Acta Prataculturae Sinica ›› 2018, Vol. 27 ›› Issue (4): 178-188.DOI: 10.11686/cyxb2017223
Previous Articles Next Articles
LU Jiao-yun1, DUAN Bing-hong1, YANG Mei1, YANG Han2, YANG Hui-min1*
Received:
2017-05-08
Revised:
2017-08-27
Online:
2018-04-20
Published:
2018-04-20
LU Jiao-yun, DUAN Bing-hong, YANG Mei, YANG Han, YANG Hui-min. Research progress in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors[J]. Acta Prataculturae Sinica, 2018, 27(4): 178-188.
[1] Killingbeck K T. The terminological jungle revisited-making a case for use of the term resorption. Oikos, 1986, 46(2): 263-264. [2] Aerts R, de Caluwe H. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology, 1997, 78(1): 244-260. [3] Aerts R, Chapin F S. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 2000, 30: 1-67. [4] Aerts R. Nutrient resorption from senescing leaves of perennials: Are there general patterns. Journal of Ecology, 1996, 84(4): 597-608. [5] Killingbeck K T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 1996, 77(6): 1716-1727. [6] Van Heerwaarden L M, Toet S, Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology, 2003, 91(6): 1060-1070. [7] Covelo F, Rodríguez A, Gallardo A. Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population. Plant and Soil, 2008, 311(1/2): 109-119. [8] Reed S C, Townsend A R, Davidson E A, et al. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 2012, 196(1): 173-180. [9] Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 2012, 82(2): 205-220. [10] Zhao Q, Liu X Y, Hu Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorpiton efficiency in Larix gmelinii. Scientia Silvae Sinicae, 2010, 46(5): 14-19. 赵琼, 刘兴宇, 胡亚林,等. 氮添加对兴安落叶松养分分配和再吸收效率的影响. 林业科学, 2010, 46(5): 14-19. [11] May J D, Killingbeck K T. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology, 1992, 73: 1868-1878. [12] Blanco J A, Imbert J B, Castillo F J. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecological Applications, 2009, 19(3): 682-698. [13] Lü X T, Freschet G T, Flynn D F B, et al. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 2012, 100(1): 144-150. [14] Veneklaas E J, Lambers H, Bragg J, et al. Opportunities for improving phosphorus use efficiency in crop plants. New Phytologist, 2012, 195(2): 306-320. [15] Marschner P. Marschner’s mineral nutrition of higher plants (3rd edition). Amsterdam, Netherlands: Academic Press (Elsevier), 2012. [16] Mao R, Song C C, Zhang X H, et al. Response of leaf, sheath and stem nutrient resorption to 7 years of N addition in freshwater wetland of Northeast China. Plant and Soil, 2013, 364(1/2): 385-394. [17] Van Heerwaarden L M, Toet S, Aerts R. Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: Facts and solutions. Oikos, 2003, 101(3): 664-669. [18] Kobe R K, Lepczyk C A, Iyer M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 2005, 86(10): 2780-2792. [19] Mediavilla S, García-Iglesias J, González-Zurdo P, et al. Nitrogen resorption efficiency in mature trees and seedlings of four tree species co-occurring in a Mediterranean environment. Plant and Soil, 2014, 385(1/2): 205-215. [20] Chapin F S, Kedrowski R A. Seasonal changes in nitrogen and phosphorus fractions and autumn retranslocation in evergreen and deciduous taiga trees. Ecology, 1983, 64(2): 376-391. [21] Lü X T, Cui Q, Wang Q B, et al. Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecological Engineering, 2011, 37(3): 534-538. [22] Vitousek P M. Foliar and litter nutrients, nutrient resorption, and decomposition in Hawaiian Metrosideros polymorpha. Ecosystems, 1998, 1(4): 401-407. [23] Zeng D H, Chen G S, Chen F S, et al. Foliar nutrients and their resorption efficiencies in four Pinus sylvestris var. mongolica plantations of different ages on sandy soil. Scientia Silvae Sinicae, 2005, 41(5): 21-27. 