Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (6): 214-220.DOI: 10.11686/cyxb2020229
Ye WANG1(), Hui-ping CHEN2(), Run-zhi LI1, Zhen PENG1, Xi-feng FAN3, Ju-ying WU3(), Liu-sheng DUAN1,2()
Received:
2020-05-21
Revised:
2020-08-25
Online:
2021-05-21
Published:
2021-05-21
Contact:
Ju-ying WU,Liu-sheng DUAN
Ye WANG, Hui-ping CHEN, Run-zhi LI, Zhen PENG, Xi-feng FAN, Ju-ying WU, Liu-sheng DUAN. A micropropagation system for Miscanthus×giganteus based on axillary buds and evaluation of its salt tolerance[J]. Acta Prataculturae Sinica, 2021, 30(6): 214-220.
消毒处理 Treatment | 出芽率 Bud induction rate | 污染率 Pollution rate |
---|---|---|
D1 | 70.0±8.75b | 0b |
D2 | 23.3±5.16c | 0b |
D3 | 72.5±6.23b | 12.5±2.57a |
D4 | 85.2±9.45a | 0b |
Table 1 Screening of sterilization methods for explants of nodal segments (%)
消毒处理 Treatment | 出芽率 Bud induction rate | 污染率 Pollution rate |
---|---|---|
D1 | 70.0±8.75b | 0b |
D2 | 23.3±5.16c | 0b |
D3 | 72.5±6.23b | 12.5±2.57a |
D4 | 85.2±9.45a | 0b |
取材时期 Developmental stage of explants | 可用外植体数 Number of explants available (No·plant-1) | 出芽率 Bud induction rate (%) | 增殖倍数 Proliferation multiples coefficient |
---|---|---|---|
5~6叶 5-6 leaves | 4.75±0.78a | 83.95±8.24a | 3.98a |
8~9叶 8-9 leaves | 5.12±1.02a | 29.80±7.32b | 1.52b |
10叶以上 More than 10 leaves | 5.25±0.89a | 24.19±5.28b | 1.26b |
Table 2 Effects of nodal segments developmental stage on bud induction rate and proliferation multiples
取材时期 Developmental stage of explants | 可用外植体数 Number of explants available (No·plant-1) | 出芽率 Bud induction rate (%) | 增殖倍数 Proliferation multiples coefficient |
---|---|---|---|
5~6叶 5-6 leaves | 4.75±0.78a | 83.95±8.24a | 3.98a |
8~9叶 8-9 leaves | 5.12±1.02a | 29.80±7.32b | 1.52b |
10叶以上 More than 10 leaves | 5.25±0.89a | 24.19±5.28b | 1.26b |
6-BA浓度 6-BA concentration (mg·L-1) | 出芽率 Bud induction rate (%) | 繁殖系数Multiplication coefficient (%) | ||
---|---|---|---|---|
30 d | 60 d | 90 d | ||
1.0 | 84.09±6.25a | 145.83±15.69c | 156.34±23.69c | 126.16±25.34c |
3.0 | 82.75±9.69a | 187.50±21.35b | 225.13±28.53b | 243.78±31.25b |
5.0 | 83.95±8.24a | 320.29±20.45a | 362.58±32.78a | 342.13±29.14a |
7.0 | 83.25±7.53a | 184.69±24.62b | 248.15±31.44b | 276.24±30.25b |
Table 3 Effects of different 6-BA levels on bud induction rate and multiplication coefficient of nodal segments explants
6-BA浓度 6-BA concentration (mg·L-1) | 出芽率 Bud induction rate (%) | 繁殖系数Multiplication coefficient (%) | ||
---|---|---|---|---|
30 d | 60 d | 90 d | ||
1.0 | 84.09±6.25a | 145.83±15.69c | 156.34±23.69c | 126.16±25.34c |
3.0 | 82.75±9.69a | 187.50±21.35b | 225.13±28.53b | 243.78±31.25b |
5.0 | 83.95±8.24a | 320.29±20.45a | 362.58±32.78a | 342.13±29.14a |
7.0 | 83.25±7.53a | 184.69±24.62b | 248.15±31.44b | 276.24±30.25b |
活性炭 Activated carbon (g·L-1) | 生根率 Rooting rate (%) | 株高 Plant height (cm) | 根长 Root length (cm) | 根数 Root number (No·plant-1) | 移栽成活率 Survival rate (%) | 根系生长情况 Root growing status |
---|---|---|---|---|---|---|
0 | 64.71±8.35a | 1.33±0.11a | 1.25±0.35b | 7.01±0.79a | 45.23±7.13b | 粗,短,脆,褐色。Thick, short, crisp, brown. |
5.0 | 65.85±11.23a | 1.20±0.18a | 3.18±0.29a | 6.05±0.85a | 95.78±4.21a | 细,长,柔软,白色。Thin, long, soft, white. |
