Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (7): 53-61.DOI: 10.11686/cyxb2020252
Previous Articles Next Articles
Hui-li WU(), Wei TIAN, Yan-ling JI, Lai-qing LOU, Qing-sheng CAI()
Received:
2020-05-27
Revised:
2020-10-26
Online:
2021-07-20
Published:
2021-06-03
Contact:
Qing-sheng CAI
Hui-li WU, Wei TIAN, Yan-ling JI, Lai-qing LOU, Qing-sheng CAI. Screening for plant growth-promoting rhizobacteria that promote cadmium absorption and accumulation and their effects on annual ryegrass[J]. Acta Prataculturae Sinica, 2021, 30(7): 53-61.
菌株 Strains | IAAa Secreting IAA ability | 溶磷b Phosphate solubilization | ACC脱氨酶 ACC deaminase activity | 铁载体 Producing siderophores | 菌株 Strains | IAAa Secreting IAA ability | 溶磷b Phosphate solubilization | ACC脱氨酶 ACC deaminase activity | 铁载体 Producing siderophores |
---|---|---|---|---|---|---|---|---|---|
Ts01 | - | - | - | + | Cc08 | - | - | + | - |
Tm01 | - | ++++ | - | - | Pi06 | ++ | - | - | - |
As12 | - | - | - | - | Pi11 | ++ | - | - | - |
Ls01 | + | - | - | - | Pl01 | ++ | - | - | + |
Ma04 | ++ | - | - | - | Ki02 | - | - | - | + |
Pi01 | ++ | - | - | + | Mh02 | +++ | + | - | - |
Ma02 | ++ | ++ | - | + | Fs01 | - | - | - | - |
Pi03 | +++ | - | - | + | Af05 | - | + | + | - |
Sp01 | - | + | - | + | As05 | ++ | ++++ | - | - |
Cch02 | - | - | - | + | Ts02 | - | - | - | - |
Fs03 | - | +++ | - | - | Ra07 | - | - | - | + |
Ma11 | - | - | - | + | As16 | - | +++ | - | - |
Ls03 | - | + | + | - | Pv02 | - | ++ | - | - |
As13 | ++ | - | - | - | Cc09 | - | + | - | - |
Ra12 | - | - | - | + | Cc11 | - | + | - | - |
Table 1 Characteristics of 30 cadmium tolerant strains
菌株 Strains | IAAa Secreting IAA ability | 溶磷b Phosphate solubilization | ACC脱氨酶 ACC deaminase activity | 铁载体 Producing siderophores | 菌株 Strains | IAAa Secreting IAA ability | 溶磷b Phosphate solubilization | ACC脱氨酶 ACC deaminase activity | 铁载体 Producing siderophores |
---|---|---|---|---|---|---|---|---|---|
Ts01 | - | - | - | + | Cc08 | - | - | + | - |
Tm01 | - | ++++ | - | - | Pi06 | ++ | - | - | - |
As12 | - | - | - | - | Pi11 | ++ | - | - | - |
Ls01 | + | - | - | - | Pl01 | ++ | - | - | + |
Ma04 | ++ | - | - | - | Ki02 | - | - | - | + |
Pi01 | ++ | - | - | + | Mh02 | +++ | + | - | - |
Ma02 | ++ | ++ | - | + | Fs01 | - | - | - | - |
Pi03 | +++ | - | - | + | Af05 | - | + | + | - |
Sp01 | - | + | - | + | As05 | ++ | ++++ | - | - |
Cch02 | - | - | - | + | Ts02 | - | - | - | - |
Fs03 | - | +++ | - | - | Ra07 | - | - | - | + |
Ma11 | - | - | - | + | As16 | - | +++ | - | - |
Ls03 | - | + | + | - | Pv02 | - | ++ | - | - |
As13 | ++ | - | - | - | Cc09 | - | + | - | - |
Ra12 | - | - | - | + | Cc11 | - | + | - | - |
菌株编号 Strains code | 分泌IAAa Secreting IAA ability (μg·mL-1) | ACC脱氨酶活性 ACC deaminase activity | 溶磷能力b Phosphate solubilization | 产铁载体能力 Producing siderophores | 来源 Source |
---|---|---|---|---|---|
Ma02 | 53.76±4.25 | - | 2.52±0.38 | 2.18±0.30 | 鹅肠菜根际土壤 Chickweed rhizosphere soil |
Pi01 | 91.84±8.12 | - | - | 1.85±0.09 | 翅果菊根际土壤 Pterocarpus rhizosphere soil |
Table 2 Promoting characteristics of tested strains
菌株编号 Strains code | 分泌IAAa Secreting IAA ability (μg·mL-1) | ACC脱氨酶活性 ACC deaminase activity | 溶磷能力b Phosphate solubilization | 产铁载体能力 Producing siderophores | 来源 Source |