曾德慧, 陈广生, 陈伏生, 等. 不同林龄樟子松叶片养分含量及其再吸收效率. 林业科学, 2005, 41(5): 21-27. [24] Sterner R W, Elser J J. Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton, USA: Princeton University Press, 2002. [25] Wang Z N, Lu J Y, Yang H M, et al. Resorption of nitrogen, phosphorus and potassium from leaves of lucerne stands of different ages. Plant and Soil, 2014, 383(1/2): 301-312. [26] Nambiar E K S, Fife D N. Nutrient retranslocation in temperate conifers. Tree Physiology, 1991, 9(1/2): 185-207. [27] Silla F, Escudero A. Uptake, demand and internal cycling of nitrogen in saplings of Mediterranean quercus species. Oecologia, 2003, 136(1): 28-36. [28] Chapin F S, Moilanen L. Nutritional controls over nitrogen and phosphorus resorption from Alaskan birch leaves. Ecology, 1991, 72(2): 709-715. [29] Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in a low-nutrient, sclerophyll flora. Functional Ecology, 2001, 15: 351-359. [30] Del Arco J M, Escudero A, Garrido M V. Effects of site characteristics on nitrogen retranslocation from senescing leaves. Ecology, 1991, 72(2): 701-708. [31] Escudero A, Del Arco J M, Sanz I C, et al. Effects of leaf longevity and retranslocation efficiency on the retention time of nutrients in the leaf biomass of different woody species. Oecologia, 1992, 90(1): 80-87. [32] Diehl P, Mazzarino M J, Funes F, et al. Nutrient conservation strategies in native Andean-Patagonian forests. Journal of Vegetation Science, 2003, 14(1): 63-70. [33] Cai Z Q, Bongers F. Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. Journal of Tropical Ecology, 2007, 23(1): 115-118. [34] Tang L Y. Study on leaves nutrient absorption of woody plant. Beijing: Beijing University, 2012. 汤璐瑛. 木本植物叶片养分重吸收研究. 北京: 北京大学, 2012. [35] Zhang J H, Li H, Shen H H, et al. Effects of nitrogen addition on nitrogen resorption in temperate shrublands in northern China. PloS One, 2015, 10(6): e0130434. [36] Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu, China. Acta Prataculturae Sinica, 2016, 25(12): 76-83. 段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系. 草业学报, 2016, 25(12): 76-83. [37] de Campos M C, Pearse S J, Oliveira R S, et al. Downregulation of net phosphorus-uptake capacity is inversely related to leaf phosphorus-resorption proficiency in four species from a phosphorus-impoverished environment. Annals of Botany, 2013, 111(3): 445-454. [38] Li X F, Zheng X B, Han S J, et al. Effects of nitrogen additions on nitrogen resorption and use efficiencies and foliar litterfall of six tree species in a mixed birch and poplar forest, northeastern China. Canadian Journal of Forest Research, 2010, 40(11): 2256-2261. [39] Pugnaire F I, ChapinF S. Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology, 1993, 74(1): 124-129. [40] Eckstein R L, Karlsson P S, Weih M. Leaf life span and nutrient resorption as determinants of plant nutrient conservation in temperate-arctic regions. New Phytologist, 1999, 143(1): 177-189. [41] Tully K L, Wood T E, Schwantes A M, et al. Soil nutrient availability and reproductive effort drive patterns in nutrient resorption in Pentaclethra macroloba. Ecology, 2013, 94(4): 930-940. [42] Wright I J, Westoby M. Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species. Functional Ecology, 2003, 17(1): 10-19. [43] Chen F S, Hu X F, Ge G. Leaf N: P stoichiometry and nutrient resorption efficiency of Ophiopogon japonicus in Nanchang City. Acta Prataculturae Sinica, 2007, 16(4): 47-54. 陈伏生, 胡小飞, 葛刚. 