Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (11): 52-61.DOI: 10.11686/cyxb2020424
Previous Articles Next Articles
Ling-ling WANG(), Kunduzay·Turgun, Guang-fei MENG, Zheng-gang GUO()
Received:
2020-09-21
Revised:
2020-11-12
Online:
2021-10-19
Published:
2021-10-19
Contact:
Zheng-gang GUO
Ling-ling WANG, Kunduzay·Turgun, Guang-fei MENG, Zheng-gang GUO. Effect of soil moisture and plant density on vegetative propagation traits and biomass of Elymus nutans[J]. Acta Prataculturae Sinica, 2021, 30(11): 52-61.
项目Item | 处理Treatments | 克隆小株数 Ramets per plant | 传播距离 Spreading length (cm) |
---|---|---|---|
土壤水分 Soil moisture | W1 | 4.44±0.53c | 2.24±0.25b |
W2 | 7.67±2.81a | 2.73±0.90b | |
W3 | 6.46±1.47b | 3.25±1.29a | |
显著性Significant | ** | ** | |
植株密度 Plant density | R1 | 7.88±2.66a | 3.35±1.28a |
R2 | 6.25±1.52b | 2.86±0.54a | |
R3 | 4.44±0.55c | 2.01±0.38b | |
显著性Significant | ** | ** | |
土壤水分×植株密度 Soil moisture×plant density | W1R1 | 4.63±0.48d | 2.19±0.19c |
W1R2 | 4.50±0.41d | 2.32±0.06bc | |
W1R3 | 4.21±0.71d | 2.21±0.43c | |
W2R1 | 10.75± 0.65a | 3.43±0.61a | |
W2R2 | 8.00±0.35b | 3.11±0.34b | |
W2R3 | 4.25±0.29d | 1.64±0.22c | |
W3R1 | 8.25±0.29b | 4.45±1.49a | |
W3R2 | 6.25±0.20c | 3.14±0.62b | |
W3R3 | 4.88±0.37d | 2.17±0.18c | |
显著性Significant | ** | ** |
Table 1 Effects of soil moisture and plant density on ramets per plant and spreading length
项目Item | 处理Treatments | 克隆小株数 Ramets per plant | 传播距离 Spreading length (cm) |
---|---|---|---|
土壤水分 Soil moisture | W1 | 4.44±0.53c | 2.24±0.25b |
W2 | 7.67±2.81a | 2.73±0.90b | |
W3 | 6.46±1.47b | 3.25±1.29a | |
显著性Significant | ** | ** | |
植株密度 Plant density | R1 | 7.88±2.66a | 3.35±1.28a |
R2 | 6.25±1.52b | 2.86±0.54a | |
R3 | 4.44±0.55c | 2.01±0.38b | |
显著性Significant | ** | ** | |
土壤水分×植株密度 Soil moisture×plant density | W1R1 | 4.63±0.48d | 2.19±0.19c |
W1R2 | 4.50±0.41d | 2.32±0.06bc | |
W1R3 | 4.21±0.71d | 2.21±0.43c | |
W2R1 | 10.75± 0.65a | 3.43±0.61a | |
W2R2 | 8.00±0.35b | 3.11±0.34b | |
W2R3 | 4.25±0.29d | 1.64±0.22c | |
W3R1 | 8.25±0.29b | 4.45±1.49a | |
W3R2 | 6.25±0.20c | 3.14±0.62b | |
W3R3 | 4.88±0.37d | 2.17±0.18c | |
显著性Significant | ** | ** |
处理 Treatments | 植株密度 Plant density | 主效应土壤水分Main effect of soil moisture | ||
---|---|---|---|---|
R1 | R2 | R3 | ||
土壤水分Soil moisture | ||||
W1 | 2.25±0.29bc | 2.44±0.63bc | 2.79±0.21b | 2.49±0.44b |
W2 | 4.00±1.22a | 2.00±0.84c | 1.71±0.42c | 2.57±1.33b |
W3 | 4.75±1.19a | 2.44±0.88bc | 4.21±2.07a | 3.80±1.68a |
主效应植株密度Main effect of plant density | 3.67±1.42a | 2.29±0.74b | 2.90±1.54ab | |
土壤水分Soil moisture | ** | |||
植株密度Plant density | * | |||
土壤水分×植株密度Soil moisture×plant density | * |
Table 2 Effects of soil moisture and plant density on underground buds per plant
处理 Treatments | 植株密度 Plant density | 主效应土壤水分Main effect of soil moisture | ||
---|---|---|---|---|
R1 | R2 | R3 | ||
土壤水分Soil moisture | ||||
W1 | 2.25±0.29bc | 2.44±0.63bc | 2.79±0.21b | 2.49±0.44b |
W2 | 4.00±1.22a | 2.00±0.84c | 1.71±0.42c | 2.57±1.33b |
W3 | 4.75±1.19a | 2.44±0.88bc | 4.21±2.07a | 3.80±1.68a |
主效应植株密度Main effect of plant density | 3.67±1.42a | 2.29±0.74b | 2.90±1.54ab | |
土壤水分Soil moisture | ** | |||
