 禾草重要值Grass importance value; LV: 豆科重要值Legume importance value; FV: 杂草重要值Forb importance value; CC: 群落盖度Community coverage; CH: 群落高度Community height.
Fig.9 Correlation analysis of community characteristics, biomass, and species diversity index under no warming (a) and warming (b) conditions
1 | Wangchuk K, Darabant A, Nirola H, et al. Climate warming decreases plant diversity but increases community biomass in high-altitude grasslands. Rangeland Ecology & Management, 2021, 75: 51-57. |
2 | Xu X F, Tian H Q, Wan S Q. Climate warming impacts on carbon cycling in terrestrial ecosystems. Chinese Journal of Plant Ecology, 2007, 31(2): 175-188. |
徐小锋, 田汉勤, 万师强. 气候变暖对陆地生态系统碳循环的影响. 植物生态学报, 2007, 31(2): 175-188. | |
3 | Qin D H, Stocker T. Highlights of the IPCC working group I fifth assessment report. Climate Change Research, 2014, 10(1): 1-6. |
秦大河, Stocker T. IPCC第五次评估报告第一工作组报告的亮点结论. 气候变化研究进展, 2014, 10(1): 1-6. | |
4 | Qin D H. Climate change sciences into the 21st century: facts, impacts and strategies addressing climate change. Science & Technology Review, 2004(7): 4-7. |
秦大河. 进入21世纪的气候变化科学-气候变化的事实、影响与对策. 科技导报, 2004(7): 4-7. | |
5 | Houghton J T, Ding Y H, Griggs D J, et al. Climate change 2001: The scientific basis. Cambridge: Cambridge University Press, 2001: 881. |
6 | Thomas C D, Cameron A, Green R E, et al. Extinction risk from climate change. Nature, 2004, 427(6970): 145-148. |
7 | Qiu J. China: The third pole. Nature, 2008, 454(7203): 393-396. |
8 | Yin H J, Lai T, Cheng X Y, et al. Warming effects on growth and physiology of seedlings of Betula albo-sinensis and Abies faxoniana under two contrasting light conditions in subalpine coniferous forest of western Sichuan, China. Chinese Journal of Plant Ecology, 2008, 32(5): 1072-1083. |
尹华军, 赖挺, 程新颖, 等. 增温对川西亚高山针叶林内不同光环境下红桦和岷江冷杉幼苗生长和生理的影响. 植物生态学报, 2008, 32(5): 1072-1083. | |
9 | Piao S L, Fang J Y, He J S, et al. Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 2004, 28(4): 491-498. |
朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498. | |
10 | Liu Y J, Yang Q. Research progress and prospect of degraded grassland restoration in Qinghai-Tibet Plateau. Chinese Journal of Grassland, 2023, 45(10): 131-143. |
刘永杰, 杨琴. 青藏高原退化草地修复研究进展及展望. 中国草地学报, 2023, 45(10): 131-143. | |
11 | Du B Y, Guo Y G, Guan F C, et al. Degradation status and restoration of alpine grassland in Tibet. Special Economic Animals and Plants, 2023, 26(7): 185-188. |
杜帛洋, 郭永刚, 关法春, 等. 西藏高寒草地退化现状与修复途径.特种经济动植物, 2023, 26(7): 185-188. | |
12 | Bardgett R D, Bullock J M, Lavorel S, et al. Combatting global grassland degradation. Nature Reviews Earth and Environment, 2021, 2(10): 720-735. |
13 | Wang Z Q, Zhang Y Z, Yang Y, et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China. Ecological Informatics, 2016, 33: 32-44. |
14 | Hao A H, Xue X, Peng F, et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2020, 40(3): 964-975. |
郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究.生态学报, 2020, 40(3): 964-975. | |
15 | Chen D D, Zhang S H, Dong S K, et al. Effect of land-use on soil nutrients and microbial biomass of an alpine region on the northeastern Tibetan Plateau, China. Land Degradation and Development, 2010, 21(5): 446-452. |
16 | Wang C T, Wang G X, Liu W, et al. Effects of establishing an artificial grassland on vegetation characteristics and soil quality in a degraded meadow. Israel Journal of Ecology and Evolution, 2013, 59(3): 141-153. |
