Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (9): 150-158.DOI: 10.11686/cyxb2020462
Mei-ling SONG(), Yu-qin WANG, Hong-sheng WANG, Gen-sheng Bao
Received:
2020-10-14
Revised:
2020-11-18
Online:
2021-08-30
Published:
2021-08-30
Contact:
Mei-ling SONG
Mei-ling SONG, Yu-qin WANG, Hong-sheng WANG, Gen-sheng Bao. Effect of Epichloë endophyte on the litter decomposition of Stipa purpurea in alpine grassland[J]. Acta Prataculturae Sinica, 2021, 30(9): 150-158.
项目 Item | df | 凋落物重量Litters weight | 全氮含量Total N content | 木质素含量Lignin content | 纤维素含量Cellulose content | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
内生真菌Endophyte (E) | 1 | 35.47 | <0.001 | 13.71 | 0.001 | 1.10 | 0.305 | 15.93 | 0.001 |
时间Times (T) | 5 | 185.61 | <0.001 | 90.42 | <0.001 | 37.19 | <0.001 | 151.65 | <0.001 |
E×T | 5 | 2.52 | 0.057 | 6.72 | <0.001 | 0.80 | 0.560 | 1.24 | 0.323 |
Table 1 Repeated measures ANOVA for the effects of endophyte at different times on litter weight, total N, lignin and cellulose contents of S. purpurea litters
项目 Item | df | 凋落物重量Litters weight | 全氮含量Total N content | 木质素含量Lignin content | 纤维素含量Cellulose content | ||||
---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | ||
内生真菌Endophyte (E) | 1 | 35.47 | <0.001 | 13.71 | 0.001 | 1.10 | 0.305 | 15.93 | 0.001 |
时间Times (T) | 5 | 185.61 | <0.001 | 90.42 | <0.001 | 37.19 | <0.001 | 151.65 | <0.001 |
E×T | 5 | 2.52 | 0.057 | 6.72 | <0.001 | 0.80 | 0.560 | 1.24 | 0.323 |
凋落物种类 Litter | 回归方程 Regression equation | 相关系数 Correlation coefficient (R2) | 分解系数 Decomposition coefficient (k) | 分解50%时间 Time of 50% decomposed (a) | 分解95%时间 Time of 95% decomposed (a) |
---|---|---|---|---|---|
E+ | y=0.9752e-0.793t | 0.904 | 0.793 | 0.84 | 3.75 |
E- | y=1.0058e-0.616t | 0.929 | 0.616 | 1.14 | 4.87 |
Table 2 Decomposition characteristics parameters of E+ and E- S. purpurea litters
凋落物种类 Litter | 回归方程 Regression equation | 相关系数 Correlation coefficient (R2) | 分解系数 Decomposition coefficient (k) | 分解50%时间 Time of 50% decomposed (a) | 分解95%时间 Time of 95% decomposed (a) |
---|---|---|---|---|---|
E+ | y=0.9752e-0.793t | 0.904 | 0.793 | 0.84 | 3.75 |
E- | y=1.0058e-0.616t | 0.929 | 0.616 | 1.14 | 4.87 |
项目 Item | df | 木质素∶氮 Lignin∶N | 纤维素∶氮 Cellulose∶N | 氮残留率 N residual rate | 木质素残留率 Lignin residual rate | 纤维素残留率 Cellulose residual rate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | ||
内生真菌Endophyte (E) | 1 | 0.77 | 0.388 | 8.73 | 0.007 | 5.29 | 0.030 | 0.64 | 0.432 | 5.23 | 0.031 |
时间Times (T) | 5 | 46.85 | <0.001 | 72.81 | <0.001 | 6.58 | 0.001 | 137.85 | <0.001 | 201.59 | <0.001 |
E×T | 5 | 0.69 | 0.637 | 0.65 | 0.666 | 1.57 | 0.207 | 1.65 | 0.186 | 0.40 | 0.846 |
Table 3 Repeated measures ANOVA for the effects of endophyte at different times on lignin∶N ratio, cellulose∶N ratio, and total N, lignin and cellulose residual rates of S. purpurea litters
项目 Item | df | 木质素∶氮 Lignin∶N | 纤维素∶氮 Cellulose∶N | 氮残留率 N residual rate | 木质素残留率 Lignin residual rate | 纤维素残留率 Cellulose residual rate | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | ||
内生真菌Endophyte (E) | 1 | 0.77 | 0.388 | 8.73 | 0.007 | 5.29 | 0.030 | 0.64 | 0.432 | 5.23 | 0.031 |
时间Times (T) | 5 | 46.85 | <0.001 | 72.81 | <0.001 | 6.58 | 0.001 | 137.85 | <0.001 | 201.59 | <0.001 |
E×T | 5 | 0.69 | 0.637 | 0.65 | 0.666 | 1.57 | 0.207 | 1.65 | 0.186 | 0.40 | 0.846 |
1 | Swift M J, Heal O W, Anderson J M. Decomposition in terrestrial ecosystems. Studies in Ecology, 1979, 5(14): 2772-2774. |