植株密度Plant density | * | |||
土壤水分×植株密度Soil moisture×plant density | * |
项目 Item | 处理 Treatments | 地上生物量 Aboveground biomass | 地下生物量 Underground biomass | 总生物量 Total biomass |
---|---|---|---|---|
土壤水分 Soil moisture | W1 | 0.71±0.19b | 0.16±0.09b | 0.85±0.23b |
W2 | 0.83±0.26b | 0.47±0.36a | 1.23±0.40a | |
W3 | 1.07±0.69a | 0.43±0.27a | 1.46±0.93a | |
显著性Significant | ** | ** | ** | |
植株密度 Plant density | R1 | 1.25±0.56a | 0.53±0.43a | 1.68±0.80a |
R2 | 0.82±0.21b | 0.28±0.18b | 1.09±0.40b | |
R3 | 0.54±0.05c | 0.25±0.08b | 0.77±0.10c | |
显著性Significant | ** | ** | ** | |
土壤水分×植株密度 Soil moisture×plant density | W1R1 | 0.88±0.13b | 0.10±0.06c | 0.97±0.20c |
W1R2 | 0.72±0.18b | 0.19±0.13c | 0.88±0.31c | |
W1R3 | 0.52±0.04c | 0.18±0.05c | 0.69±0.08c | |
W2R1 | 0.91±0.19b | 0.75±0.49a | 1.43±0.03b | |
W2R2 | 1.02±0.24b | 0.40±0.22b | 1.46±0.48b | |
W2R3 | 0.56±0.05c | 0.25±0.06c | 0.80±0.10c | |
W3R1 | 1.96±0.28a | 0.73±0.27a | 2.64±0.55a | |
W3R2 | 0.72±0.06b | 0.25±0.14c | 0.93±0.17c | |
W3R3 | 0.53±0.08c | 0.32±0.08b | 0.82±0.09c | |
显著性Significant | ** | * | ** |
Table 3 Effects of soil moisture and plant density on biomass per plant of E. nutans (g·plant-1)
项目 Item | 处理 Treatments | 地上生物量 Aboveground biomass | 地下生物量 Underground biomass | 总生物量 Total biomass |
---|---|---|---|---|
土壤水分 Soil moisture | W1 | 0.71±0.19b | 0.16±0.09b | 0.85±0.23b |
W2 | 0.83±0.26b | 0.47±0.36a | 1.23±0.40a | |
W3 | 1.07±0.69a | 0.43±0.27a | 1.46±0.93a | |
显著性Significant | ** | ** | ** | |
植株密度 Plant density | R1 | 1.25±0.56a | 0.53±0.43a | 1.68±0.80a |
R2 | 0.82±0.21b | 0.28±0.18b | 1.09±0.40b | |
R3 | 0.54±0.05c | 0.25±0.08b | 0.77±0.10c | |
显著性Significant | ** | ** | ** | |
土壤水分×植株密度 Soil moisture×plant density | W1R1 | 0.88±0.13b | 0.10±0.06c | 0.97±0.20c |
W1R2 | 0.72±0.18b | 0.19±0.13c | 0.88±0.31c | |
W1R3 | 0.52±0.04c | 0.18±0.05c | 0.69±0.08c | |
W2R1 | 0.91±0.19b | 0.75±0.49a | 1.43±0.03b | |
W2R2 | 1.02±0.24b | 0.40±0.22b | 1.46±0.48b | |
W2R3 | 0.56±0.05c | 0.25±0.06c | 0.80±0.10c | |
W3R1 | 1.96±0.28a | 0.73±0.27a | 2.64±0.55a | |
W3R2 | 0.72±0.06b | 0.25±0.14c | 0.93±0.17c | |
W3R3 | 0.53±0.08c | 0.32±0.08b | 0.82±0.09c | |
显著性Significant | ** | * | ** |
项目 Item | 地下芽数量 Underground buds | 地上生物量 Aboveground biomass | 地下生物量 Belowground biomass | 克隆小株数 Ramets per plant | 传播距离 Spreading length |
---|---|---|---|---|---|
地上生物量Aboveground biomass | 0.359* | ||||
地下生物量Belowground biomass | 0.501** | 0.630** | |||
克隆小株数Ramets per plant | 0.374* | 0.390* | 0.694** | ||
传播距离Spreading length | 0.346* | 0.424** | 0.385* | 0.640** | |
总生物量Total biomass | 0.467** | 0.923** | 0.880** | 0.582** | 0.450** |
Table 4 The correlation coefficient of parameters
项目 Item | 地下芽数量 Underground buds | 地上生物量 Aboveground biomass | 地下生物量 Belowground biomass | 克隆小株数 Ramets per plant | 传播距离 Spreading length |
---|---|---|---|---|---|
地上生物量Aboveground biomass | 0.359* | ||||
地下生物量Belowground biomass | 0.501** | 0.630** | |||
克隆小株数Ramets per plant | 0.374* | 0.390* | 0.694** | ||
传播距离Spreading length | 0.346* | 0.424** | 0.385* | 0.640** | |
总生物量Total biomass | 0.467** | 0.923** | 0.880** | 0.582** | 0.450** |
