Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (12): 71-80.DOI: 10.11686/cyxb2020461
Previous Articles Next Articles
Hong SUN1(), Yu-long ZHENG1, Yan-li LIN2, Chao CHEN1, Fu-yu YANG2()
Received:
2020-10-14
Revised:
2021-02-09
Online:
2021-11-11
Published:
2021-11-11
Contact:
Fu-yu YANG
Hong SUN, Yu-long ZHENG, Yan-li LIN, Chao CHEN, Fu-yu YANG. Effects of biochar, phosphorus addition and AMF inoculation on switchgrass growth and soil properties under Cd stress[J]. Acta Prataculturae Sinica, 2021, 30(12): 71-80.
指标Parameters | B | P60 | AMF | B+P60 | B+AM | P60+AM | B+P60+AM |
---|---|---|---|---|---|---|---|
侵染率Root colonization | NS | * | — | NS | — | — | — |
SPAD | NS | NS | *** | NS | NS | NS | NS |
地上部生物量 Shoot biomass | NS | NS | *** | NS | NS | NS | NS |
根系生物量 Root biomass | * | NS | *** | NS | NS | NS | NS |
地上部P含量 Shoot P concentration | * | ** | NS | NS | ** | NS | NS |
地上部Se含量 Shoot Se concentration | NS | NS | *** | NS | ** | *** | NS |
地上部Cd含量 Root Cd concentration | *** | * | *** | NS | *** | *** | ** |
根系P含量 Root P concentration | *** | NS | *** | NS | ** | NS | ** |
根系Se含量 Root Se concentration | * | NS | NS | NS | NS | NS | NS |
根系Cd含量 Root Cd concentration | *** | NS | NS | NS | NS | NS | NS |
pH | NS | NS | NS | NS | NS | * | NS |
土壤速效磷 Available P concentration | *** | *** | NS | NS | NS | NS | NS |
土壤酸性磷酸酶活性 Soil acid phosphatase activity | NS | * | NS | NS | NS | NS | NS |
酸性提取态Cd Acid-extractable Cd | *** | * | NS | NS | NS | NS | NS |
还原态Cd Reducible-Cd | NS | *** | NS | *** | ** | NS | ** |
氧化态Cd Oxidizable-Cd | NS | * | NS | NS | NS | NS | NS |
残渣态Cd Residual-Cd | NS | NS | ** | *** | *** | ** | *** |
Table 1 Effect of biochar, phosphorus addition and AMF inoculation on parameters tested
指标Parameters | B | P60 | AMF | B+P60 | B+AM | P60+AM | B+P60+AM |
---|---|---|---|---|---|---|---|
侵染率Root colonization | NS | * | — | NS | — | — | — |
SPAD | NS | NS | *** | NS | NS | NS | NS |
地上部生物量 Shoot biomass | NS | NS | *** | NS | NS | NS | NS |
根系生物量 Root biomass | * | NS | *** | NS | NS | NS | NS |
地上部P含量 Shoot P concentration | * | ** | NS | NS | ** | NS | NS |
地上部Se含量 Shoot Se concentration | NS | NS | *** | NS | ** | *** | NS |
地上部Cd含量 Root Cd concentration | *** | * | *** | NS | *** | *** | ** |
根系P含量 Root P concentration | *** | NS | *** | NS | ** | NS | ** |
根系Se含量 Root Se concentration | * | NS | NS | NS | NS | NS | NS |
根系Cd含量 Root Cd concentration | *** | NS | NS | NS | NS | NS | NS |
pH | NS | NS | NS | NS | NS | * | NS |
土壤速效磷 Available P concentration | *** | *** | NS | NS | NS | NS | NS |
土壤酸性磷酸酶活性 Soil acid phosphatase activity | NS | * | NS | NS | NS | NS | NS |
酸性提取态Cd Acid-extractable Cd | *** | * | NS | NS | NS | NS | NS |
还原态Cd Reducible-Cd | NS | *** | NS | *** | ** | NS | ** |
氧化态Cd Oxidizable-Cd | NS | * | NS | NS | NS | NS | NS |
残渣态Cd Residual-Cd | NS | NS | ** | *** | *** | ** | *** |
处理 Treatment | 接菌处理 Inoculation | 侵染率 Root colonization (%) | 相对叶绿素含量 SPAD | 生物量Biomass (g·pot-1) | |
---|---|---|---|---|---|
地上部Shoot | 根系Root | ||||
