[1] Chen B S. Forage grass crop cultivation. Beijing: China Agriculture Press, 2001. 陈宝书. 牧草饲料作物栽培学. 北京: 中国农业出版社, 2001. [2] Wu Y H. Kunlun flora. Chongqing: Chongqing Press, 2013. 吴玉虎. 昆仑植物志. 重庆: 重庆出版社, 2013. [3] Shi H X, Chen Z H, Li Z Y, et al. Preliminary survey and collection of germplasm resources of Bromus L. in Tibet Autonomous. Journal of Plant Genetic Resources, 2018, 19(4): 612-618. 石红霄, 陈志宏, 李志勇, 等. 西藏自治区雀麦属种质资源考察与收集. 植物遗传资源学报, 2018, 19(4): 612-618. [4] Shi W G, Li Z Y, Li H Y, et al. Comparative analysis of description characters of Bromus inermis gemplasm resources. Journal of Plant Genetic Resources, 2007, 8(4): 510-513. 师文贵, 李志勇, 李鸿雁, 等. 无芒雀麦种质资源主要描述性状比较分析. 植物遗传资源学报, 2007, 8(4): 510-513. [5] Kuang X, Ji J, Liang W X, et al. Effects of mixed sowing ratio and mowing period of Medicago sativa and Bromus inermis on silage quality in coldregions of north China. Acta Prataculturae Sinica, 2018, 27(12): 187-198. 邝肖, 季婧, 梁文学, 等. 北方寒区紫花苜蓿/无芒雀麦混播比例和刈割时期对青贮品质的影响. 草业学报, 2018, 27(12): 187-198. [6] Zhao Y P, Qi B L, Gao G C, et al. A high quality pasutarge in soil and water con sevration—Bromus inermis. Forestry Science and Technology, 2005, 34(6): 5-7, 12. 赵云鹏, 齐宝林, 高国臣, 等. 水土保持优良牧草——无芒雀麦. 吉林林业科技, 2005, 34(6): 5-7, 12. [7] Zhang X Y. Analysis of karyotype and genetic diversity of Elytrigia repens. Lanzhou: Gansu Agricultural University, 2011. 张晓燕. 偃麦草染色体核型与遗传多样性分析. 兰州: 甘肃农业大学, 2011. [8] Wu G L. The application of karyotype analysis on cytotaxonomy. Journal of Biology, 2006, (1): 39-42. 吴甘霖. 核型分析在细胞分类学中的应用. 生物学杂志, 2006, (1): 39-42. [9] Xu B S, Zhang Z Y, Chen J K, et al. Advances in chromosome studies and plant taxonomy. Journal of Wuhan Botanical Research, 1996, 14(2): 177-187. 徐炳声, 张芝玉, 陈家宽, 等. 染色体研究的进展与植物分类学(上). 武汉植物学研究, 1996, 14(2): 177-187. [10] Tian X M, Zhou X Y, Gong N. Applications of flow cytometry in plant research——Analysis of nuclear DNA content and ploidy level in plant cells. Chinese Agricultural Science Bulletin, 2011, 27(9): 21-27. 田新民, 周香艳, 弓娜. 流式细胞术在植物学研究中的应用——检测植物核DNA含量和倍性水平. 中国农学通报, 2011, 27(9): 21-27. [11] Wang Y, Xiao Y, Liu W, et al. Operation skills of flow cytometer for detecting nuclear DNA contents in higher plant cells. Plant Science Journal, 2015, 33(1): 126-131. 汪艳, 肖媛, 刘伟, 等. 流式细胞仪检测高等植物细胞核DNA含量的方法. 植物科学学报, 2015, 33(1): 126-131. [12] Ulrich I, Ulrich W. High-resolution flow cytometry of nuclear DNA in higher plants. Protoplasma, 1991, 165(1): 212-215. [13] Lin F, Xiao Y E, Zhou X Y, et al. Estimation of genomic C-value of 25 samples of Iris plants by flow cytometry. Acta Agrestia Sinica, 2018, 26(4): 198-203. 林峰, 肖月娥, 周翔宇, 等. 25份鸢尾属植物基因组DNA值的流式测定. 草地学报, 2018, 26(4): 198-203. [14] Feng J J. Applications of flow cytometry in plant research. Yangling: Northwest A&F University, 2017. 冯娇娇. 流式细胞术在植物上的应用. 杨凌: 西北农林科技大学, 2017. [15] Deng G T. Studies on the chromosome karyotype and ploidy level of Miscanthus in China. Changsha: Hunan Agricultural University, 2012. 邓果特. 中国芒属植物染色体核型与倍性研究. 长沙: 湖南农业大学, 2012. [16] Gao Y H, Han B. Chromosome ploidy determination of 9 populations of Agropyron mongolicum Keng by flow cytometry. Animal Husbandry and Feed Science, 2013, 34(6): 1-3, 6. 高友汉, 韩冰. 利用流式细胞仪鉴定9个居群蒙古冰草的染色体倍性. 畜牧与饲料学, 2013, 34(6): 1-3, 6. [17] Liu Q M, Wang Y W, Wang X S. Detection of chromosome ploidy level in Dactylis glomerata and Lolium multiflorum by flow cytometry. Pratacultural Science, 2012, 29(3): 403-410. 柳青慕, 王赟文, 王小山. 流式细胞仪快速检测鸭茅与多花黑麦草染色体倍性的研究. 草业科学, 2012, 29(3): 403-410. [18] Xu L, Chen P L, Feng G Y, et al. Ploidy determination of orchardgrass (Dactylis glomerata) using flow cytometry. Acta Prataculturae Sinica, 2019, 28(3): 74-84. 