1 | Gu M H. Study on the relationship between productivity and stability of artificial grassland in alpine meadow of Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2008. |
顾梦鹤. 青藏高原高寒草甸人工草地生产力和稳定性关系的研究. 兰州: 兰州大学, 2008. | |
2 | Lu G P, Nie B. Field evaluation of Elymus nutans under alpine grassland conditions. Pratacultural Science, 2002(9): 13-15. |
陆光平, 聂斌. 垂穗披碱草利用价值评价. 草业科学, 2002(9): 13-15. | |
3 | Zhang D Y, Zhang L J, Huang D J, et al. Comprehensive evaluation of germplasm resources of Elymus nutans in alpine regions. Acta Agrestia Sinica, 2015(6): 1239-1246. |
张典业, 张丽静, 黄德君, 等. 高寒地区垂穗披碱草种质资源综合评价. 草地学报, 2015(6): 1239-1246. | |
4 | Luo W R, Li W H, Ganzhu Z B, et al. Effects of nitrogen on leaf functioni traits and population characteristics of the artificial grassland Elymus nutans in Northern Tibet. Acta Prataculturae Sinica, 2018, 27(5): 51-60. |
罗文蓉, 栗文瀚, 干珠扎布, 等. 施氮对藏北垂穗披碱草人工草地叶片功能性状和种群特征的影响. 草业学报, 2018, 27(5): 51-60. | |
5 | Wen Y, Zhou P, Zhang Z X, et al. Effects of irrigation quantity and nitrogen application application rate on Elymus nutans biomass and its compents. Pratacultural Science, 2020, 37(2): 330-338. |
文雅, 周培, 张忠雪, 等. 施氮和灌溉互作对垂穗披碱草生物量及构成要素的影响. 草业科学, 2020, 37(2): 330-338. | |
6 | Zhou H K, Zhao X Q, Zhao L, et al. The community characteristics and stability of the Elymus nutans artificial grassland in alpine meadow. Chinese Journal of Grassland, 2005, 21(3): 191-203. |
周华坤, 赵新全, 赵亮, 等. 高山草甸垂穗披碱草人工草地群落特征及稳定性研究. 中国草地学报, 2005, 21(3): 191-203. | |
7 | Dong S K, Wang X X, Liu S L, et al. Reproductive responses of alpine plants to grassland degradation and artificial restoration in the Qinghai-Tibetan Plateau. Grass and Forage Science, 2014, 70(2): 229-238. |
8 | Sun H, Niu Y, Chen Y S, et al. Survial and reproduction of plant species in the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 2014, 52(3): 378-396. |
9 | Wang Q, Yu C, Pang X P, et al. The disturbance and disturbance intensity of small and semi-fossorial herbivores alter the belowground bud density of graminoids in alpine meadows. Ecological Engineering, 2018, 113: 35-42. |
10 | Wang H Y, Wang Z W, Li L H, et al. Reproductive tendency of clonal plants in various habitats. Chinese Journal of Ecology, 2005(6): 670-676. |
王洪义, 王正文, 李凌浩, 等. 不同生境中克隆植物的繁殖倾向. 生态学杂志, 2005(6): 670-676. | |
11 | Frances S, Alessandra F, Sally A, et al. Introducing bud bank and below-ground plant organ research to South Africa: Report on a workshop and the way forward. South African Journal of Science, 2019, 115(11/12): 6-7. |
12 | Marek S. Length of the spacer rather than its plasticity relates to species distribution in various natural habitats. Folia Geobotanica, 2011, 46(2/3): 137-153. |
13 | Zhao L P, Wang Z B, Cheng J M. Review of bud banks in grassland ecosystem. Acta Prataculturae Sinica, 2015, 24(7): 172-179. |
赵凌平, 王占彬, 程积民. 草地生态系统芽库研究进展. 草业学报, 2015, 24(7): 172-179. | |
14 | Feng T, Li Y X, Yang Z S, et al. The clone configuration and plant population characteristics of Epimedium brevicornum in different habitat. Ecological Science, 2005(4): 298-303. |
冯图, 黎云祥, 杨子松, 等. 不同生境中淫羊藿克隆构型和分株种群特征. 生态科学, 2005(4): 298-303. | |