17 | Shi F S, Wu N, Luo P. Effect of temperature enhancement on community structure and biomass of subalpine meadow in northwestern Sichuan. Acta Ecologica Sinica, 2008, 28(11): 5286-5293. |
石福孙, 吴宁, 罗鹏. 川西北亚高山草甸植物群落结构及生物量对温度升高的响应. 生态学报, 2008, 28(11): 5286-5293. | |
18 | Li N, Wang G X, Yang Y, et al. Short-term effects of temperature enhancement on community structure and biomass of alpine meadow in the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 2011, 31(4): 895-905. |
李娜, 王根绪, 杨燕, 等. 短期增温对青藏高原高寒草甸植物群落结构和生物量的影响. 生态学报, 2011, 31(4): 895-905. | |
19 | Wang Y H, Zhou G S. Responses of temporal dynamics of aboveground net primary productivity of Leymus chinensis community to precipitation fluctuation in Inner Mongolia. Acta Ecologica Sinica, 2004, 24(6): 1140-1145. |
王玉辉, 周广胜. 内蒙古羊草草原植物群落地上初级生产力时间动态对降水变化的响应. 生态学报, 2004, 24(6): 1140-1145. | |
20 | Hector A, Bagchi R. Biodiversity and ecosystem multi-functionality. Nature, 2007, 448(7150): 188-190. |
21 | Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 2004, 7(12): 1170-1179. |
22 | Jansson J K, Hofmockel K S. Soil microbiomes and climate change. Nature Reviews Microbiology, 2020, 18(1): 35-46. |
23 | Li J X, Zhang Y J, Zhu J T, et al. Responses of community characteristics and productivity to a warming gradient in a Kobresia pygmaea meadow of the Tibetan Plateau. Acta Ecologica Sinica, 2019, 39(2): 474-485. |
李军祥, 张扬建, 朱军涛, 等. 藏北高山嵩草草甸群落特征及生产力对模拟增温幅度的响应. 生态学报, 2019, 39(2): 474-485. | |
24 | Zhou J J, Liu Y F, Wang J L, et al. Effect of short-term nutrient addition on aboveground biomass, plant diversity, and functional traits of swampy alpine meadow in Tibet. Acta Prataculturae Sinica, 2023, 32(11): 17-29. |
周娟娟, 刘云飞, 王敬龙, 等. 短期养分添加对西藏沼泽化高寒草甸地上生物量、植物多样性和功能性状的影响. 草业学报, 2023, 32(11): 17-29. | |
25 | Walker M D, Wahren C H, Hollister R D, et al. Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences, 2006, 103(5): 1342-1346. |
26 | Suzuki S, Kudo G. Short term effects of simulated environmental change on phenology, leaf traits, and shoot growth of alpine plants on a temperate mountain, northern Japan. Global Change Biology, 1997, 3(Supple1): 108-115. |
27 | Zhang H Z, Shi X Z, Yu D S, et al. Seasonal and regional variations of soil temperature in China. Acta Pedologica Sinica, 2009, 46(2): 227-234. |
张慧智, 史学正, 于东升, 等. 中国土壤温度的季节性变化及其区域分异研究. 土壤学报, 2009, 46(2): 227-234. | |
28 | Niu S L, Han X G, Ma K P, et al. Field facilities in global warming and terrestrial ecosystem research.Chinese Journal of Plant Ecology, 2007, 31(2): 262-271. |
牛书丽, 韩兴国, 马克平, 等. 全球变暖与陆地生态系统研究中的野外增温装置. 植物生态学报, 2007, 31(2): 262-271. | |
29 | Lemmens C, Boeck H D, Gielen B, et al. End-of-season effects of elevated temperature on ecophysiological processes of grassland species at different species richness levels. Environmental and Experimental Botany, 2006, 56(3): 245-254. |
30 | Boeck H D, Lemmens C, Gielen B, et al. Combined effects of climate warming and plant diversity loss on above- and below-ground grassland productivity. Environmental and Experimental Botany, 2007, 60(1): 95-104. |
31 | Wen J, Qin R M, Zhang S X, et al. Effects of long-term warming on the aboveground biomass and species diversity in an alpine meadow on the Qinghai-Tibetan Plateau of China. Journal of Arid Land, 2020, 12(2): 252-266. |