Table 4 Effects of activated carbon on the rooting and transplantation of M.×giganteus
活性炭 Activated carbon (g·L-1) | 生根率 Rooting rate (%) | 株高 Plant height (cm) | 根长 Root length (cm) | 根数 Root number (No·plant-1) | 移栽成活率 Survival rate (%) | 根系生长情况 Root growing status |
---|---|---|---|---|---|---|
0 | 64.71±8.35a | 1.33±0.11a | 1.25±0.35b | 7.01±0.79a | 45.23±7.13b | 粗,短,脆,褐色。Thick, short, crisp, brown. |
5.0 | 65.85±11.23a | 1.20±0.18a | 3.18±0.29a | 6.05±0.85a | 95.78±4.21a | 细,长,柔软,白色。Thin, long, soft, white. |
NaCl浓度 NaCl concentration (%) | 生长速率 Growth rate (cm·d-1) | 平均速率Average growth rate (cm·d-1) | 生物量Fresh weight (g·plant-1) | |
---|---|---|---|---|
7 d | 14 d | |||
0 | 0.15±0.030a | 0.17±0.02a | 0.160a | 0.31±0.09a |
0.2 | 0.12±0.010a | 0.14±0.04b | 0.130a | 0.35±0.07a |
0.4 | 0.02±0.004b | 0.06±0.01c | 0.040b | 0.23±0.04b |
0.6 | 0.02±0.009b | 0.03±0.01c | 0.025b | 0.19±0.02b |
0.8 | 0.01±0.007c | 0c | 0.005c | 0.14±0.03c |
Table 5 Effects of different NaCl concentrations on the growth rate and fresh weight of M.×giganteus
NaCl浓度 NaCl concentration (%) | 生长速率 Growth rate (cm·d-1) | 平均速率Average growth rate (cm·d-1) | 生物量Fresh weight (g·plant-1) | |
---|---|---|---|---|
7 d | 14 d | |||
0 | 0.15±0.030a | 0.17±0.02a | 0.160a | 0.31±0.09a |
0.2 | 0.12±0.010a | 0.14±0.04b | 0.130a | 0.35±0.07a |
0.4 | 0.02±0.004b | 0.06±0.01c | 0.040b | 0.23±0.04b |
0.6 | 0.02±0.009b | 0.03±0.01c | 0.025b | 0.19±0.02b |
0.8 | 0.01±0.007c | 0c | 0.005c | 0.14±0.03c |
1 | Xi Q G, Hong H. Description of introduced plant Miscanthus×giganteus. Pratacultural Science, 2008, 25(2): 26-28. |
席庆国, 洪浩. 外来植物奇岗的生物学特征. 草业科学, 2008, 25(2): 26-28. | |
2 | Heaton E A, Long S P, Voigt T B, et al. Miscanthus for renewable energy generation: European Union experience and projections for Illinois. Mitigation and Adaptation Strategies for Global Change, 2004, 9(4): 433-451. |
3 | Kolodziej B, Antonkiewicz J, Sugier D. Miscanthus×giganteus as a biomass feedstock grown on municipal sewage sludge. Industrial Crops and Products, 2016, 81: 72-82. |
4 | Liu Y, Ludewing U. Improved establishment of Miscanthus×giganteus stem propagation by Herbaspirllum inoculation. Industrial Crops and Products, 2020, 150: 1-10. |
5 | Atkinson C J. Establishing perennial grass energy crop in the UK: A review of current propagation options for Miscanthus. Biomass Bioenergy, 2009, 33(5): 752-759. |
6 | Wei J, Wang X H, Xiao L. Research progress on propagation techniques of bioenergy grasses. Crop Research, 2015, 29(5): 558-563. |
魏娟, 王学华, 肖亮. 能源草本植物繁殖技术研究进展. 作物研究, 2015, 29(5): 558-563. | |
7 | Holme I B, Petersen K K. Callus induction and plant regeneration from different explants types of Miscanthus×ogiformis Honda ‘Giganteus’. Plant Cell Tissue Organ Cult, 1996, 45(1): 43-52. |
8 | Zhang Q X, Sun Y, Hu H K, et al. Micropropagation and plant regeneration from embryogenic callus of Miscanthus sinensis. In Vitro Cellular and Developmental Biology-Plant, 2012, 48(1): 50-57. |
9 | Plaźek A, Dubert F. Improvement of medium for Miscanthus×giganteus callus induction and plant regeneration. Acta Biologica Cracoviensia Series Botanica, 2010, 52(1): 105-110. |