---|---|---|---|---|---|
Ma02 | 53.76±4.25 | - | 2.52±0.38 | 2.18±0.30 | 鹅肠菜根际土壤 Chickweed rhizosphere soil |
Pi01 | 91.84±8.12 | - | - | 1.85±0.09 | 翅果菊根际土壤 Pterocarpus rhizosphere soil |
菌株Strains | 革兰氏染色Gram stain | 菌株形态特征Morphological characteristics of strains | |||||
---|---|---|---|---|---|---|---|
形态Shape | 表面Surface | 边缘Edge | 颜色Color | 透明度Transparency | 隆起状况Uplift | ||
Ma02 | - | 杆状Rod-shaped | 湿润Wet | 整齐Neat | 淡黄色Light yellow | 不透明Opaque | 凸起Raised |
Pi01 | - | 杆状Rod-shaped | 湿润Wet | 整齐Neat | 淡黄色Light yellow | 不透明Opaque | 凸起Raised |
Table 3 Strains of gram stain results
菌株Strains | 革兰氏染色Gram stain | 菌株形态特征Morphological characteristics of strains | |||||
---|---|---|---|---|---|---|---|
形态Shape | 表面Surface | 边缘Edge | 颜色Color | 透明度Transparency | 隆起状况Uplift | ||
Ma02 | - | 杆状Rod-shaped | 湿润Wet | 整齐Neat | 淡黄色Light yellow | 不透明Opaque | 凸起Raised |
Pi01 | - | 杆状Rod-shaped | 湿润Wet | 整齐Neat | 淡黄色Light yellow | 不透明Opaque | 凸起Raised |
菌株 Strains | GenBank登录号 Genbank accession number | 相似度 Similarity (%) | 鉴定结果 Identification |
---|---|---|---|
Ma02 | MT436801 | 99.79 | Enterobacter sp. |
Pi01 | MT436802 | 99.29 | Enterobacter sp. |
Table 4 Strain identification results
菌株 Strains | GenBank登录号 Genbank accession number | 相似度 Similarity (%) | 鉴定结果 Identification |
---|---|---|---|
Ma02 | MT436801 | 99.79 | Enterobacter sp. |
Pi01 | MT436802 | 99.29 | Enterobacter sp. |
Fig.2 Effects of different treatments on cadmium concentration, translocation factor, cadmium accumulation and cadmium accumulation of two annual ryegrass species (mean±SD, n=3)
1 | Ministry of Environmental Protection, Ministry of Land and Resources. Report on the national general survey of soil contamination. Environmental Education, 2014(6): 8-10. |
环境保护部, 国土资源部. 全国土壤污染状况调查公报. 环境教育, 2014(6): 8-10. | |
2 | Cuypers A, Plusquin M, Remans T, et al. Cadmium stress: An oxidative challenge. Biometals, 2010, 23(5): 927-940. |
3 | Ding T, Luo J Y, Yang S H, et al. Recent research progress on natural medicines in treatment of cadmium toxicity. China Journal of Chinese Material Medica, 2018, 43(10): 2006-2013. |
丁通, 骆骄阳, 杨世海, 等. 天然药物防治镉中毒的现代研究进展. 中国中药杂志, 2018, 43(10): 2006-2013. | |
4 | Vetterlein D, Wesenberg D, Nathan P, et al. Pteris vittata-revisited: Uptake of as and its speciation, impact of P, role of phytochelatins and S. Environmental Pollution, 2009, 157(11): 3016-3024. |
5 | Hu P J, Li Z, Zhong D X, et al. Research progress on the phytoextraction of heavy metal contaminated soils in China. Plant Physiology Journal, 2014, 50(5): 577-584. |
胡鹏杰, 李柱, 钟道旭, 等. 我国土壤重金属污染植物吸取修复研究进展. 植物生理学报, 2014, 50(5): 577-584. | |
6 | Bashan Y, de-Bashan L E, Prabhu S R, et al. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998-2013). Plant and Soil, 2014, 378(1/2): 1-33. |
7 | Pal A K, Sengupta C. Isolation of cadmium and lead tolerant plant growth promoting rhizobacteria: Lysinibacillus varians and Pseudomonas putida from Indian agricultural soil. Soil and Sediment Contamination, 2019, 28(7): 601-629. |