城市地被植物麦冬叶片氮磷化学计量比和养分再吸收效率. 草业学报, 2007, 16(4): 47-54. [44] Lovelock C E, Feller I C, Ball M C, et al. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecology Letters, 2007, 10(12): 1154-1163. [45] Grime J P, Cornelissen J H C, Thompson K, et al. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos, 1996, 77(3): 489-494. [46] Xing X R, Han X G, Chen L Z. A review on research of plant nutrient use efficiency. Chinese Journal of Applied Ecology, 2000, 11(5): 785-790. 邢雪荣,韩兴国,陈灵芝. 植物养分利用效率研究综述. 应用生态学报, 2000, 11(5): 785-790. [47] Vázquez de Aldana B R, Berendse F. Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Functional Ecology, 1997, 11(5): 619-626. [48] Silver W L. Is nutrient availability related to plant nutrient use in humid tropical forests. Oecologia, 1994, 98(3/4): 336-343. [49] Güsewell S. Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Functional Ecology, 2005, 19(2): 344-354. [50] Kozovits A R, Bustamante M M C, Garofalo C R, et al. Nutrient resorption and patterns of litter production and decomposition in a neotropical savanna. Functional Ecology, 2007, 21(6): 1034-1043. [51] Lü X T, Han X G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 2010, 327(1/2): 481-491. [52] Lü X T, Reed S C, Yu Q, et al. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant and Soil, 2015, 398(1/2): 111-120. [53] Rejmankova E. Nutrient resorption in wetland macrophytes: comparison across several regions of different nutrient status. New Phytologist, 2005, 167(2): 471-482. [54] Richardson S J, Peltzer D A, Allen R B, et al. Resorption proficiency along a chronosequence: Responses among communities and within species. Ecology, 2005, 86(1): 20-25. [55] Norris M D, Reich P B. Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. Plant and Soil, 2009, 316(1/2): 193-204. [56] Enoki T, Kawaguchi H. Nitrogen resorption from needles of Pinus thunbergii Parl. growing along a topographic gradient of soil nutrient availability. Ecological Research, 1999, 14(1): 1-8. [57] Vourlitis G L, de Almeida L F, Lawrence S, et al. Nutrient resorption in tropical savanna forests and woodlands of central Brazil. Plant Ecology, 2014, 215(9): 963-975. [58] Son Y, Lee I K, Ryu S R. Nitrogen and phosphorus dynamics in foliage and twig of pitch pine and Japanese larch plantations in relation to fertilization. Journal of Plant Nutrition, 2000, 23(5): 697-710. [59] Agüero M L, Puntieri J, Mazzarino M J, et al. Seedling response of Nothofagus species to N and P: linking plant architecture to N/P ratio and resorption proficiency. Trees, 2014, 28(4): 1185-1195. [60] Boerner R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. Journal of Applied Ecology, 1984, 21(3): 1029-1040. [61] Eckstein R L, Karlsson P S. Above-ground growth and nutrient use by plants in a subarctic environment: effects of habitat, life-form and species. Oikos, 1997, 79(2): 311-324. [62] Soudzilovskaia N A, Onipchenko V G, Cornelissen J H C, et al. Effects of fertilisation and irrigation on ‘foliar afterlife’in alpine tundra. Journal of Vegetation Science, 2007, 18(5): 755-766. [63] Liu P, Huang J H, Han X G, et al. Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 2006, 34(2/3): 266-275. [64] Wang C H, Wan S, Xing X R, et al. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology and Biochemistry, 2006, 38(5): 1101-1110. [65] Field C, Merino J, Mooney H A. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia, 1983, 60(3): 384-389. [66] Killingbeck K T. Can zinc influence nutrient resorption? A test with the drought-deciduous desert shrub Fouquieria splendens (ocotillo). Plant and Soil, 2008, 304(1/2): 145-155. [67] Sanz-Pérez V, Castro-Díez P, Millard P. Effects of drought and shade on nitrogen cycling in the leaves and canopy of Mediterranean quercus seedlings. Plant and Soil, 2009, 316(1/2): 45-56. [68] Yasumura Y, Onoda Y, Hikosaka K, et al. Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecology, 2005, 178(1): 29-37. [69] Lusk C H, Contreras O. Foliage area and crown nitrogen turnover in temperate rain forest juvenile trees of differing shade tolerance. Journal of Ecology, 1999, 87(6): 973-983. [70] Duan B L, Paquette A, Juneau P, et al. Nitrogen resorption in Acer platanoides and Acer saccharum: influence of light exposure and leaf pigmentation. Acta Physiologiae Plantarum, 2014, 36(11): 3039-3050. [71] Nordell K O, Karlsson P S. Resorption of nitrogen and dry matter prior to leaf abscission: variation among individuals, sites and years in the mountain birch. Functional Ecology, 1995, 9(2): 326-333. [72] Liu H Z, Zheng F R, Zhao S J. Effects of heat- stress on the active oxygen-quenching system in leaf of wheat varieties with different senescence types. Guizhou Agricultural Sciences, 2006, 34(1): 8-10. 刘洪展, 郑风荣, 赵世杰. 高温胁迫对不同衰老型小麦叶片中活性氧清除系统的影响. 贵州农业科学, 2006, 34(1): 8-10. [73] Zhang L P, Jing Q, Dai T B, et al. Effects of temperature and illumination on flag leaf photosynthetic characteristics and senescence of wheat cultivars with different grain quality. Chinese Journal of Applied Ecology, 2008, 19(2): 311-316. 张黎萍, 荆奇, 戴廷波, 等. 温度和光照强度对不同品质类型小麦旗叶光合特性和衰老的影响. 应用生态学报, 2008, 19(2): 311-316. [74] Pakonen T, Laine K, Havas P, et al. Effects of berry production and deblossoming on growth, carbohydrates and nitrogen compounds in Vaccinium myrtillus in north Finland. Acta Botanica Fennica, 1988, 136: 37-42. [75] Cipollini M L, Stiles E W. Costs of reproduction in Nyssa sylvatica: sexual dimorphism in reproductive frequency and nutrient flux. Oecologia, 1991, 86(4): 585-593. [76] Escudero A, Mediavilla S. Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. Journal of Ecology, 2003, 91(5): 880-889. [77] Chapin F S, Schulze E D, Mooney H A. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 1990, 21(1): 423-447. [78] Huang J J, Wang X H, Yan E R. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management, 2007, 239(1/2/3): 150-158. [79] Kimmins J P. Evaluation of consequences for future tree productivity of the loss of nutrients in whole-tree harvesting. Forest Ecology and Management, 1977, 1: 169-183. [80] Mediavilla S, Escudero A. Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. Forest Ecology and Management, 2004, 187(2/3): 281-294. [81] Liu B, Wang L H, Yin L M, et al. Seasonal variation and resorption characteristics of leaf N, P, and K in two aged Xanthoceras sorbifolia plantations. Chinese Journal of Ecology, 2010, 29(7): 1270-1276. 刘波, 王力华, 阴黎明, 等. 两种林龄文冠果叶N、P、K的季节变化及再吸收特征. 生态学杂志, 2010, 29(7): 1270-1276. [82] Li R H, Wang S L, Wang Q K. Nutrient contents and resorption characteristics in needles of different age Pinus massoniana (Lamb.) before and after withering. Chinese Journal of Applied Ecology, 2008, 19(7): 1443-1447. 李荣华, 汪思龙, 王清奎. 不同林龄马尾松针叶凋落前后养分含量及回收特征. 应用生态学报, 2008, 19(7): 1443-1447. [83] Zhuang Y Z. Nutrients and their resorption efficiencies in leaves of Pinus massoniana of different ages. Anhui Agricultural Science Bulletin, 2010, 16(18): 27-28, 52. 庄亚珍. 不同林龄马尾松针叶养分含量及其再吸收效率. 安徽农学通报, 2010, 16(18): 27-28, 52. [84] Deng H J, Chen A M, Yang S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena leucocephal. Journal of Applied and Environmental Biology, 2015, 21(3): 522-527. 邓浩俊, 陈爱民, 严思维, 等.不同林龄新银合欢重吸收率及其C:N:P化学计量特征. 