15 | Zhang D M, Zhao W Z, Luo W C. Effect of the population density on belowground bud bank of a rhizomatous clonal plant Leymus secalinus in Mu Us sandy land. Journal of Plant Research, 2019, 132(1): 69-80. |
16 | Niu J W, Lei Z L, Zhou H K, et al. Effects of planting density and nitrogen application level on biomass allocation of Elymus nutans. Pratacultural Science, 2014, 31(7): 1343-1351. |
牛建伟, 雷占兰, 周华坤, 等. 种植密度和施氮水平对垂穗披碱草生物量分配的影响. 草业科学, 2014, 31(7): 1343-1351. | |
17 | Wang H Y, Du G Z, Ren J J. The effects of population density and fertilization on the compensation effect of Elymus nutans after mowing. Chinese Journal of Plant Ecology, 2003(4): 477-483. |
王海洋, 杜国祯, 任金吉. 种群密度与施肥对垂穗披碱草刈割后补偿作用的影响. 植物生态学报, 2003(4): 477-483. | |
18 | Feng G L, Duan Y Y, Wen Y, et al. Effects of irrigation amount and density on growth performance and material distribution of Elymus nutans. Pratacultural Science, 2019, 36(8): 2087-2095. |
冯甘霖, 段媛媛, 文雅, 等. 灌溉量和密度对垂穗披碱草生长性能和物质分配的影响. 草业科学, 2019, 36(8): 2087-2095. | |
19 | Li Y S, Wang G X, Ding Y J, et al. Spatial heterogeneity of soil moisture in alpine meadow region of Qinghai-Tibet Plateau. Advances in Water Science, 2008(1): 61-67. |
李元寿, 王根绪, 丁永建, 等. 青藏高原高寒草甸区土壤水分的空间异质性. 水科学进展, 2008(1): 61-67. | |
20 | Hernández M D, Alfonso C, Cerrudo C, et al. Eco-physiological processes underlying maize water use efficiency response to plant density under contrasting water regime. Field Crop Research, 2020, 254: 1-7. |
21 | Zeng X, Wang Y R, Hu X W. The optimum temperature and temperature threshold of seed germination of Elymus nutans. Pratacultural Science, 2011(6): 988-992. |
曾霞, 王彦荣, 胡小文. 垂穗披碱草种子的萌发适宜温度及温度阈值. 草业科学, 2011(6): 988-992. | |
22 | Wang Q L, Han Y J, Ren L X, et al. Phenological period and its correlation with meteorological factors of Elymus nutans in Sichuan Province. Guizhou Agricultural Science, 2020(2): 65-69. |
王庆莉, 韩玉江, 任丽霞, 等. 四川石渠垂穗披碱草的物候期及其与气象因子的相关性. 贵州农业科学, 2020(2): 65-69. | |
23 | Hans K, Bart F, Jan W A, et al. High levels of inter-ramet water translocation in two rhizomatous Cares species, as quantified by deuterium labelling. Oecologia, 1996, 106(1): 73-84. |
24 | Zhan A, Chenn X P, Li S Q. Effects of soil water on maize root morphological and physiological responses to phosphorus supply. Journal of Plant Nutrition and Soil Science, 2019, 182(3): 477-484. |
25 | Hu J J, Chen S L, Guo Z W, et al. Influence of the length of spacer seed on the physiological integration effect of the clone of Latifolius decorus. Acta Botanica Boreali-Occidentalia Sinica, 2015(12): 2532-2541. |
胡俊靖, 陈双林, 郭子武, 等. 间隔子长度对美丽箬竹克隆分株水分生理整合效应的影响. 西北植物学报, 2015(12): 2532-2541. | |
26 | Jiang J, Wang Y Z. Water relationship and drought resistance sequence of potted seedlings of several xerophytes. Arid Areas Research, 1992(4): 31-38. |
蒋进, 王永增. 几种旱生植物盆栽苗木的水分关系和抗旱性排序. 干旱区研究, 1992(4): 31-38. | |
27 | Yuan S B, Yang Z D, Liu X Q, et al. Water level requirements of a Carex hygrophyte in Yangtze floodplain lakes. Ecological Engineering, 2019, 129: 29-37. |
28 | Aarssen L W. Denth without sex-the ‘problem of the small’ and selection for reproductive economy in flowering plants. Evolutionary Ecology, 2008, 22(3): 279-298. |