8 | Himadri B B, Lipika N, Subhasis D, et al. Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil, 2013, 366(1/2): 93-105. |
9 | Izzeddine Z Z, Bilal R, Lakhdar K, et al. Algerian sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiologiae Plantarum, 2019, 41(6): 1-10. |
10 | Barriuso J, Solano B R, Santamariac, et al. Effect of inoculation with putative plant growth-promoting rhizobacteria isolated from Pinus spp. on Pinus pinea growth, mycorrhization and rhizosphere microbial communities. Journal of Applied Microbiology, 2008, 105(5): 1298-1309. |
11 | Yasuda M, Takenouchi Y, Nitta Y, et al. Italian ryegrass (Lolium multiflorum Lam) as a high-potential bio-ethanol resource. Bioenergy Research, 2015, 8: 1303-1309. |
12 | Liu C Y, Sun X Y, Zhu T C, et al. Comparison of production performance and screening of superior varieties of different ryegrasses. Acta Prataculturae Sinica, 2014, 23(4): 39-48. |
刘春英, 孙学映, 朱体超, 等. 不同黑麦草品种生产性能比较与优势品种筛选. 草业学报, 2014, 23(4): 39-48. | |
13 | Zhang X, He S Y, Wu Q L. Remediation of Cd contaminated soil by ryegrass enhanced by EDTA and GA_3 and its detoxification mechanism. Journal of Soil and Water Conservation, 2014, 28(5): 280-285. |
张熹, 何闪英, 吴秋玲. EDTA与GA_3强化黑麦草修复Cd污染土壤及其解毒机制. 水土保持学报, 2014, 28(5): 280-285. | |
14 | Hu Z Y, Wang Y F, Fang Z G, et al. Italian ryegrass-rice rotation system for biomass production and cadmium removal from contaminated paddy fields. Journal of Soils and Sediments, 2020, 20(2): 874-882. |
15 | Ministry of Ecological Environment. Soil environmental quality risk control standard for soil contamination of agricultural land (trial implementation), GB 15618-2018. Beijing: Ministry of Ecological Environment, 2018. |
生态环境部. 土壤环境质量 农用地土壤污染风险管控标准(试行), GB 15618-2018. 北京: 生态环境部, 2018. | |
16 | Gordon S A, Weber R P. Colorimetric estimation of indoleacetic acid. Plant Physiology, 1951, 26(1): 192. |
17 | Huang J, Sheng X F, He L Y. Biodiversity of phosphate-dissolving and plant growth-promoting endophytic bacteria of two crops. Acta Microbiologica Sinica, 2015, 50(6): 710-716. |
黄静, 盛下放, 何琳燕. 具溶磷能力的植物内生促生细菌的分离筛选及其生物多样性. 微生物学报, 2015, 50(6): 710-716. | |
18 | Xia J J. Screening of plant growth-promoting endophytic bacteria and their effects on the accumulation of lead and cadmium from soil by rape. Nanjing: Nanjing Agricultural University, 2003. |
夏娟娟. 植物促生内生细菌的筛选及其强化油菜富集土壤铅镉重金属的研究. 南京: 南京农业大学, 2003. | |
19 | Kumar A, Singh R, Yadav A, et al. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech, 2016, 6(1): 1-8. |
20 | Fang Z G, Hu Z Y, Zhao H, et al. Screening for cadmium tolerance of 21 cultivars from Italian ryegrass (Lolium multiflorum Lam) during germination. Grassland Science, 2017, 63(1): 36-45. |
21 | Fang Z G. Screening for cadmium tolerance from Italian ryegrass cultivars and mechanism study of exogenous GSH alleviating effect cadmium toxicity. Nanjing: Nanjing Agricultural University, 2018. |
方志刚. 多花黑麦草耐镉品种的筛选及外源GSH缓解镉毒害机理的研究. 南京: 南京农业大学, 2018. | |
22 | Liu M, Liu F Z, Liu B F. Determination of available lead and cadmium in soil. Journal of Agro-Environment Science, 2007(Supple1): 300-302. |
刘铭, 刘凤枝, 刘保峰. 土壤中有效态铅和镉的测定. 农业环境科学学报, 2007(增刊1): 300-302. | |