CK | NM | - | 22.7±0.8cd | 1.02±0.22c | 0.42±0.09b |
AM | 44.2±2.4b | 25.9±1.0b | 2.13±0.43a | 0.93±0.33a | |
B | NM | - | 24.1±1.5bc | 0.10±0.01d | 0.12±0.00b |
AM | 47.9±3.7ab | 30.0±0.5a | 1.51±0.19b | 0.85±0.19a | |
P60 | NM | - | 23.5±0.9cd | 0.63±0.18cd | 0.31±0.06b |
AM | 56.9±5.4a | 25.1±1.5b | 1.98±0.05ab | 1.06±0.08a | |
B+P60 | NM | — | 22.8±0.7d | 0.86±0.04c | 0.42±0.02b |
AM | 54.3±3.9ab | 26.3±1.6bc | 1.58±0.35ab | 0.96±0.11a |
Table 2 The root colonization, SPAD value and biomass under biochar, phosphorus addition and AMF inoculation treatments (mean±SD, n=3)
处理 Treatment | 接菌处理 Inoculation | 侵染率 Root colonization (%) | 相对叶绿素含量 SPAD | 生物量Biomass (g·pot-1) | |
---|---|---|---|---|---|
地上部Shoot | 根系Root | ||||
CK | NM | - | 22.7±0.8cd | 1.02±0.22c | 0.42±0.09b |
AM | 44.2±2.4b | 25.9±1.0b | 2.13±0.43a | 0.93±0.33a | |
B | NM | - | 24.1±1.5bc | 0.10±0.01d | 0.12±0.00b |
AM | 47.9±3.7ab | 30.0±0.5a | 1.51±0.19b | 0.85±0.19a | |
P60 | NM | - | 23.5±0.9cd | 0.63±0.18cd | 0.31±0.06b |
AM | 56.9±5.4a | 25.1±1.5b | 1.98±0.05ab | 1.06±0.08a | |
B+P60 | NM | — | 22.8±0.7d | 0.86±0.04c | 0.42±0.02b |
AM | 54.3±3.9ab | 26.3±1.6bc | 1.58±0.35ab | 0.96±0.11a |
Fig.3 The soil pH, available phosphorus concentration and acid phosphatase activity under different treatment, regardless of AMF inoculation (mean±SD, n=3)
处理 Treatment | 接菌处理 Inoculation | 酸性提取态 Acid-extractable Cd | 还原态 Reducible-Cd | 氧化态 Oxidizable-Cd | 残渣态 Residual-Cd |
---|---|---|---|---|---|
CK | NM | 11.7±0.9a | 2.1±0.1d | 0.06±0.01ab | 10.1±1.6bc |
AM | 10.3±0.3ab | 2.3±0.3d | 0.05±0.00b | 16.1±0.8a | |
B | NM | 8.3±0.4c | 3.1±0.1bc | 0.05±0.01b | 8.4±1.2c |
AM | 9.0±0.2bc | 3.3±0.4b | 0.06±0.00ab | 12.8±0.6b | |
P60 | NM | 9.3±0.5b | 4.3±0.3a | 0.07±0.01a | 15.0±0.8ab |
AM | 10.6±0.9a | 3.4±0.2b | 0.07±0.01ab | 7.7±0.5c | |
B+P60 | NM | 7.9±0.1c | 2.5±0.3c | 0.06±0.00ab | 8.5±1.2c |
AM | 8.4±0.2c | 3.8±0.2ab | 0.06±0.00ab | 16.1±1.1ab |
Table 3 The concentrations of acid-extractable Cd, reducible-Cd, oxidizable-Cd and residual-Cd in the soil under different treatments (mg·kg-1, mean±SD, n= 3)
处理 Treatment | 接菌处理 Inoculation | 酸性提取态 Acid-extractable Cd | 还原态 Reducible-Cd | 氧化态 Oxidizable-Cd | 残渣态 Residual-Cd |
---|---|---|---|---|---|
CK | NM | 11.7±0.9a | 2.1±0.1d | 0.06±0.01ab | 10.1±1.6bc |
AM | 10.3±0.3ab | 2.3±0.3d | 0.05±0.00b | 16.1±0.8a | |
B | NM | 8.3±0.4c | 3.1±0.1bc | 0.05±0.01b | 8.4±1.2c |
AM | 9.0±0.2bc | 3.3±0.4b | 0.06±0.00ab | 12.8±0.6b | |
P60 | NM | 9.3±0.5b | 4.3±0.3a | 0.07±0.01a | 15.0±0.8ab |
AM | 10.6±0.9a | 3.4±0.2b | 0.07±0.01ab | 7.7±0.5c | |
B+P60 | NM | 7.9±0.1c | 2.5±0.3c | 0.06±0.00ab | 8.5±1.2c |
AM | 8.4±0.2c | 3.8±0.2ab | 0.06±0.00ab | 16.1±1.1ab |
1 | Ministry of Environmental Protection of the People’s Republic of China, Ministry of Land and Resources of the People’s Republic of China. Bulletin of national survey on soil pollution. Environmental Education, 2014, 20(6): 8-10. |
环境保护部, 国土资源部. 全国土壤污染状况调查公报. 环境教育, 2014, 20(6): 8-10. | |