32 | Dai L C, Ke X, Guo X W, et al. Responses of biomass allocation across two vegetation types to climate fluctuations in the northern Qinghai-Tibet Plateau. Ecology and Evolution, 2019, 9(10): 6105-6115. |
33 | Zhang C M, Shi S L, Liu Z, et al. Effects of drought stress on the root morphology and anatomical structure of alfalfa (Medicago sativa) varieties with differing drought-tolerance. Acta Prataculturae Sinica, 2019, 28(5): 79-89. |
张翠梅, 师尚礼, 刘珍, 等. 干旱胁迫对不同抗旱性苜蓿品种根系形态及解剖结构的影响. 草业学报, 2019, 28(5): 79-89. | |
34 | Xu M H, Peng F, You Q G, et al.Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environmental and Experimental Botany, 2015, 109: 54-62. |
35 | Xiao Y C, Wang D Y, Chen B, et al. Effects of short-term warming on structure and stability of typical plant communities in Nyenchenthanglha Mountain, Tibet. Acta Ecologica Sinica, 2023, 43(20): 8608-8619. |
肖昱承, 王端阳, 陈波, 等. 短期增温对西藏念青唐古拉山典型植物群落结构和稳定性的影响. 生态学报, 2023, 43(20): 8608-8619. | |
36 | Mäkiranta P, Laiho R, Mehtätalo L, et al. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. Global Change Biology, 2018, 24(3): 944-956. |
37 | Zhang Q Y, Peng S L. Effects of warming on the biomass allocation and allometric growth of the invasive shrub Lantana camara. Acta Ecologica Sinica, 2018, 38(18): 6670-6676. |
张桥英, 彭少麟. 增温对入侵植物马缨丹生物量分配和异速生长的影响. 生态学报, 2018, 38(18): 6670-6676. | |
38 | Aerts R, Cornelissen J, Dorrepaal E. Plant performance in a warmer world: general responses of plants from cold, northern biomes and the importance of winter and spring events. Plant Ecology, 2006, 182(1): 65-77. |
39 | Eatherall A. Modeling climate change impacts on ecosystems using linked models and a GIS. Climatic Change, 1997, 35(1):17-34. |
40 | Saleska S R, Harte J, Torn M S. The effect of experimental ecosystem warming on CO2 fluxes in a mountain meadow. Global Change Biology, 1999, 5(2): 125-141. |
41 | Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production. Nature, 1993, 363(6426): 234-240. |
42 | Xu M H, Liu M, Zhai D T, et al. Dynamic changes in biomass and its relationship with environmental factors in an alpine meadow on the Qinghai-Tibetan Plateau, based on simulated warming experiments. Acta Ecologica Sinica, 2016, 36(18): 5759-5767. |
徐满厚, 刘敏, 翟大彤, 等. 青藏高原高寒草甸生物量动态变化及与环境因子的关系——基于模拟增温实验. 生态学报, 2016, 36(18): 5759-5767. | |
43 | Pauli H, Gottfried M, Grabherr G. High summits of the Alps in a changing climate//Walther G R, Burga C A, Edwards P J. “Fingerprints” of climate change: Adapted behaviour and shifting species ranges. New York: Kluwer Academic/Plenum Publishers, 2001: 139-149. |
44 | Gao P F, Zhang J, Fan W F, et al. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
高鹏飞, 张静, 范卫芳, 等. 干旱胁迫对光叉委陵菜根系特征、结构和生理特性的影响. 草业学报, 2022, 31(2): 203-212. | |
45 | Li M H, Li Y H, Yan X H, et al. Characteristics of plant diversity and aboveground productivity and their relationship driven by subshrub expansion. Acta Prataculturae Sinica, 2023, 32(5): 27-39. |
李美慧, 李玉华, 晏昕辉, 等. 半灌木扩张驱动的草地植物多样性与地上生产力特征及其关系研究. 草业学报, 2023, 32(5): 27-39. | |
46 | Zhang Y Q, Welker J M. Tibetan alpine tundra responses to simulated changes in climate: aboveground biomass and community responses. Arctic, Antarctic and Alpine Research, 1996, 28(2): 203-209. |