23 | Gupta S, Pandey S. ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in french bean (Phaseolus vulgaris) plants. Frontiers in Microbiology, 2019(10): 1506. |
24 | Huo W, Cai Q S. The advance of the enhancement of plant heavy metal resistance by plant growth-promote bacteria. Microbiology China, 2010, 37(9): 1374-1378. |
霍伟, 蔡庆生. 植物促生菌提高植物重金属耐受性研究进展. 微生物学通报, 2010, 37(9): 1374-1378. | |
25 | Akmak R. Screening of multi-trait rhizobacteria for improving the growth, enzyme activities, and nutrient uptake of tea (Camellia sinensis). Communications in Soil Science and Plant Analysis, 2016, 47(13/14): 1680-1690. |
26 | Kamran M A, Syed J H, Eqani S A M A S, et al. Effect of plant growth-promoting rhizobacteria inoculation on Cadmium (Cd) uptake by Eruca sativa. Environmental Science and Pollution Research, 2015, 22(12): 9275-9283. |
27 | Khanna K, Jamwal V L, Gandhi S G,et al. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity. Scientific Reports, 2019, 9(3): 17859-17879. |
28 | Ferchuchi N, Toukabri, Boularess M, et al. Isolation, identification and plant growth promotion ability of endophytic bacteria associated with lupine root nodule grown in Tunisian soil. Archives of Microbiology, 2019, 201(10): 1333-1349. |
29 | Wali M, Llugany M, Corrales L, et al. High salinity helps the halophyte Sesuvium portulacastrum in defense against Cd toxicity by maintaining redox balance and photosynthesis. Planta, 2016, 244(2): 333-346. |
30 | Li X M, Song J L. Cadmium uptake and root morphological changes in Medicago sativa under cadmium stress. Acta Prataculturae Sinica, 2016, 25(2): 178-186. |
李希铭, 宋佳龙. 镉胁迫对紫花苜蓿镉吸收特征及根系形态影响. 草业学报, 2016, 25(2): 178-186. | |
31 | Wang Q, Ma L Y, Zhou Q Y, et al. Inoculation of plant growth promoting bacteria from hyperaccumulator facilitated non-host root development and provided promising gents for elevated phytoremediation efficiency. Chemosphere, 2019(232): 243-253. |
32 | Itusha A, Osborne W J, VaithilingamM, et al. Enhanced uptake of Cd by biofilm forming Cd resistant plant growth promoting bacteria bioaugmented to the rhizosphere of Vetiveria zizanioides. International Journal of Phytoremediation, 2019, 21(5): 487-495. |
33 | Asad S A, Masood R, Ahmad R, et al. Differential uptake of cadmium and chromium in Brassica oleracea in response to application of plant growth promoting rhizobacteria. International Journal of Agriculture and Biology, 2018, 20(7): 1613-1622. |
34 | Han H, Wang Q, He L Y, et al. Increased biomass and reduced rapeseed Cd accumulation of oilseed rape in the presence of Cd-immobilizing and polyamine-producing bacteria. Journal of Hazardous Materials, 2018, 353: 280-289. |
[1] | Yi XIAO, Zhong-fu YANG, Gang NIE, Jia-ting HAN, Yang SHUAI, Xin-quan ZHANG. Multi-trait evaluation of yield and nutritive value of 12 Lolium multiflorum varieties or lines in Chengdu Plain [J]. Acta Prataculturae Sinica, 2021, 30(5): 174-185. |
[2] | Jing MAN, Bo TANG, Bo DENG, Jia-huan LI, Yu-juan HE, Jia-liang ZHANG. Isolation, screening and beneficial effects of plant growth-promoting rhizobacteria (PGPR) in the rhizosphere of Leymus chinensis [J]. Acta Prataculturae Sinica, 2021, 30(1): 59-71. |