2 | Huang Y, Wang L Y, Wang W J, et al. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. The Science of the Total Environment, 2019, 651: 3034-3042. |
3 | Hatata M M, Abdel-Aal E A. Oxidative stress and antioxidant defense mechanisms in response to cadmium treatments. American-Eurasian Journal of Agricultural and Environmental Science, 2008, 4(6): 655-669. |
4 | Maksymiec W, Wojcik M, Krupa Z. Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 2007, 66(3): 421-427. |
5 | Huang Q C, Wei Y H, Li X F. Review on the toxicological effect and the mechanism of cadmium to human health. Journal of Anhui Agriculture Science, 2007, 35(9): 2528-2531. |
黄秋婵, 韦友欢, 黎晓峰. 镉对人体健康的危害效应及其机理研究进展. 安徽农业科学, 2007, 35(9): 2528-2531. | |
6 | Chen W F, Zhang W M, Meng J. Biochar and agro-ecological environment: Review and prospect. Journal of Agro-Environment Science, 2014, 33(5): 821-828. |
陈温福, 张伟明, 孟军. 生物炭与农业环境研究回顾与展望. 农业环境科学学报, 2014, 33(5): 821-828. | |
7 | Kwak J H, Islam M S, Wang S, et al. Biochar properties and lead (Ⅱ) adsorption capacity depend on feedstock type, pyrolysis temperature, and steam activation. Chemosphere, 2019, 231: 393-404. |
8 | Zhang C, Yu Z G, Zeng G M, et al. Phase transformation of crystalline iron oxides and their adsorption abilities for Pb and Cd. Chemical Engineering Journal, 2016, 284: 247-259. |
9 | Zhang M, Shan S D, Chen Y G, et al. Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: Effects of biochar type and dosage, rice variety, and pollution level. Environmental Geochemistry and Health, 2019, 41(1): 43-52. |
10 | Hossain M K, Strezov V, Chan K Y, et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere, 2010, 78(9): 1167-1171. |
11 | Zeng G M, Wu H P, Liang J, et al. Efficiency of biochar and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb bioavailability, mobility and ecological risk in wetland soil. RSC Advances, 2015, 5(44): 34541-34548. |
12 | Zwetsloot M J, Lehmann J, Bauerle T, et al. Phosphorus availability from bone char in a P-fixing soil influenced by root- mycorrhizae-biochar interactions. Plant and Soil, 2016, 408(1/2): 95-105. |
13 | Bai Y C, Deng B Y, Shi H L, et al. The effect of modified rice husk charcoal and modified zeolite on the phosphorus efficiency in red soil. Soil and Fertilizer Sciences in China, 2020(2): 31-39. |
白玉超, 邓宝元, 史海莉, 等. 改性稻壳炭和改性沸石对红壤磷有效性的影响. 中国土壤与肥料, 2020(2): 31-39. | |
14 | Ahmad M, Rajapaksha A U, Lim J E, et al. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 2014, 99: 19-33. |
15 | Liu M H, Zhao Z J, Chen L, et al. Influences of arbuscular mycorrhizae, phosphorus fertiliser and biochar on alfalfa growth, nutrient status and cadmium uptake. Ecotoxicology and Environmental Safety, 2020, 196: 110537. |
16 | Xiao Y, Liu M H, Chen L, et al. Growth and elemental uptake of Trifolium repens in response to biochar addition, arbuscular mycorrhizal fungi and phosphorus fertilizer applications in low-Cd-polluted soils. Environmental Pollution, 2020, 260: 113761. |