2 | Jiang Y F, Yin X Q, Wang F B. The influence of litter mixing on decomposition and soil fauna assemblages in a Pinus koraiensis mixed broadleaved forest of the Changbai Mountains, China. European Journal of Soil Biology, 2013, 55: 28-39. |
3 | Schlesinger W H, Bernhardt E S. Biogeochemistry: An analysis of global change. New York: Academic Press, 2013. |
4 | Couteaux M M, Bottner P, Berg B. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 1995, 10: 63-66. |
5 | Berg B, Berg M P, Bottner P, et al. Litter mass-loss rates in pine forests of Europe and eastern united-states-some relationships with climate and litter quality. Biogeochemistry, 1993, 20(3): 127-159. |
6 | Rodriguez R J, Henson J, Van Volkenburgh E, et al. Stress tolerance in plants via habitat-adapted symbiosis. The ISME Journal, 2008, 2(4): 404-416. |
7 | Saikkonen K, Gundel P E, Helander M. Chemical ecology mediated by fungal endophytes in grasses. Journal of Chemical Ecology, 2013, 39: 962-968. |
8 | Siegel M R, Latch G C M, Johnson M C. Fungal endophytes of grasses. Annual Review of Phytopathology, 1987, 25(1): 293-315. |
9 | Nan Z B, Li C J. Roles of the grass-Neotyphodium association in pastoral agriculture systems. Acta Ecologica Sinica, 2004, 24(3): 605-616. |
南志标, 李春杰. 禾草-内生真菌共生体在草地农业系统中的作用. 生态学报, 2004, 24(3): 605-616. | |
10 | Schardl C L, Leuchtmann A, Spiering M J. Symbioses of grasses with seedborne fungal endophytes. Annual Review of Plant Biology, 2004, 55: 315-340. |
11 | Hu C X. Effects of N, P and tryptophan on growth and ergot alkaloid content in Achnatherum inebrians symbiotic with Neotyphodium gansuense. Lanzhou: Lanzhou University, 2013. |
胡春霞. 氮、磷和色氨酸对醉马草内生真菌共生体生长及麦角生物碱含量的影响. 兰州: 兰州大学, 2013. | |
12 | Hector A, Beale A J, Minns A, et al. Consequences of the reduction of plant diversity for litter decomposition: Effects through litter quality and microenvironment. Oikos, 2000, 90(2): 357-371. |
13 | Gartner T B, Cardon Z G. Decomposition dynamics in mixed-species leaf litter. Oikos, 2004, 104(2): 230-246. |
14 | Omacini M, Chaneton E J, Ghersa C M, et al. Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos, 2004, 104(3): 581-590. |
15 | Saikkonen K, Mikola J, Helander M. Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Current Science, 2015, 109(1): 121-126. |
16 | Liu W S, Dong M, Song Z P, et al. Genetic diversity patern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau. Annals of Applied Biology, 2009, 154(1): 57-65. |
17 | Duan M J, Gao Q Z, Wan Y F, et al. Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in Northern Tibet. Acta Ecologica Sinica, 2010, 30(14): 3892-3900. |
段敏杰, 高清竹, 万运帆, 等. 放牧对藏北紫花针茅高寒草原植物群落特征的影响. 生态学报, 2010, 30(14): 3892-3900. | |
18 | Bao G S, Li C J. Isolation and identification of endophytes infecting Stipa purpurea, a dominant grass in meadows of the Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 2016, 25(3): 32-42. |
鲍根生, 李春杰. 青藏高原高寒草地优势禾草-紫花针茅内生真菌分离和鉴定. 草业学报, 2016, 25(3): 32-42. | |
19 | Yang Y, Li X, Kong X X, et al. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Functional & Integrative Genomics, 2014, 15(3): 295-307. |
20 | Bao G S. Effects of the hemiparasitic plant Pedicularis kansuensis on growth and photosynthetic properties of Stipa purpurea-Epichloë symbiosis. Lanzhou: Lanzhou University, 2015. |
鲍根生. 甘肃马先蒿寄生对紫花针茅内生真菌共生体生长和光合特性的影响. 兰州: 兰州大学, 2015. | |