29 | Wang J F, Shi Y J, Ao Y N, et al. Summer drought decreases Leymus chinensis productivity through constraining the bud, tiller and production. Journal of Agronomy and Crop Science, 2019, 205(6): 554-561. |
30 | Gutiérrez J R, Vasquez H. The effects of water and nutrient addition on annual aboveground biomass production of Chenopodium petiolare H. B. K. (Chenopodiaceae) in a north-central Chilean old field. Ecoscience, 1996, 3(2): 211-215. |
31 | Wang S L, Wang R X, Jing W M, et al. Response of grassland biomass to water condition in arid mountainous area of Qilian Mountains. Geography of Arid Region, 2017, 40(4): 772-779. |
王顺利, 王荣新, 敬文茂, 等. 祁连山干旱山地草地生物量对水分条件的响应. 干旱区地理, 2017, 40(4): 772-779. | |
32 | Dai L C, Guo X W, Ke X, et al. Biomass allocation and productivity-richness relationship across four grassland types at the Qinghai Plateau. Ecology and Evolution, 2020, 10(1): 1-11. |
33 | Makihiko I, Dennis F W, Marinus J A. Effects of local density of clonal plants on their sexual and vegetative propagation strategies in a lattice structure mode. Ecological Modelling, 2012, 234: 51-59. |
34 | Paweł O. Optimal allocation to vegetative and sexual reproduction in plants: The effect of ramet density. Evolutionary Ecology, 2003, 17(3): 265-275. |
35 | Wong S, Anand M, Bauch C T. Agent-based modelling of clonal plant propagation across space: Recapturing fairy rings, power laws and other phenomena. Ecological Informatics, 2011, 6(2): 127-135. |
36 | Gerik T J, Neely C L. Plant density effects on main culm and tiller development of grain sorghum. Crop Science, 1987, 27(6): 1225-1230. |
37 | Zhang L M, Jin Y, Yao S M, et al. Growth and morphological responses of duckweed to clonal fragmentation, nutrient availability, and population density. Frontiers in Plant Science, 2020, 11: 618. |
38 | Gong B C R, Dou A M. Effects of different density and cutting height on biomass of Elymus sibiricus. Qinghai Prataculturae, 2000(4): 9-12. |
公保才让, 窦爱民. 不同密度, 不同刈割高度对老芒麦种群生物量的影响. 青海草业, 2000(4): 9-12. | |
39 | Kang C R, Xie J H, Li L L, et al. Effects of planting density and nitrogen application amount on maize yield and photosynthetic characteristics in arid area of Gansu Province. Acta Prataculturae Sinica, 2020, 29(5): 141-149. |
康彩睿, 谢军红, 李玲玲, 等. 种植密度与施氮量对陇中旱农区玉米产量及光合特性的影响. 草业学报, 2020, 29(5): 141-149. | |
40 | Zhao H K, Ma Z, Zhang C H, et al. Effects of planting density and nitrogen application level on biomass allocation of Avena sativa. Pratacultural Science, 2016, 33(2): 249-258. |
赵宏魁, 马真, 张春辉, 等. 种植密度和施氮水平对燕麦生物量分配的影响. 草业科学, 2016, 33(2): 249-258. |
[1] | Feng-hui GUO, Yong DING, Wen-jing MA, Xian-song LI, Xi-liang LI, Xiang-yang HOU. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment [J]. Acta Prataculturae Sinica, 2021, 30(8): 119-126. |
[2] | Jing-jing MA, Yun-hua LIU, Jian-dong SHENG, Ning LI, Hong-qi WU, Hong-tao JIA, Zong-jiu SUN, Jun-hui CHENG. Changes of relationships between dominant species and their relative biomass along elevational gradients in Xinjiang grasslands [J]. Acta Prataculturae Sinica, 2021, 30(8): 25-35. |