17 | Huang Y, Guo X, Hu X Y. Effects of biochar on bioavailability of two elements in phosphorus and cadmium-enriched soil and accumulation of cadmium in crops. Environmental Science, 2020, 41(6): 2861-2868. |
黄洋, 郭晓, 胡学玉. 生物质炭对磷镉富集土壤中两种元素生物有效性及作物镉积累的影响. 环境科学, 2020, 41(6): 2861-2868. | |
18 | Chen B D, Zhu Y G, Duan J, et al. Effects of the arbuscular mycorrhizal fungus Glomus mosseae, on growth and metal uptake by four plant species in copper mine tailings. Environmental Pollution, 2007, 147(2): 374-380. |
19 | Zhang X, Chen B D, Ohtomo R. Mycorrhizal effects on growth, P uptake and Cd tolerance of the host plant vary among different AM fungal species. Soil Science and Plant Nutrition, 2015, 61(2): 359-368. |
20 | González-Chávez M C, Carrillogonzález R, Wright S F, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 2004, 130(3): 317-323. |
21 | Wu S L, Zhang X, Sun Y, et al. Transformation and immobilization of chromium by arbuscular mycorrhizal fungi as revealed by SEM-EDS, TEM-EDS and XAFS. Environmental Science and Technology, 2015, 49(24): 14036-14047. |
22 | Nayuki K, Chen B D, Ohtomo R, et al. Cellular imaging of cadmium in resin sections of arbuscular mycorrhizas using synchrotron micro X-ray fluorescence. Microbes and Environments, 2014, 29(1): 60-66. |
23 | Yao Q, Yang R H, Long L K, et al. Phosphate application enhances the resistance of arbuscular mycorrhizae in clover plants to cadmium via, polyphosphate accumulation in fungal hyphae. Environmental Experimental Botany, 2014, 108(1): 63-70. |
24 | Sun H, Fu J T, Yang F Y. Effect of arbuscular mycorrhizal fungi on switchgrass growth and mineral nutrition in cadmium-contaminated soil. Polish Journal of Environmental Studies, 2020, 29(2): 1-9. |
25 | Mora M D L L, Pinilla L, Rosas A, et al. Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant and Soil, 2008, 303(1/2): 139-149. |
26 | Durán P, Acuña J J, Armada E, et al. Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. Journal of Soil Science and Plant Nutrition, 2016, 16(1): 211-225. |
27 | Liu L, Li J W, Yue F X, et al. Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 2018, 194: 495-503. |
28 | Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technology, 2011, 102(3): 3488-3497. |
29 | Olsen S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Washington: United States Department of Agriculture, 1954. |
30 | Su Y P, Lin C, Zhang F S, et al. Effect of arbascular mycorrhiza fungi (Glomus mosseae, Glomus versiformea, Gigaspora margarita and Gigaspora rosea) on phosphatase activities and soil organic phosphate content in clover rhizosphere. Soil, 2003(4): 334-338, 343. |
苏友波, 林春, 张福锁, 等. 不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响. 土壤, 2003(4): 334-338, 343. | |
31 | Tokalioğlu S, Kartal S. Relationship between vegetable metal and soil extractable metal contents by the BCR sequential extraction procedure: Chemometrical interpretation of the data. International Journal of Environmental Analytical Chemistry, 2003, 83(11): 935-952. |
32 | Sarwar N, Saifullah, Malhi S S, et al. Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 2010, 90(6): 925-937. |