21 | Li C J, Nan Z B, Liu Y, et al. Methodology of endophyte detection of drunken horse grass (Achnatherum inebrians). Edible Fungi of China, 2008, 27(supple): 16-19. |
李春杰, 南志标, 刘勇, 等. 醉马草内生真菌检测方法的研究. 中国食用菌, 2008, 27(增刊): 16-19. | |
22 | Li C J. Biological and ecological characteristics of Achnatherum inebrians/Neotyphodium endophyte symbiont. Lanzhou: Lanzhou University, 2005. |
李春杰. 醉马草-内生真菌共生体生物学与生态学特性的研究. 兰州: 兰州大学, 2005. | |
23 | Olson J S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44: 322-331. |
24 | Rowland A P, Roberts J D. Lignin and cellulose fractionation in decomposition studies using acid-detergent fibre methods. Communications in Soil Science and Plant Analysis, 1994, 25: 269-277. |
25 | Thormann M N, Currah R S, Bayley S E. Succession of microfungal assemblages in decomposing peatland plants. Plant and Soil, 2003, 250(2): 323-333. |
26 | Fryar S C, Yuen T K, Hyde K D, et al. The influence of competition between tropical fungi on wood colonization in streams. Microbial Ecology, 2001, 41(3): 245-251. |
27 | Terekhova V A, Semenova T A. The structure of micromycete communities and their synecologic interactions with basidiomycetes during plant debris decomposition. Microbiology, 2005, 74(1): 91-96. |
28 | He X B, Han G M, Lin Y H, et al. Diversity and decomposition potential of endophytes in leaves of a Cinnamomum camphora plantation in China. Ecological Research, 2012, 27(2): 273-284. |
29 | Yu W C, Song X L, Xiu W M, et al. Effects of additional nitrogen on litter decomposition in Stipa Baicalensis grassland. Acta Prataculturae Sinica, 2014, 23(5): 49-60. |
于雯超, 宋晓龙, 修伟明, 等. 氮素添加对贝加尔针茅草原凋落物分解的影响. 草业学报, 2014, 23(5): 49-60. | |
30 | Gurmesa G A, Lu X, Gundersen P, et al. High retention of 15 N-labeled nitrogen deposition in a nitrogen saturated old-grown tropical forest. Global Change Biology, 2016, 22(11): 3608-3620. |
31 | Bell-Dereske L, Gao X D, Masiello C A, et al. Plant-fungal symbiosis affects litter decomposition during primary succession. Oikos, 2017, 126(6): 801-811. |
32 | Lemons A, Clay K, Rudgers J A. Connecting plant-microbial interactions above and belowground: A fungal endophyte affects decomposition. Oecologia, 2005, 145(4): 595-604. |
33 | Siegrist J A, McCulley R L, Bush L P, et al. Alkaloids may not be responsible for endophyte associated reductions in tall fescue decomposition rates. Functional Ecology, 2010, 24(2): 460-468. |
34 | Gundel P E, Helander M, Garibaldi L A, et al. Role of foliar fungal endophytes in litter decomposition among species and population origins. Fungal Ecology, 2016, 21: 50-56. |
35 | Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 1982, 63(3): 621-626. |
36 | Li C L. Litter decomposition of Elymus nutans and its response to UV-B on the eastern alpine meadow of Qinghai-Tibet Plateau. Lanzhou: Lanzhou University, 2010. |
李传龙. 青藏高原东部高寒草甸垂穗披碱草凋落物分解对UV-B的响应. 兰州: 兰州大学, 2010. | |
37 | Chapin F S, Matson P A, Mooney H A. Terrestrial decomposition//In: Principles of terrestrial ecosystem ecology. New York: Springer, 2002: 151-175. |
38 | Song X Z, Jiang H, Zhang H L, et al. Elevated UV-B radiation did not affect decomposition rates of needles of two coniferous species in subtropical China. European Journal of Soil Biology, 2011, 47: 343-348. |
39 | Ma Z L, Gao S, Yang W Q, et al. Degradation characteristics of lignin and cellulose of foliar litter at different rainy stages in subtropical evergreen broadleaved forest. Chinese Journal of Ecology, 2015, 34(1): 122-129. |
