Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (11): 170-180.DOI: 10.11686/cyxb2020562
Chen WU(), Zhi-hao YAO, Wen-qing MEI, Yu-yan FENG, Qu CHEN, Ying-dong NI()
Received:
2020-12-15
Revised:
2021-03-15
Online:
2021-10-19
Published:
2021-10-19
Contact:
Ying-dong NI
Chen WU, Zhi-hao YAO, Wen-qing MEI, Yu-yan FENG, Qu CHEN, Ying-dong NI. Effects of vitamin B complex on intestinal microflora composition and gut epithelial structure in growing goats[J]. Acta Prataculturae Sinica, 2021, 30(11): 170-180.
项目 Item | 原料 Ingredients (%) | 项目 Item | 营养水平 Nutrient levels2 ) |
---|---|---|---|
精粗比The ratio of concentrate to forage | 40∶60 | 消化能Digestible energy (MJ·kg-1) | 8.25 |
苜蓿青贮Alfalfa silage | 60 | 粗蛋白Crude protein (%) | 18.05 |
玉米 Corn | 22.4 | 粗脂肪Ether extract (%) | 3.00 |
麸皮Wheat bran | 4.8 | 中性洗涤纤维Neutral detergent fiber (%) | 35.07 |
豆粕 Soybean meal | 10.8 | 酸性洗涤纤维Acid detergent fiber (%) | 24.50 |
小苏打Baking soda | 0.4 | 钙Calcium (%) | 0.88 |
预混料 Premix1) | 1.6 | 总磷Total phosphorus (%) | 0.35 |
总计 Total | 100 |
Table 1 Dietary composition and nutrient levels
项目 Item | 原料 Ingredients (%) | 项目 Item | 营养水平 Nutrient levels2 ) |
---|---|---|---|
精粗比The ratio of concentrate to forage | 40∶60 | 消化能Digestible energy (MJ·kg-1) | 8.25 |
苜蓿青贮Alfalfa silage | 60 | 粗蛋白Crude protein (%) | 18.05 |
玉米 Corn | 22.4 | 粗脂肪Ether extract (%) | 3.00 |
麸皮Wheat bran | 4.8 | 中性洗涤纤维Neutral detergent fiber (%) | 35.07 |
豆粕 Soybean meal | 10.8 | 酸性洗涤纤维Acid detergent fiber (%) | 24.50 |
小苏打Baking soda | 0.4 | 钙Calcium (%) | 0.88 |
预混料 Premix1) | 1.6 | 总磷Total phosphorus (%) | 0.35 |
总计 Total | 100 |
基因 Gene | 引物序列 Primer sequences (5′—3′) | 基因序列号 GenBank accession No. |
---|---|---|
CCND | R:AAAGCCCTCTTCCATACA F:CTCCGCCTTCCCTAAC | XM_005680985.1 |
MKI67 | R:TCAGTGAGCAGGAGGCAGTA F:GGAAATCCAGGTGACTTGCT | XM_004004769.1 |
Claudin 1 | R:CACCCTTGGCATGAAGTGTA F:AGCCAATGAAGAGAGCCTGA | HM117762.1 |
Claudin 4 | R:AAGGTGTACGACTCGCTGCT F:GACGTTGTTAGCCGTCCAG | HM117763.1 |
Occludin | R:GTTCGACCAATGCTCTCTCAG F:CAGCTCCCATTAAGGTTCCA | BC133617.1 |
EGFR | R:AACTGTGAGGTGGTCCTTGG F:CACTGTGTTGAGGGCAATGA | XM_005695500.1 |
GAPDH | R:GGGTCATCATCTCTGCACCT F:GGTCATAAGTCCCTCCACGA | HM043737.1 |
Table 2 Real-time fluorescence quantitative PCR primer sequences
基因 Gene | 引物序列 Primer sequences (5′—3′) | 基因序列号 GenBank accession No. |
---|---|---|
CCND | R:AAAGCCCTCTTCCATACA F:CTCCGCCTTCCCTAAC | XM_005680985.1 |
MKI67 | R:TCAGTGAGCAGGAGGCAGTA F:GGAAATCCAGGTGACTTGCT | XM_004004769.1 |
Claudin 1 | R:CACCCTTGGCATGAAGTGTA F:AGCCAATGAAGAGAGCCTGA | HM117762.1 |
Claudin 4 | R:AAGGTGTACGACTCGCTGCT F:GACGTTGTTAGCCGTCCAG | HM117763.1 |
Occludin | R:GTTCGACCAATGCTCTCTCAG F:CAGCTCCCATTAAGGTTCCA | BC133617.1 |
EGFR | R:AACTGTGAGGTGGTCCTTGG F:CACTGTGTTGAGGGCAATGA | XM_005695500.1 |
GAPDH | R:GGGTCATCATCTCTGCACCT F:GGTCATAAGTCCCTCCACGA | HM043737.1 |
项目 Items | 指标 Index | 对照组 CON | VB组 VB | P值P-value |
---|---|---|---|---|