33 | Jiang Q Y, Tan S Y, Zhuo F, et al. Effect of Funneliformis mosseae, on the growth, cadmium accumulation and antioxidant activities of Solanum nigrum. Applied Soil Ecology, 2016, 98: 112-120. |
34 | Chen B D, Liu Y, Shen H, et al. Uptake of cadmium from an experimentally contaminated calcareous soil by arbuscular mycorrhizal maize (Zea mays L.). Mycorrhiza, 2004, 14(6): 347-354. |
35 | Liu L Z, Gong Z Q, Zhang Y L, et al. Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology, 2014, 23(10): 1979-1986. |
36 | Gao S, DeLuca T H, Cleveland C C. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: A meta-analysis. Science of the Total Environment, 2019, 654: 463-472. |
37 | Hu J L, Wu F Y, Wu S C, et al. Biochar and Glomus caledonium influence Cd accumulation of upland kangkong (Ipomoea aquatica Forsk.) intercropped with alfred stonecrop (Sedum alfredii Hance). Scientific Reports, 2014, 4: 4671. |
38 | Li H B, Zhong Y, Zhang H N, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 173-185. |
李鸿博, 钟怡, 张昊楠, 等. 生物炭修复重金属污染农田土壤的机制及应用研究进展. 农业工程学报, 2020, 36(13): 173-185. | |
39 | Song Y C, Feng G, Li X L. Effect of vam fungi on phosphatase activity in the rhizosphere of clover. Chinese Journal of Applied and Environmental Biology, 2000, 6(2): 171-175. |
宋勇春, 冯固, 李晓林. 泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响. 应用与环境生物学报, 2000, 6(2): 171-175. | |
40 | Nannipieri P G L, Landi L, Renella G. Role of phosphatase enzymes in soil//Bünemann E K, Oberson A, Frossard E. Phosphorus in action. Heidelberg: Springer, 2011: 215-244. |
41 | Chen B C, Lai H Y, Juang K W. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicology and Environmental Safety, 2012, 80(1): 393-400. |
[1] | TIAN Chun-li, LI Bin, LIU Fang, ZHAO Ying, LIU Shi-liang, JIE Xiao-lei, HU Hua-feng. Effect of combined applications of selenium and zinc on herbage yield, Zn, Se accumulation and amino acid content of alfalfa [J]. Acta Prataculturae Sinica, 2019, 28(3): 142-153. |
[2] | ZHU Juan-juan, YU Chun-ming, CHEN Ji-kang, WANG Yan-zhou, CHEN Ping, XIONG He-ping. Effects of exogenous selenium on grass yield and nutritive value of forage ramie [J]. Acta Prataculturae Sinica, 2019, 28(10): 144-155. |
[3] | TIAN Chun-li, JIE Xiao-lei, LIU Yan, LIU Fang, GUO Xiao, HU Hua-feng, LIU Shi-liang. Effects of Se-Zn and fulvic acid combined application on nutrient component and amino acids formation of alfalfa [J]. Acta Prataculturae Sinica, 2014, 23(2): 66-75. |
[4] | GUO Xiao, JIE Xiao-lei, HU Hua-feng, LI Jian-ping, LI Ming, HUANG An-qun, SHI Zhi-fang. Effects of basal Se fertilizers on nutrition values of naked oats [J]. Acta Prataculturae Sinica, 2013, 22(1): 53-59. |
[5] |
JIE Xiao-lei, GUO Xiao, LIU Shi-liang, HU Hua-feng, LI Jian-ping, YAO Wen-chao, LI Qiu-ling. Regulation of selenium and cobalt nutrition levels of grass and animal productsby their transmission through the soil-pasture-feed-animal chain (SPFAC) [J]. Acta Prataculturae Sinica, 2009, 18(6): 128-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||