10 | Kim H S, Zhang G, Juvik J A, et al. Miscanthus×giganteus plant regeneration: Effect of callus types, ages and culture methods on regeneration competence. Global Change Biology Bioenergy, 2010, 2(4): 192-200. |
11 | Ślusarkiewicz-Jarzina A, Ponitka A, Cerazy-Waliszewska J, et al. Effective and simple in vitro regeneration system of Miscanthus sinensis, M.×giganteus and M. sacchariflorus for planting and biotechnology purposes. Biomass and Bioenergy, 2017, 107: 219-226. |
12 | Nielsen J M, Brandt K, Hansen J. Long term effects of thidiazuron are intermediate between benzyladenine kinetin or isopentenyladenine in Miscanthus sinensis. Plant Cell, Tissue and Organ Culture, 1993, 35(2): 173-179. |
13 | Lewandowski I. Micropropagation of Miscanthus×giganteus//Bajaj Y P S. Biotechnology in agriculture and forestry, V39. High-Tech and Micropropagation V. Berlin: Springer, 1997: 239-255. |
14 | Liu M X, Jiang J X, Yi Z L. Application of cell engineering in improving Miscanthus as a dedicated bioenergy crop. Acta Prataculturae Sinica, 2011, 20(4): 261-269. |
刘明稀, 蒋建雄, 易自力. 细胞工程技术在芒属能源作物上的应用. 草业学报, 2011, 20(4): 261-269. | |
15 | Chae W B, Hong S J, Gifford J M, et al. Synthetic polyploid production of Miscanthus sacchariflorus, Miscanthus sinensis, and Miscanthus×giganteus. Global Change Biology Bioenergy, 2013, 5(3): 338-350. |
16 | Hajam M A, Hassan G I, Bhat T A, et al. Understanding plant growth regulators, their interplay: For nursery establishment in fruits. International Journal of Chemical Studies, 2017, 5(5): 905-910. |
17 | Ma L N, He J, Li G. Tissue culture and rapid propagation of Ziziphora bungeana Juz. Plant Physiology Journal, 2018, 54(8): 1349-1355. |
马丽娜, 何江, 李冠. 新塔花的组织培养与快速繁殖. 植物生理学报, 2018, 54(8): 1349-1355. | |
18 | Yang K, Chen Y Y, Wang J C, et al. Selection of different explants from hops and establishment of a regeneration system. Acta Prataculturae Sinica, 2019, 28(8): 209-217. |
杨轲, 陈一酉, 汪军成, 等. 啤酒花不同外植体筛选及再生体系构建. 草业学报, 2019, 28(8): 209-217. | |
19 | Mo Y Q, Zheng F, Fang L, et al. Tissue culture and rapid propagation plant of Dendrobium kingianum Bidwill. Plant Physiology Journal, 2018, 54(4): 677-685. |
莫远琪, 郑枫, 房林, 等. 澳洲鸽子石斛组织培养快速繁殖研究. 植物生理学报, 2018, 54(4): 677-685. | |
20 | Shinde K A, Patel R M, Shah R R. Proliferation, rooting and acclimatization of micropropagated grape cv. Thompson seedless. International Journal of Plant Sciences, 2010, 5(1): 98-101. |
21 | Lin C. Identification and evaluation of salt tolerance of Miscanthus energy plant. Hunan: Hunan Agricultural University, 2012. |
林聪. 芒属能源植物耐盐性鉴定与评价. 湖南: 湖南农业大学, 2012. | |
22 | Duan J Y, Shi Y L, Lin Y H, et al. Characteristics of inorganic salt ion absorption of Miscanthus lutarioriparius polypoid under NaCl stress. Pratacultural Science, 2018, 35(12): 2893-2902. |
段钧译, 石艳兰, 林宇环, 等. NaCl胁迫下南荻多倍体的无机盐离子吸收特征. 草业科学, 2018, 35(12): 2893-2902. |
[1] | Ya-qi CHEN, Kai-qi SU, Tai-xiang CHEN, Chun-jie LI. Effects of complex saline-alkali stress on seed germination and seedling physiological characteristics of Achnatherum inebrians [J]. Acta Prataculturae Sinica, 2021, 30(3): 137-157. |