应用与环境生物学报, 2015, 21(3): 522-527. [85] He P, Jin J Y, Lin B. Effects of nitrogen fertilizer on leaf senescence of spring maize and its mechanism. Scientia Agricultura Sinica, 1998, 31(3): 66-71. 何萍, 金继运,林葆. 氮肥用量对春玉米叶片衰老的影响及其机理研究. 中国农业科学, 1998, 31(3): 66-71. [86] Nambiar E K S. Do nutrients retranslocate from fine roots. Canadian Journal of Forest Research, 1987, 17(8): 913-918. [87] Lajtha K. Nutrient reabsorption efficiency and the response to phosphorus fertilization in the desert shrub Larrea tridentata (DC.) Cov. Biogeochemistry, 1987, 4(3): 265-276. [88] Côté B, Fyles J W, Djalilvand H. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Annals of Forest Science, 2002, 59(3): 275-281. [89] Pugnaire F I, Chapin F S. Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia, 1992, 90(1): 120-126. [90] Shen C G. Plant senescence physiology and molecular biology. Beijing: China Agriculture Press, 2001. 沈成国. 植物衰老生理与分子生物学. 北京: 中国农业出版社, 2001. [91] Wang X W, Cao H. Studies on mechanism of leaf senescence in high plant. Journal of Shanxi Agricultural University (Natural Science Edition), 2004, 24(4): 416-419. 王孝威, 曹慧. 高等植物衰老的机理研究. 山西农业大学学报(自然科学版), 2004, 24(4): 416-419. [92] Zhou F, Hua C, Wang R L. The leaf senescence and its regulation. Northern Horticulture, 2012, (1): 171-172. 周峰, 华春, 王仁雷. 植物叶片衰老及调控. 北方园艺, 2012, (1): 171-172. [93] Himelblau E, Amasino R M. Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. Journal of Plant Physiology, 2001, 158(10): 1317-1323. [94] Li Q, Zhu Y X. The progress of plant senescence research and plant molecular breeding. Molecular Plant Breeding, 2003, 1(3): 289-296. 李晴, 朱玉贤. 植物衰老的研究进展及其在分子育种中的应用. 分子植物育种, 2003, 1(3): 289-296. [95] Yan W Y, Ye S H, Dong Y J, et al. Research progress related to plant leaf senescence. Crops, 2010, (4): 4-9. 严雯奕, 叶胜海, 董彦君, 等. 植物叶片衰老相关研究进展. 作物杂志, 2010, (4): 4-9. [96] Nooden L D, Guiamet J J, John I. Senescence mechanisms. Physiologia Plantarum, 1997, 101(4): 746-753. [97] Yoshida S. Molecular regulation of leaf senescence. Current Opinion Plant Biology, 2003, 6(1): 79-84. [98] Ono K, Nishi Y, Watanabe A, et al. Possible mechanisms of adaptive leaf senescence. Plant Biology, 2001, 3(3): 234-243. [99] Hellmann H, Estelle M. Plant development: Regulation by protein degradation. Science, 2002, 297: 793-797. [100] Zhang J R. Effects of fertilization on leaf N and P resorption in an alpine meadow of the Tibetan Plateau. Lanzhou: Lanzhou University, 2016. 张晶然. 施肥对青藏高原高寒草甸植物叶片氮磷重吸收的影响. 兰州: 兰州大学, 2016. [101] Brant A N, Chen H Y H. Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences, 2015, 34(5): 471-486. [102] Freschet G T, Aerts R, Cornelissen J H C. A plant economics spectrum of litter decomposability. Functional Ecology, 2012, 26(1): 56-65. [103] Chen F S, Niklas K J, Liu Y, et al. Nitrogen and phosphorus additions alter nutrient dynamics but not resorption efficiencies of Chinese fir leaves and twigs differing in age. Tree Physiology, 2015, 35(10): 1106-1117. [104] McClaugherty C A, Aber J D, Melillo J M. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology, 1982, 63(5): 1481-1490. [105] Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia, 1990, 84(3): 391-397. [106] Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 2000, 147(1): 13-31. [107] Gordon W S, Jackson R B. Nutrient concentrations in fine roots. Ecology, 2000, 81(1): 275-280. [108] Milla R, Castro-Diez P, Maestro-Martinez M, et al. Relationships between phenology and the remobilization of nitrogen, phosphorus and potassium in branches of eight Mediterranean evergreens. New Phytologist, 2005, 168(1): 167-178. [109] Gan S, Amasino R M. Making sense of senescence (Molecular genetic regulation and manipulation of leaf senescence). Plant Physiology, 1997, 113(2): 313-319. [110] Davies P J, Gan S. Towards an integrated view of monocarpic plant senescence. Russian Journal of Plant Physiology, 2012, 59(4): 467-478. |