马志良, 高顺, 杨万勤, 等. 亚热带常绿阔叶林区凋落叶木质素和纤维素在不同雨热季节的降解特征. 生态学杂志, 2015, 34(1): 122-129. | |
40 | Cortez J, Garnier E, Pérez-Harguindeguy N, et al. Plant traits, litter quality and decomposition in a Mediterranean old-field succession. Plant and Soil, 2007, 296(1/2): 19-34. |
41 | Melillo J M, Aber J D, Linkins A E, et al. Carbon and nitrogen dynamics along the decay continuum: Plant litter to soil organic matter. Plant and Soil, 1989, 115(2): 189-198. |
42 | Zhang L L. Study on decomposition of 15 common plant litter in Tibetan alpine meadow. Lanzhou: Lanzhou University, 2017. |
张丽莉. 青藏高原高寒草甸15种常见植物凋落物分解研究. 兰州: 兰州大学, 2017. | |
43 | Gao H Y. Decomposition characteristics of common plant litters in the Stipa breviflora desert grassland of Inner Mongolia. Hohhot: Inner Mongolia Agricultural University, 2019. |
高海燕. 内蒙古短花针茅荒漠草原常见植物凋落物分解特征. 呼和浩特: 内蒙古农业大学, 2019. | |
44 | Sjöberg G, Nilsson S I, Persson T, et al. Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N. Soil Biology & Biochemistry, 2004, 36: 1761-1768. |
45 | Fang H, Mo J M. Effects of nitrogen deposition on forest litter decomposition. Acta Ecologica Sinica, 2006, 26(9): 3127-3136. |
方华, 莫江明. 氮沉降对森林凋落物分解的影响. 生态学报, 2006, 26(9): 3127-3136. | |
46 | Sinsabaugh R L, Carreiro M M, Repert D A. Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry, 2002, 60(1): 1-24. |
47 | Frey S D, Knorr M, Parrent J L, et al. Chronic N enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests. Forest Ecology and Management, 2004, 196: 159-171. |
48 | Gallardo A, Merino J. Leaf decomposition in two Mediterranean ecosystems of southwest Spain: Influence of substrate quality. Ecology, 1993, 74(1): 152-161. |
49 | Song X G, Hu T X, Xian J R, et al. Responses of litter decomposition and nutrient release to simulated nitrogen deposition in an evergreen broad-leaved forest in Southwestern Sichuan. Chinese Journal of Applied Ecology, 2007, 18(10): 2167-2172. |
宋学贵, 胡庭兴, 鲜骏仁, 等. 川西南常绿阔叶林凋落物分解及养分释放对模拟氮沉降的响应. 应用生态学报, 2007, 18(10): 2167-2172. | |
50 | Yang J J. Litter decomposition characteristics in different habitats in extreme arid area. Alar: Tarim University, 2020. |
杨晶晶. 极端干旱区不同生境下凋落物分解特征研究. 阿拉尔: 塔里木大学, 2020. | |
51 | Enriquez S, Duarte C M, Jensen K, et al. Patterns in decomposition rates among photosynthetic organisms: The importance of detritus C∶N∶P content. Oecologia, 1993, 94: 457-471. |
52 | Shi Y, Dai C C, Wu Y C, et al. Study on the degradation of wheat straw by endophytic fungi. Journal of Environmental Sciences, 2004, 24(1): 144-149. |
史央, 戴传超, 吴耀春, 等. 植物内生真菌强化还田秸秆降解的研究. 环境科学学报, 2004, 24(1): 144-149. | |
53 | Peng X W, Chen H Z. Lipid accumulation and cellulose decomposition of endophytic fungi isolated from Taxus mairei. Mycosystema, 2005, 24(3): 457-461. |
彭小伟, 陈洪章. 南方红豆杉内生真菌产油及降解纤维素的研究. 菌物学报, 2005, 24(3): 457-461. |
[1] | Ting-mei WU, Hui-long LIN, Di FAN, Chang-ting JI, Yu-ting ZHAO, Jing-qiong WEI. Factors influencing the scale of herdsmen’s livestock farming in tundra alpine grassland-A case study from Qinghai Province [J]. Acta Prataculturae Sinica, 2021, 30(9): 117-126. |
[2] | Jia-li LIU, Jian-rong FAN, Xi-yu ZHANG, Chao YANG, Fu-bao XU, Xiao-xue ZHANG, Bo LIANG. Remote sensing estimation of vegetation cover in alpine grassland in the growing and non-growing seasons [J]. Acta Prataculturae Sinica, 2021, 30(9): 15-26. |