盲肠内容物 Cecal digesta | ACE指数 ACE | 1649.32±108.40 | 1525.63±105.40 | 0.45 |
Chao 1指数 Chao 1 | 1672.20±130.08 | 1521.72±132.24 | 0.45 | |
香农指数 Shannon index | 7.87±0.12 | 7.67±0.04 | 0.15 | |
结肠内容物 Colonic digesta | ACE指数ACE | 1383.60±106.60 | 1383.32±42.36 | 1.00 |
Chao 1指数Chao 1 | 1343.51±104.90 | 1355.62±33.51 | 0.92 | |
香农指数Shannon index | 7.70±0.15 | 7.42±0.18 | 0.27 |
Table 3 Alpha diversity analysis of intestinal microbes in goats (n=4)
项目 Items | 指标 Index | 对照组 CON | VB组 VB | P值P-value |
---|---|---|---|---|
盲肠内容物 Cecal digesta | ACE指数 ACE | 1649.32±108.40 | 1525.63±105.40 | 0.45 |
Chao 1指数 Chao 1 | 1672.20±130.08 | 1521.72±132.24 | 0.45 | |
香农指数 Shannon index | 7.87±0.12 | 7.67±0.04 | 0.15 | |
结肠内容物 Colonic digesta | ACE指数ACE | 1383.60±106.60 | 1383.32±42.36 | 1.00 |
Chao 1指数Chao 1 | 1343.51±104.90 | 1355.62±33.51 | 0.92 | |
香农指数Shannon index | 7.70±0.15 | 7.42±0.18 | 0.27 |
项目 Items | 对照组 CON | VB组 VB | P值 P-value |
---|---|---|---|
厚壁菌门Firmicutes | 74.20±1.91 | 69.75±2.19 | 0.18 |
拟杆菌门Bacteroidetes | 13.01±2.40 | 19.23±1.69 | 0.08# |
广古菌门Euryarchaeota | 4.35±1.29 | 3.32±1.14 | 0.57 |
变形菌门Proteobacteria | 2.59±0.44 | 3.02±0.17 | 0.40 |
放线菌门Actinobacteria | 2.19±0.28 | 1.77±0.16 | 0.23 |
螺旋菌门Spirochaetes | 1.04±0.18 | 0.48±0.16 | 0.06# |
软壁菌门Tenericutes | 0.91±0.19 | 0.88±0.08 | 0.91 |
酸杆菌门Acidobacteria | 0.79±0.12 | 0.79±0.25 | 1.00 |
疣微菌门Verrucomicrobia | 0.09±0.03 | 0.13±0.08 | 0.60 |
绿弯菌门Chloroflexi | 0.16±0.05 | 0.11±0.03 | 0.43 |
Table 4 Comparison of abundance of cecal microbes in goats at phylum level (n=4)
项目 Items | 对照组 CON | VB组 VB | P值 P-value |
---|---|---|---|
厚壁菌门Firmicutes | 74.20±1.91 | 69.75±2.19 | 0.18 |
拟杆菌门Bacteroidetes | 13.01±2.40 | 19.23±1.69 | 0.08# |
广古菌门Euryarchaeota | 4.35±1.29 | 3.32±1.14 | 0.57 |
变形菌门Proteobacteria | 2.59±0.44 | 3.02±0.17 | 0.40 |
放线菌门Actinobacteria | 2.19±0.28 | 1.77±0.16 | 0.23 |
螺旋菌门Spirochaetes | 1.04±0.18 | 0.48±0.16 | 0.06# |
软壁菌门Tenericutes | 0.91±0.19 | 0.88±0.08 | 0.91 |
酸杆菌门Acidobacteria | 0.79±0.12 | 0.79±0.25 | 1.00 |
疣微菌门Verrucomicrobia | 0.09±0.03 | 0.13±0.08 | 0.60 |
绿弯菌门Chloroflexi | 0.16±0.05 | 0.11±0.03 | 0.43 |
项目 Items | 对照组 CON | VB组 VB | P值 P-value |
---|---|---|---|
厚壁菌门Firmicutes | 72.69±0.77 | 71.70±2.24 | 0.69 |
拟杆菌门Bacteroidetes | 14.75±1.52 | 15.96±1.06 | 0.54 |
广古菌门Euryarchaeota | 4.82±1.72 | 1.52±0.61 | 0.12 |
变形菌门Proteobacteria | 1.95±0.31 | 2.58±0.20 | 0.13 |
放线菌门Actinobacteria | 1.44±0.40 | 1.85±0.26 | 0.42 |
螺旋菌门Spirochaetes | 2.00±0.78 | 0.48±0.21 | 0.11 |
软壁菌门Tenericutes | 0.81±0.10 | 0.58±0.09 | 0.15 |
酸杆菌门Acidobacteria | 0.45±0.15 | 0.92±0.23 | 0.14 |
疣微菌门Verrucomicrobia | 0.59±0.50 | 3.90±2.49 | 0.24 |
绿弯菌门Chloroflexi | 0.08±0.03 | 0.13±0.03 | 0.27 |
Table 5 Comparison of abundance of colonic microbes in goats at phylum level (n=4)
项目 Items | 对照组 CON | VB组 VB | P值 P-value |
---|---|---|---|
厚壁菌门Firmicutes | 72.69±0.77 | 71.70±2.24 | 0.69 |