许蕾, 陈佩琳, 冯光燕, 等. 利用流式细胞仪鉴定鸭茅倍性. 草业学报, 2019, 28(3): 74-84. [19] Liu Q, Wei Z W. Sample preparation for alfalfa relative DNA content analysis by flow cytometry. Pratacultural Science, 2014, 31(9): 1718-1723. 刘倩, 魏臻武. 流式细胞术分析苜蓿相对DNA含量的样品处理方法. 草业科学, 2014, 31(9): 1718-1723. [20] Kong X Z. Karyoty analysis of Bromus inermis Leyss of Xinjiang. Journal of Xinjiang Agricultural University, 1991, (1): 43-45. 孔祥祯. 新疆无芒雀麦的核型分析. 新疆农业大学学报, 1991, (1): 43-45. [21] Zhuang Z, Li G Q. Karyoty analysis of Bromus inermis Leyss of Xinque NO‘1’. Xinjiang Agricultural Sciences, 1996, (5): 203-204. 庄重, 李国强. 新雀1号无芒雀麦核型分析. 新疆农业科学, 1996, (5): 203-204. [22] Li M X, Zhang Z P. Plant chromosomes and their research techniques. Beijing: China Agriculture Press, 1996: 23-40. 李懋学, 张赞平. 植物染色体及其研究技术. 北京: 中国农业出版社, 1996: 23-40. [23] Greilhuber J, Dolezel J, Lysak M A, et al. The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-Value’ to describe nuclear DNA contents. Annals of Botany, 2005, 95(1): 255-260. [24] Barow M, Meister A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell & Environment, 2010, 26(4): 571-584. [25] Sun W G, Sun H, Li Z M. Chromosome data mining and its application in plant diversity research. Plant Science Journal, 2019, 37(2): 260-269. 孙文光, 孙航, 李志敏. 染色体数据的挖掘及其在植物多样性进化研究中的利用. 植物科学学报, 2019, 37(2): 260-269. [26] Yang J, Song Q X, Ning J Q, et al. Establishment of Morus L. chromosome ploidy identification method using flow cytometry. Science of Sericulture, 2017, (1): 8-17. 杨静, 宋勤霞, 宁军权, 等. 利用流式细胞术鉴定桑树染色体倍性的方法. 蚕业科学, 2017, (1): 8-17. [27] Sliwinska E, Elzbieta Z, Iwona J. Are seeds suitable for flow cytometric estimation of plant genome size? Cytometry Part A, 2010, 64A(2): 72-79. [28] Loureiro J, Rodriguez E, Dolezel J, et al. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Annals of Botany, 2007, 100(4): 875-888. [29] Georgiev V, Jost W, Thomas B, et al. Improved procedure for nucleus extraction for DNA measurements by flow cytometry of red beet (Beta vulgaris L.) hairy roots. Journal of Bioscience & Bioengineering, 2009, 107(4): 439-441. [30] Dolezel J. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botony, 2005, 95(1): 99-110. [31] Delaat A M M, Gohde W, Vogelzakg M J D C. Determination of ploidy of single plants and plant populations by flow cytometry. Plant Breeding, 2010, 99(4): 303-307. [32] Kolano B. Endopolyploidy patterns during plant development of chenopodium quinoa. Acta Biologica Cracoviensia, 2009, 51(2): 85-92. [33] Atsushi O, Nanako T, Kazumitsu M. Variations in endopolyploidy level during the short period of the early growing stage in the roots and leaves of maize (Zea mays) seedlings. Plant Biotechnology Reports, 2010, 4(2): 117-123. [34] Li L F, Liu B. Recent advances of plant polyploidy and polyploid genome evolution. Scientia Sinica (Vitae), 2019, 49(4): 327-337. 李霖锋, 刘宝. 植物多倍化与多倍体基因组进化研究进展. 中国科学: 生命科学, 2019, 49(4): 327-337. [35] Wen G, Dang J B, Sun H P, et al. A preliminary study on leaf characteristics and drought resistance of polyploid and diploid loquat. Journal of Fruit Science, 2019, 7(13): 1-14. 温国, 党江波, 孙皓浦, 等. 多倍体与二倍体枇杷叶片特征及抗旱性初步分析. 果树学报, 2019, 7(13): 1-14. [36] Martin B. Endopolyploidy in seed plants. Bioessays, 2006, 28(3): 271-281. [37] Bai C L, Liao Z R, Zhang Q, et al. DNA one step method of applying flow cytometric to rapidly analyze cell cycle. Journal of Kunming Medical University, 2017, 38(2): 10-13. 柏春玲, 廖泽容, 张巧, 等. 应用流式细胞术快速测定细胞周期的DNA一步法. 昆明医科大学学报, 2017, 38(2): 10-13. |