[3] | ZHOU Han-yang, SUN Peng-yue, YU Xin-rong, ZHOU Yu, ZHANG Zhi-wei, GAO Jin-zhu, ZHAO Dong-hao, LUO Yi-lan, HU Tian-ming, FU Juan-juan. Protective effects of Flavobacterium succinicans on perennial ryegrass under shade stress [J]. Acta Prataculturae Sinica, 2020, 29(6): 137-143. |
[4] | SHEN Wu-yan, FENG Zheng-jun, QIN Wen-fang, FAN Yuan. Effects of saline-alkali stress on the growth and ion micro-distribution of ryegrass plants [J]. Acta Prataculturae Sinica, 2020, 29(2): 52-63. |
[5] | MA Bi-hua, LIN Wei-hu, GAO Min, WANG Xing-di, TIAN Pei. Effects of salicylic acid and Epichloё on perennial ryegrass (Lolium perenne) under drought stress [J]. Acta Prataculturae Sinica, 2020, 29(1): 135-144. |
[6] | LI Wen-bin, NING Chu-han, LI Wei, LI Feng, GUO Shao-xia. Responses of AMF and PGPR to Festuca elata under phenanthrene and pyrene stress [J]. Acta Prataculturae Sinica, 2019, 28(8): 84-94. |
[7] | WANG Ri-ming, WANG Zhi-qiang, XIANG Zuo-xiang. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass [J]. Acta Prataculturae Sinica, 2019, 28(2): 168-178. |
[8] | DENG Jie, LI Fang, DUAN Ting-yu. Effects of AM fungus and grass endophyte on the infection of Lolium perenne by the pathogen Bipolaris sorokinianum in a greenhouse [J]. Acta Prataculturae Sinica, 2019, 28(12): 103-113. |
[9] | HU Bing-yu, FANG Zhi-gang, LOU Lai-qing, CAI Qing-sheng. Comprehensive evaluation of cadmium tolerance of 14 switchgrass (Panicum virgatum) cultivars in the seedling stage [J]. Acta Prataculturae Sinica, 2019, 28(1): 27-36. |
[10] | LI Ji-wei, YUE Fei-xue, WANG Yan-fang, ZHANG Ya-mei, NI Rui-jing, WANG Fa-yuan, FU Guo-zhan, LIU Ling. Effects of biochar amendment and arbuscular mycorrhizal inoculation on maize growth and physiological biochemistry under cadmium stress [J]. Acta Prataculturae Sinica, 2018, 27(5): 120-129. |
[11] | SONG Dan-dan, HE Bing-hui, LUO Song-ping, WU Yao-peng. The effects of ryegrass and biochar on soil nutrient distribution in Karst area [J]. Acta Prataculturae Sinica, 2018, 27(4): 195-201. |
[12] | LI Jin-bo, LI Shi-gang, SONG Gui-long, PUYANG Xue-hua, XUE Bo-han. Arsenic absorption characteristics and relationships between arsenic absorption and nutrient accumulation in stems and leaves of two ryegrass species under arsenic stress [J]. Acta Prataculturae Sinica, 2018, 27(2): 79-87. |
[13] | WANG Xue-Chun, WANG Hong-Ni, HUANG Jing, YANG Guo-Tao, HU Yun-Gao. Simulation of soil moisture dynamics and ryegrass growth in the hilly region of Sichuan Province using the environmental policy integrated climate model [J]. Acta Prataculturae Sinica, 2017, 26(9): 1-13. |
[14] | DONG Ji-Fei, ZHANG Fan, HU Yu-Han, LI Jun-Cheng, LI Wei, WANG Xian-Shu. Effect of nitrogen supplementation on growth of white clover under cadmium stress and alleviation of cadmium toxicity [J]. Acta Prataculturae Sinica, 2017, 26(9): 83-91. |
[15] | LIU Fang, JING Shu-Xuan, HU Jian, XIAO Yan, ZHANG Ying-Jun. Effects of cadmium and arbuscular mycorrhizal fungi inoculation on the growth and nitrogen uptake of alfalfa (Medicago sativa) [J]. Acta Prataculturae Sinica, 2017, 26(2): 69-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||