拟杆菌门Bacteroidetes | 14.75±1.52 | 15.96±1.06 | 0.54 |
广古菌门Euryarchaeota | 4.82±1.72 | 1.52±0.61 | 0.12 |
变形菌门Proteobacteria | 1.95±0.31 | 2.58±0.20 | 0.13 |
放线菌门Actinobacteria | 1.44±0.40 | 1.85±0.26 | 0.42 |
螺旋菌门Spirochaetes | 2.00±0.78 | 0.48±0.21 | 0.11 |
软壁菌门Tenericutes | 0.81±0.10 | 0.58±0.09 | 0.15 |
酸杆菌门Acidobacteria | 0.45±0.15 | 0.92±0.23 | 0.14 |
疣微菌门Verrucomicrobia | 0.59±0.50 | 3.90±2.49 | 0.24 |
绿弯菌门Chloroflexi | 0.08±0.03 | 0.13±0.03 | 0.27 |
部位 Parts | 项目 Items | 对照组 CON | VB组 VB | P值P-value |
---|---|---|---|---|
空肠 Jejunum | 绒毛高度 Villus height (V, μm) | 493.50±13.42A | 623.74±1.36B | 0.00 |
隐窝深度 Crypt depth (C, μm) | 195.24±5.85a | 218.58±6.08b | 0.02 | |
绒毛高度/隐窝深度 V/C | 2.53±0.07a | 2.86±0.08b | 0.01 | |
回肠 Ileum | 绒毛高度 Villus height (V, μm) | 503.42±36.51 | 505.93±27.21 | 0.96 |
隐窝深度 Crypt depth (C, μm) | 197.27±3.00b | 177.38±4.93a | 0.01 | |
绒毛高度/隐窝深度 V/C | 2.55±0.18 | 2.86±0.16 | 0.23 |
Table 6 Changes in morphology of jejunum and ileum in goats
部位 Parts | 项目 Items | 对照组 CON | VB组 VB | P值P-value |
---|---|---|---|---|
空肠 Jejunum | 绒毛高度 Villus height (V, μm) | 493.50±13.42A | 623.74±1.36B | 0.00 |
隐窝深度 Crypt depth (C, μm) | 195.24±5.85a | 218.58±6.08b | 0.02 | |
绒毛高度/隐窝深度 V/C | 2.53±0.07a | 2.86±0.08b | 0.01 | |
回肠 Ileum | 绒毛高度 Villus height (V, μm) | 503.42±36.51 | 505.93±27.21 | 0.96 |
隐窝深度 Crypt depth (C, μm) | 197.27±3.00b | 177.38±4.93a | 0.01 | |
绒毛高度/隐窝深度 V/C | 2.55±0.18 | 2.86±0.16 | 0.23 |
1 | Beaudet V, Gervais R, Graulet B, et al. Effects of dietary nitrogen levels and carbohydrate sources on apparent ruminal synthesis of some B vitamins in dairy cows. Journal of Dairy Science, 2016, 99(4): 2730-2739. |
2 | Hooper L V, Gordon J I. Commensal host-bacterial relationships in the gut. Science, 2001, 292(5519): 1115-1118. |
3 | Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 2018, 57(1): 1-24. |
4 | Rastelli M, Cani P D, Knauf C. The gut microbiome influences host endocrine functions. Endocrine Reviews, 2019, 40(5): 1271-1284. |
5 | Stefania D S, Elisabetta C, Mauro M, et al. Nutritional keys for intestinal barrier modulation. Frontiers in Immunology, 2015, 6: 612. |
6 | Long J H, Wang B W, Kong M, et al. Effects of vitamin B12 supplemental level on growth performance, intestinal development and microflora structure in cecum of Wulong geese aged from 5 to 15 weeks. Chinese Journal of Animal Nutrition, 2018, 30(10): 3930-3940. |
龙建华, 王宝维, 孔敏, 等. 饲粮中维生素B12添加水平对5~15周龄五龙鹅生长性能、肠道发育和盲肠菌群结构的影响. 动物营养学报, 2018, 30(10): 3930-3940. | |
7 | Wang B W, Wang X, Ge W H, et al. Effects of vitamin B2 on growth performance, serum hormone contents and intestinal tissue structure of Wulong geese aged from 5 to 16 weeks. Chinese Journal of Animal Nutrition, 2014, 26(3): 637-645. |
王宝维, 王鑫, 葛文华, 等. 维生素B2对5~16周龄五龙鹅生长性能、血清激素含量和肠道组织结构的影响. 动物营养学报, 2014, 26(3): 637-645. | |
8 | Halsted C H. The small intestine in vitamin B12 and folate deficiency. Nutrition Reviews, 1975, 33(2): 33-37. |