47 | Ganjurjav H, Gao Q Z, Gornish E S, et al. Differential response of alpine steppe and alpine meadow to climate warming in the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2016, 223: 233-240. |
48 | Gao L, Ding Y. Progress in research and practice of restoration of degraded grassland around the world. Acta Prataculturae Sinica, 2022, 31(10): 189-205. |
高丽, 丁勇. 世界退化草地恢复研究和实践进展. 草业学报, 2022, 31(10): 189-205. | |
49 | Zhao H X, Li Q, Zhou J, et al. The characteristics of low temperature tolerance during seed germination of the ephemeral plant Lepidium apetalum (Cruciferae). Acta Botanica Yunnanica, 2010, 32(5): 448-454. |
50 | Xia L, Song X N, Cai S H, et al. Role of surface hydrothermal elements in grassland degradation over the Tibetan Plateau. Acta Ecologica Sinica, 2021, 41(11): 4618-4631. |
夏龙, 宋小宁, 蔡硕豪, 等. 地表水热要素在青藏高原草地退化中的作用. 生态学报, 2021, 41(11): 4618-4631. | |
51 | Wang Q, Zheng J H, Zhao M L, et al. Effects of warming on early restoration of degraded grassland in desert steppe. Acta Agrestia Sinica, 2022, 30(5): 1077-1085. |
王琪, 郑佳华, 赵萌莉, 等. 增温对荒漠草原不同退化程度草地恢复初期影响的研究. 草地学报, 2022, 30(5): 1077-1085. | |
52 | Gugerli F, Bauert M R. Growth and reproduction of Polygonum viviparum show weak responses to experimentally increased temperature at a Swiss alpine site. Botanica Helvetica, 2001, 111(2): 169-180. |
53 | Xu M H, Liu M, Xue X, et al. Effects of warming and clipping on the growth of aboveground vegetation in an alpine meadow. Ecology and Environmental Sciences, 2015, 24(2): 231-236. |
徐满厚, 刘敏, 薛娴, 等. 增温、刈割对高寒草甸地上植被生长的影响.生态环境学报, 2015, 24(2): 231-236. | |
54 | Ma Z Y, Liu H Y, Mi Z R, et al. Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 2017, 8(1): 15378. |
55 | Shi Z, Sherry R, Xu X, et al. Evidence for long-term shift in plant community composition under decadal experimental warming. Journal of Ecology, 2015, 103(5): 1131-1140. |
[1] | 杜文盼, 赵桂琴, 柴继宽, 杨莉, 张建贵, 史怡超, 张官禄. 根系分隔方式对燕麦/豌豆间作地上生物量、土壤养分及根系性状的影响[J]. 草业学报, 2024, 33(8): 25-36. |
[2] | 徐玲玲, 牛犇, 张宪洲, 何永涛, 石培礼, 宗宁, 武建双, 王向涛. 藏北两个临近不同高寒草地碳通量对气候条件的响应[J]. 草业学报, 2024, 33(6): 1-16. |
[3] | 刘倩, 丁彦芬, 宋杉杉, 许文婕, 杨威. 南京明城墙绿带草本层自生植物群落数量分类与排序分析[J]. 草业学报, 2024, 33(5): 1-15. |
[4] | 索晓晶, 项磊, 高贺, 运向军, 哈斯巴根, 吴金蕊, 董文成, 滑博伟, 牟金燚, 王琪. 不同利用方式对大针茅草原植被群落特征的影响[J]. 草业学报, 2024, 33(4): 12-21. |
[5] | 常怡然, 史佳梅, 许冬梅, 康如龙, 马媛. 荒漠草原不同自然种群蒙古冰草生物量和养分权衡特征[J]. 草业学报, 2024, 33(11): 186-197. |
[6] | 李文龙, 李峰, 张仲鹃, 王殿清, 王欢, 靳慧卿, 特木热, 胡志玲, 陶雅. 鄂尔多斯高原北部一年两季燕麦种植模式生产性能评价[J]. 草业学报, 2024, 33(1): 159-168. |
[7] | 韩其飞, 尹龙, 李超凡, 张润钢, 王文彪, 崔正南. 天山北坡典型草地施肥阈值及不确定性分析[J]. 草业学报, 2024, 33(1): 19-32. |
[8] | 刘增辉, 卢素锦, 王雨欣, 张春辉, 尹鑫. 三江源地区人工克隆植物群落生物多样性对初级生产力的影响及机制[J]. 草业学报, 2023, 32(9): 27-38. |
[9] | 张东, 侯晨, 马文明, 王长庭, 邓增卓玛, 张婷. 高寒草地不同灌丛化梯度下土壤酶活性研究[J]. 草业学报, 2023, 32(9): 79-92. |
[10] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸物种多样性与系统发育多样性沿海拔梯度分布格局及驱动因子[J]. 草业学报, 2023, 32(7): 12-22. |
[11] | 刘彩凤, 段媛媛, 王玲玲, 王乙茉, 郭正刚. 高原鼠兔干扰对高寒草甸植物物种多样性与土壤生态化学计量比间关系的影响[J]. 草业学报, 2023, 32(6): 157-166. |
[12] | 李思媛, 崔雨萱, 孙宗玖, 刘慧霞, 冶华薇. 封育对蒿类荒漠草地土壤有机碳及土壤微生物生物量生态化学计量特征的影响[J]. 草业学报, 2023, 32(6): 58-70. |
[13] | 马婧, 郭方君, 邹枝慧, 孙琳, 陈芳. 腾格里沙漠南缘不同恢复阶段沙质草地植被的季节变化特征[J]. 草业学报, 2023, 32(5): 203-210. |
[14] | 李美慧, 李玉华, 晏昕辉, 拓行行, 杨梦茹, 王子临, 李伟. 半灌木扩张驱动的草地植物多样性与地上生产力特征及其关系研究[J]. 草业学报, 2023, 32(5): 27-39. |
[15] | 许开宏, 施招, 马磊超, 王平, 陈昂, 王兴, 成明, 肖粤新, 王荣谭. 基于机载激光雷达与高景一号数据的草原地上生物量反演研究[J]. 草业学报, 2023, 32(5): 40-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||