[3] | Chun-jie LI, Ming-xiao LANG, Zhen-jiang CHEN, Zheng-feng WANG, Tai-xiang CHEN. Advances in artificial inoculation technology for grass-endophytic fungi [J]. Acta Prataculturae Sinica, 2021, 30(7): 179-189. |
[4] | Cong-cong LI, Ya-xing ZHOU, Qiang GU, Ming-xin YANG, Chuan-lu ZHU, Zi-yuan PENG, Kai XUE, Xin-quan ZHAO, Yan-fen WANG, Bao-ming JI, Jing ZHANG. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan region [J]. Acta Prataculturae Sinica, 2021, 30(1): 46-58. |
[5] | CHEN Hong, MA Wen-ming, ZHOU Qing-ping, YANG Zhi, LIU Chao-wen, LIU Jin-qiu, DU Zhong-man. Shrub encroachment effects on the stability of soil aggregates and the differentiation of Fe and Al oxides in Qinghai-Tibet alpine grassland [J]. Acta Prataculturae Sinica, 2020, 29(9): 73-84. |
[6] | YUE Ke-xin, GONG Ji-rui, YU Shang-yuan, BAOYIN Taogetao, YANG Bo, WANG Biao, ZHU Chen-chen, ZHANG Zi-he, SHI Jia-yu. Effects of litter quality and soil enzyme activity on litter decomposition rate in typical grassland subject to nitrogen addition [J]. Acta Prataculturae Sinica, 2020, 29(6): 71-82. |
[7] | SONG Mei-ling, WANG Yu-qin, BAO Gen-sheng, WANG Hong-sheng. Effect of Stellera chamaejasme removal on the nutrient resorption of plants in an alpine grassland community [J]. Acta Prataculturae Sinica, 2020, 29(10): 47-57. |
[8] | GAO Ya-min, LUO Hui-qin, YAO Tuo, ZHANG Jian-gui, LI Hai-yun, YANG Yan-shan, LAN Xiao-jun. Isolation, identification and growth promotion of arbuscular mycorrhizal fungi (AMF) from Potentilla chinensis in degraded alpine grassland in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2020, 29(1): 145-154. |
[9] | LIU Xue-er, MA Jin-feng, YANG Cheng-de, LI Tong-hua. Antifungal activity and identification of soil bacteria from the rhizosphere of Stipa plants in alpine grassland of Qinghai [J]. Acta Prataculturae Sinica, 2019, 28(8): 161-169. |
[10] | ZHANG Jian-gui, WANG Li-de, YAO Tuo, LI Hai-yun, GAO Ya-min, YANG Xiao-mei, LI Chang-ning, LI Qi, FENG Ying, HU Yan-ting. Plant community structure and species diversity differences in alpine grassland in the Qilian Mountains with different levels of degradation [J]. Acta Prataculturae Sinica, 2019, 28(5): 15-25. |
[11] | ZHANG Miao-miao, CHEN Wei, LIN Li, ZHANG De-gang, WU Yu-xin, XIAO Hai-long. A study of soil nutrient characteristics and soil soluble organic carbon levels in different types of alpine grassland in Qinghai Province [J]. Acta Prataculturae Sinica, 2019, 28(3): 20-28. |
[12] | WANG Xue-xia, DONG Shi-kui, GAO Qing-zhu, ZHANG Yong, HU Guo-zheng, LUO Wen-rong. The rate of soil nitrogen transformation decreased by the degradation of alpine grasslands in the Qinghai Tibet Plateau [J]. Acta Prataculturae Sinica, 2018, 27(6): 1-9. |
[13] | LIN Hui-Long, ZHENG Shu-Ting, WANG Xue-Lu. Soil erosion assessment based on the RUSLE model in the Three-Rivers Headwaters area, Qinghai-Tibetan Plateau, China [J]. Acta Prataculturae Sinica, 2017, 26(7): 11-22. |
[14] | DU Ji-Zeng, WANG Gen-Xu, LI Yuan-Shou. Rate and causes of degradation of alpine grassland in the source regions of the Yangtze and Yellow Rivers during the last 45 years [J]. Acta Prataculturae Sinica, 2015, 24(6): 5-15. |
[15] | MAO Zhu-Xin, FU Hua, NIU De-Cao, NIE Bin, CHEN Hao. Nutrient variation and forage evaluation of Vicia unijuga in alpine grasslands [J]. Acta Prataculturae Sinica, 2015, 24(11): 227-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||