9 | Wang L, Shah A M, Liu Y, et al. Relationship between true digestibility of dietary phosphorus and gastrointestinal bacteria of goats. PLoS One, 2020, 15(5): e0225018. |
10 | Jiang S, Huo D, You Z, et al. The distal intestinal microbiome of hybrids of Hainan black goats and Saanen goats. PLoS One, 2020, 15(1): e0228496. |
11 | Clemmons B A, Voy B H, Myer P R. Altering the gut microbiome of cattle: Considerations of host-microbiome interactions for persistent microbiome manipulation. Microbial Ecology, 2019, 77(2): 523-536. |
12 | Hoover W H. Digestion and absorption in the hindgut of ruminants. Journal of Animal Science, 1978, 46(6): 1789-1799. |
13 | Ley R E, Hamady M, Lozupone C, et al. Evolution of mammals and their gut microbes. Science, 2008, 320(5883): 1647-1651. |
14 | Seshadri R, Leahy S C, Attwood G T, et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 collection. Nature Biotechnology, 2018, 36(4): 359-367. |
15 | Sasson G, Kruger Ben-shabat S, Seroussi E, et al. Heritable bovine rumen bacteria are phylogenetically related and correlated with the cow’s capacity to harvest energy from its feed. mBio, 2017, 8(4): e00703-17. |
16 | Edwin E E, Hebert C N, Jackman R, et al. Thiamine requirement of young ruminants. Journal of Agricultural Science, 1976, 87(3): 679-688. |
17 | Burkholder P R, Mcveigh I. Synthesis of vitamins by intestinal bacteria. Proceedings of the National Academy of Sciences of the United States of America, 1942, 28(7): 285-289. |
18 | Yao Z H, Mei W Q, Feng Y Y, et al. Effects of dietary supplementation with different doses of vitamin B-complex on the growth performance and microflora composition in goats. Animal Husbandry & Veterinary Medicine, 2020, 52(7): 47-53. |
姚志浩, 梅文晴, 冯宇妍, 等. 复合维生素B对山羊生长性能及肠道微生物区系的影响. 畜牧与兽医, 2020, 52(7): 47-53. | |
19 | Caporaso J G, Lauber C L, Walters W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Supple 1): 4516-4522. |
20 | Youssef N, Sheik C S, Krumholz L R, et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental surveys. Applied and Environmental Microbiology, 2009, 75(16): 5227-5236. |
21 | Haas B J, Gevers D, Earl A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Research, 2011, 21(3): 494-504. |
22 | Edgar R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013, 10(10): 996. |
23 | Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 2013, 41(D1): 590-596. |
24 | O'hara E, Neves A L A, Song Y, et al. The role of the gut microbiome in cattle production and health: Driver or passenger? Annual Review of Animal Biosciences, 2020, 8: 199-220. |
25 | Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44): 15718-15723. |
26 | Hooper L V. Bacterial contributions to mammalian gut development. Trends in Microbiology, 2004, 12(3): 129-134. |
27 | Hooper L V, Wong M H, Thelin A, et al. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291(5505): 881-884. |