[3] | Lei PENG, Li ZHANG, Xiao-long ZHOU, Yan-bo WAN, Qing-dong SHI. Effects of water stress on life history strategy of Salsola nitraria in Zhundong, Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(5): 65-74. |
[4] | Yi-ran ZHANG, Ting-xi LIU, Xin TONG, Li-min DUAN, Yu-chen WU. Hyperspectral remote sensing inversion of meadow aboveground biomass based on an XGBoost algorithm [J]. Acta Prataculturae Sinica, 2021, 30(4): 1-12. |
[5] | Zi-xin WANG, Guo-zheng HU, Hong-wei SHUI, Yi-qing GE, Ling HAN, Qing-zhu GAO, Ganjurjav HASBAGAN, Luo-bu DANJIU. Effect of seasonal timing of drought on carbon exchange in the alpine meadow ecosystem of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2021, 30(4): 24-33. |
[6] | Ji-xiong GU, Tian-dou GUO, Hong-mei WANG, Xue-ying LI, Dan-ni LIANG, Qing-lian YANG, Jin-yue GAO. Responses of soil microbes across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 46-57. |
[7] | Ru ZHANG, Jian-ping LI, Wen-dong PENG, Fang WANG, Zhi-gang LI. Effects of mulching with caragana (Caragana intermedia) branches on soil moisture content and temperature and reseeded forage biomass in desertified grassland in Ningxia Province, China [J]. Acta Prataculturae Sinica, 2021, 30(4): 58-67. |
[8] | Guang-yi LV, Xue-bao XU, Cui-ping GAO, Zhi-hui YU, Xin-ya WANG, Cheng-jie WANG. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
[9] | Dian-dai ZHANG, Xue-mei WANG, Mei ZAN. Estimation of vegetation aboveground biomass in the Wei-Ku Oasis based on Landsat 8 OLI images [J]. Acta Prataculturae Sinica, 2021, 30(11): 1-12. |
[10] | Xiao-fen CHEN, Lu-ping ZHANG, Wen-jing QIN, Jing-rui CHEN, Yang-geng XU, Ming LIU, Zhong-pei LI, Chang-xu XU, Jia LIU. A study of the appropriate seeding rates for four winter green manure crops in an upland red soil of Southern China [J]. Acta Prataculturae Sinica, 2021, 30(10): 137-146. |
[11] | Shi-jing ZHOU, Jia-ning LUO, Zhong-miao LIU, Chao DONG, Yan QIN, Shu-juan WU, Hong-jun GAN, Fei XIE, Guang-hui ZHUANG, Bing-zhe FU, De-cao NIU. The effects of Vicia sativa planting density on soil microbial nutrient metabolism [J]. Acta Prataculturae Sinica, 2021, 30(10): 63-72. |
[12] | LI Jing, HONG Mei, YAN Jin, ZHANG Yu-chen, LIANG Zhi-wei, YE He, GAO Hai-yan, ZHAO Bayinnamula. The response of vegetation community structure and biomass in Stipa breviflora desert steppe to water and nitrogen [J]. Acta Prataculturae Sinica, 2020, 29(9): 38-48. |
[13] | BAO Gen-sheng, SONG Mei-ling, WANG Yu-qin, YIN Ya-li, WANG Hong-sheng. Effects of grazing exclosure and herbicide on soil physical-chemical properties and microbial biomass of Stellera chamaejasme patches in degraded grassland [J]. Acta Prataculturae Sinica, 2020, 29(9): 63-72. |
[14] | SUN Xiao-fu, HUANG Li-juan, WANG Pu-chang, ZHAO Li-li, LIU Fang. Effects of different phosphorus supply levels on morphology and physiology of Paspalum wettsteinii [J]. Acta Prataculturae Sinica, 2020, 29(8): 58-69. |
[15] | GUO Qiang, WANG Yu-qin, BAO Gen-sheng, WANG Hong-sheng. Effect of meteorological factors on the population of plateau zokor [J]. Acta Prataculturae Sinica, 2020, 29(8): 188-194. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||