[2] | XIONG Xue, GUI Wei-yang, LIU Mo-han, CHEN Ji-hui, ZHANG Ying-jun. Evaluation of salt tolerance in different alfalfa varieties under uniform and non-uniform salt stress [J]. Acta Prataculturae Sinica, 2018, 27(9): 67-76. |
[3] | KE Dan-xia, PENG Kun-peng, XIA Yuan-jun, ZHU Yu-ying, ZHANG Dan-dan. Cloning of salt-stressed responsive gene GmWRKY6 and salt resistance analysis of transgenic Lotus japonicus [J]. Acta Prataculturae Sinica, 2018, 27(8): 95-106. |
[4] | MI Yong-wei, WANG Guo-xiang, GONG Cheng-wen, CAI Zi-ping, WU Wei-guo. Effects of salt stress on growth and physiology of Isatis indigotica seedlings [J]. Acta Prataculturae Sinica, 2018, 27(6): 43-51. |
[5] | WU Guo-Qiang, FENG Rui-Jun, LI Shan-Jia, WANG Chun-Mei, JIAO Qi, LIU Hai-Long. Effects of salt treatments on growth and osmoregulatory substance accumulation in sugar beet (Beta vulgaris) [J]. Acta Prataculturae Sinica, 2017, 26(4): 169-177. |
[6] | JIA Xin-Ping, DENG Yan-Ming, SUN Xiao-Bo, LIANG Li-Jian. Impacts of salt stress on the growth and physiological characteristics of Paspalum vaginatum [J]. Acta Prataculturae Sinica, 2015, 24(12): 204-212. |
[7] | ZHANG Jin-Lin, LI Hui-Ru, GUO Shu-Yuan, WANG Suo-Min, SHI Hua-Zhong, HAN Qing-Qing, BAO Ai-Ke, MA Qing. Research advances in higher plant adaptation to salt stress [J]. Acta Prataculturae Sinica, 2015, 24(12): 220-236. |
[8] | ZHAO Ying, LI Jing-Yuan, DUAN Yan-Xin, DONG Xiao-Ying. Responses of three Zoysia grass species to salt stress [J]. Acta Prataculturae Sinica, 2015, 24(11): 109-117. |
[9] | LIU Fengqi, LIU Jielin, ZHU Ruifen, ZHANG Yue, GUO Yong, HAN Guiqing, TANG Fenglan. Physiological responses and tolerance of four oat varieties to salt stress [J]. Acta Prataculturae Sinica, 2015, 24(1): 183-189. |
[10] | AN Meng-ying,SUN Shan-shan,PUYANG Xue-hua,HAN Lie-bao. Effect of exogenous spermidine on salt tolerance in Kentucky bluegrass seedlings under salinity stress [J]. Acta Prataculturae Sinica, 2014, 23(6): 207-216. |
[11] | YANG Hai-xia,LIU Run-jin,GUO Shao-xia. Effects of arbuscular mycorrhizal fungus Glomus mosseae on the growth characteristics of Festuca arundinacea under salt stress conditions [J]. Acta Prataculturae Sinica, 2014, 23(4): 195-203. |
[12] |
WU Jing, CAI Hua, BAI Xi, JI Wei, WEI Zheng-wei, TANG Li-li, ZHAO Yang, ZHU Yan-ming. An analysis of salt tolerance of transgenic alfalfa with the GsGST13/SCMRP gene [J]. Acta Prataculturae Sinica, 2014, 23(1): 257-265. |
[13] | XU Neng-xiang, GU Hong-ru, DING Cheng-long, DONG Chen-fei, CHENG Yun-hui, ZHANG Wen-jie, WANG Xing-gang. A study of salt tolerance and feeding quality of Italian ryegrass varieties under salinized-soil conditions [J]. Acta Prataculturae Sinica, 2013, 22(4): 89-98. |
[14] | JIANG Qiao-feng, CHEN Jing-bo, ZONG Jun-qin, LI Shan, CHU Xiao-qing, GUO Hai-lin, LIU Jian-xiu . Effect of phosphorus on Na+ and K+ concentrations and the growth of Zoysia matrella under salt stress [J]. Acta Prataculturae Sinica, 2013, 22(3): 162-. |
[15] | LI Jian, ZHANG Jin-Lin, WANG Suo-Min, GUO Qiang. Cloning and bio-infomatical analysis of the high-affinity K+ transporter gene PutHKT2;1 from the halophyte Puccinellia tenuiflora [J]. Acta Prataculturae Sinica, 2013, 22(2): 140-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||