28 | Waters J L, Ley R E. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biology, 2019, 17(1): 83. |
29 | Goodrich J K, Waters J L, Poole A C, et al. Human genetics shape the gut microbiome. Cell, 2014, 159(4): 789-799. |
30 | Wang C, Li W, Wang H, et al. Saccharomyces boulardii alleviates ulcerative colitis carcinogenesis in mice by reducing TNF-α and IL-6 levels and functions and by rebalancing intestinal microbiota. BMC Microbiology, 2019, 19(1): 246. |
31 | Egerton S, Donoso F, Fitzgerald P, et al. Investigating the potential of fish oil as a nutraceutical in an animal model of early life stress. Nutritional Neuroscience, 2020(155): 1-23. |
32 | Lemaire M, Dou S, Cahu A, et al. Addition of dairy lipids and probiotic Lactobacillus fermentum in infant formula programs gut microbiota and entero-insular axis in adult minipigs. Scientific Reports, 2018, 8(1): 1-16. |
33 | Özdemir F, Arslan S. Molecular characterization and toxin profiles of Bacillus spp. isolated from retail fish and ground beef. Journal of Food Science, 2019, 84(3): 548-556. |
34 | Caro-Quintero A, Ritalahti K M, Cusick K D, et al. The chimeric genome of Sphaerochaeta: Nonspiral spirochetes that break with the prevalent dogma in spirochete biology. mBio, 2012, 3(3): e00025-12. |
35 | Caspary W F. Physiology and pathophysiology of intestinal absorption. American Journal of Clinical Nutrition, 1992, 55(Supple 1): 299-308. |
36 | Abbas B, Hayes T L, Wilson D J, et al. Internal structure of the intestinal villus: Morphological and morphometric observations at different levels of the mouse villus. Journal of Anatomy, 1989, 162: 263-273. |
37 | Sparks M I, Collins E N. The role of vitamin B1 in tonus of the large intestine. American Journal of Digestive Diseases, 1935, 2(10): 618-620. |
38 | Yates C A, Evans G S, Powers H J. Riboflavin deficiency: Early effects on post-weaning development of the duodenum in rats. British Journal of Nutrition, 2001, 86(5): 593-599. |
39 | Berkes J, Viswanathan V K, Savkovic S D, et al. Intestinal epithelial responses to enteric pathogens: Effects on the tight junction barrier, ion transport, and inflammation. Gut, 2003, 52(3): 439-451. |
40 | Zeisel M B, Dhawan P, BaumertT F. Tight junction proteins in gastrointestinal and liver disease. Gut, 2019, 68(3): 547-561. |
41 | Zhang Q, Li Q, Wang C, et al. Enteropathogenic Escherichia coli changes distribution of occludin and ZO-1 in tight junction membrane microdomains in vivo. Microbial Pathogenesis, 2010, 48(1): 28-34. |
42 | Wang W J, Sun D Y, Sun X F, et al. Research progress on intestinal barrier function damage and bacterial translocation. Feed Research, 2012(7): 38-40. |
王文娟, 孙冬岩, 孙笑非, 等. 肠道屏障功能损伤与细菌易位研究进展. 饲料研究, 2012(7): 38-40. | |
43 | Lu N, Wang L, Cao H, et al. Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. Journal of Immunology, 2014, 192(3): 1013-1023. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||