[1] | SUN Si-si, WU Zhan-ping, XIAO Qi-tao, YU Fei, GU Shu-hong, FANG Di, LI Lang, ZHAO Xing-bing. Factors influencing CO2 fluxes of a grassland ecosystem on the Yunnan-Guizhou Plateau, China [J]. Acta Prataculturae Sinica, 2020, 29(4): 184-191. |
[2] | SONG Mei-ling, WANG Yu-qin, BAO Gen-sheng, WANG Hong-sheng. Effect of Stellera chamaejasme removal on the nutrient resorption of plants in an alpine grassland community [J]. Acta Prataculturae Sinica, 2020, 29(10): 47-57. |
[3] | JIA Yin, XIANG Yuan-fen, WANG Lin-lu, ZHAO Jian, LIU Cai-lei, PAN Yuan-zhi. Effects of salt stress on the growth and physiological characteristics of Primula forbesii [J]. Acta Prataculturae Sinica, 2020, 29(10): 119-128. |
[4] | LI Zhou, PENG Yan, YIN Shu-xia, HAN Lie-bao. Effects of exogenous mannose application on drought tolerance, sugars, and sugar alcohol accumulation in white clover [J]. Acta Prataculturae Sinica, 2019, 28(12): 85-93. |
[5] | WANG Zhen-nan, ZHAO Mei, YANG Yan, LI Fu-kuan, WANG Hui, LÜ Shen-jin. Relationships between alfalfa leaf nutrient resorption and stoichiometric ratios of nitrogen, phosphorus, and potassium [J]. Acta Prataculturae Sinica, 2019, 28(11): 177-183. |
[6] | SUN Li-kun, LIU Guang-xiu, ZHANG Bao-gui, ZHANG Gao-sen. Effects of environmental factors on population genetic diversity of Tamarix chinensis [J]. Acta Prataculturae Sinica, 2019, 28(10): 178-186. |
[7] | YANG Mei, WANG Ya-Ya, LU Jiao-Yun, LIU Min-Guo, DUAN Bing-Hong, YANG Hui-Min. Advances in typical patterns to include grass species in orchards and mechanisms to regulate resources within the orchard-grass system in China [J]. Acta Prataculturae Sinica, 2017, 26(9): 189-199. |
[8] | GE Zhao-Xuan, SUN Guo-Long, YUAN Ye, HUANG Xuan-Rui, ZHANG Zhi-Dong. Herbaceous plant species diversity and functional diversity in the forest-steppe zone of Hebei, China [J]. Acta Prataculturae Sinica, 2017, 26(7): 35-44. |
[9] | TAO Ye, LIU Yao-Bin, WU Gan-Lin, ZHANG Yuan-Ming. Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar desert, Chin [J]. Acta Prataculturae Sinica, 2016, 25(7): 13-23. |
[10] | WEI Wan-Rong, MA An-Wei, HE Kai, ZHANG Wei-Guo. The evolutionary causes of rodent group-living: Hypotheses [J]. Acta Prataculturae Sinica, 2016, 25(4): 212-221. |
[11] | DUAN Bing-Hong, LU Jiao-Yun, LIU Min-Guo, YANG Mei, WANG Ya-Ya, WANG Zhen-Nan, YANG Hui-Min. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu, China [J]. Acta Prataculturae Sinica, 2016, 25(12): 76-83. |
[12] | DONG Chen-Fei, GU Hong-Ru, DING Cheng-Long, XU Neng-Xiang, ZHANG Wen-Jie. Effects of gibberellic acid on forage quality of rice (Oryza sativa) straw [J]. Acta Prataculturae Sinica, 2016, 25(11): 94-102. |
[13] | SONG Ji-Xuan, LI Jin-Huan, LIU Mei-Ru, NIU Jian-Hang, WANG Ran, LV Jun, ZONG Xue-Feng, WANG San-Gen. Effects of brassinosteroid application on osmotic adjustment and antioxidant enzymes in Leymus chinensis under drought stress [J]. Acta Prataculturae Sinica, 2015, 24(8): 93-102. |
[14] | JIA Shuang-Shuang, XU Kun. The effects of Meloidogyne incognita infection on osmolyte and hydroxyproline levels in tomato rootstock seedlings with different resistance [J]. Acta Prataculturae Sinica, 2015, 24(7): 123-130. |
[15] | JIA Xin-Ping, DENG Yan-Ming, SUN Xiao-Bo, LIANG Li-Jian. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum [J]. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||