Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (5): 51-60.DOI: 10.11686/cyxb2021121
Previous Articles Next Articles
Wen-rui CHEN(), Zhao JIANG, Qi-xin ZHOU, Yun-qin WANG, column:LI Chun-ming, Peng-hui GUO, Hui-xia LIU()
Received:
2021-03-29
Revised:
2021-05-08
Online:
2022-05-20
Published:
2022-03-30
Contact:
Hui-xia LIU
Wen-rui CHEN, Zhao JIANG, Qi-xin ZHOU, Yun-qin WANG, column:LI Chun-ming, Peng-hui GUO, Hui-xia LIU. Effects of silicon on biomass allocation and uptake and utilization of nitrogen, phosphorus, and potassium in two tall fescue (Festuca arundinacea) cultivars under different salinity conditions[J]. Acta Prataculturae Sinica, 2022, 31(5): 51-60.
变异来源 Source of variation | SDW | RDW | R/S | 地上部Shoots | 地下部Roots | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
磷P | 钾K+ | 氮N | 钠Na+ | K+/Na+ | 磷P | 钾K+ | 氮N | 钠Na+ | K+/Na+ | ||||
品种Cultivar | 0.014 | 0.000 | 0.000 | 0.144 | 0.000 | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
盐浓度Salinity | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
硅处理Si | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
品种×盐浓度Cultivar×salinity | 0.015 | 0.000 | 0.003 | 0.000 | 0.002 | 0.367 | 0.012 | 0.000 | 0.584 | 0.000 | 0.000 | 0.000 | 0.000 |
品种×硅Cultivar×Si | 0.320 | 0.074 | 0.163 | 0.310 | 0.598 | 0.960 | 0.485 | 0.015 | 0.759 | 0.000 | 0.703 | 0.014 | 0.663 |
盐浓度×硅Salinity×Si | 0.000 | 0.000 | 0.207 | 0.000 | 0.201 | 0.032 | 0.000 | 0.000 | 0.047 | 0.002 | 0.000 | 0.000 | 0.006 |
品种×盐浓度×硅Cultivar×salinity×Si | 0.034 | 0.003 | 0.146 | 0.049 | 0.472 | 0.260 | 0.807 | 0.090 | 0.559 | 0.002 | 0.129 | 0.316 | 0.544 |
Table 1 Three-way ANOVA of effect of cultivar, salinity and Si on biomass and element content of tall fescues (P-value)
变异来源 Source of variation | SDW | RDW | R/S | 地上部Shoots | 地下部Roots | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
磷P | 钾K+ | 氮N | 钠Na+ | K+/Na+ | 磷P | 钾K+ | 氮N | 钠Na+ | K+/Na+ | ||||
品种Cultivar | 0.014 | 0.000 | 0.000 | 0.144 | 0.000 | 0.000 | 0.034 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
盐浓度Salinity | 0.000 | 0.000 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
硅处理Si | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
品种×盐浓度Cultivar×salinity | 0.015 | 0.000 | 0.003 | 0.000 | 0.002 | 0.367 | 0.012 | 0.000 | 0.584 | 0.000 | 0.000 | 0.000 | 0.000 |
品种×硅Cultivar×Si | 0.320 | 0.074 | 0.163 | 0.310 | 0.598 | 0.960 | 0.485 | 0.015 | 0.759 | 0.000 | 0.703 | 0.014 | 0.663 |
盐浓度×硅Salinity×Si | 0.000 | 0.000 | 0.207 | 0.000 | 0.201 | 0.032 | 0.000 | 0.000 | 0.047 | 0.002 | 0.000 | 0.000 | 0.006 |
品种×盐浓度×硅Cultivar×salinity×Si | 0.034 | 0.003 | 0.146 | 0.049 | 0.472 | 0.260 | 0.807 | 0.090 | 0.559 | 0.002 | 0.129 | 0.316 | 0.544 |
品种Cultivars | 盐浓度Salinity (mmol·L | 硅处理Si | SDW (g·20 plant | RDW (g·20 plant |
---|---|---|---|---|
XD | 0 | +Si | 0.73±0.12b | 0.31±0.04a |
-Si | 0.77±0.12b | 0.27±0.02b | ||
50 | +Si | 0.48±0.03c | 0.14±0.01c | |
-Si | 0.38±0.09d | 0.09±0.05def | ||
100 | +Si | 0.28±0.01ef | 0.09±0.01de | |
-Si | 0.25±0.02fg | 0.05±0.03fg | ||
150 | +Si | 0.23±0.01fgh | 0.06±0.01defg | |
-Si | 0.20±0.03fghi | 0.05±0.01g | ||
200 | +Si | 0.12±0.07ijk | 0.03±0.00g | |
-Si | 0.18±0.02ghij | 0.06±0.01efg | ||
250 | +Si | 0.09±0.00jk | 0.03±0.00g | |
-Si | 0.17±0.01ghij | 0.05±0.01efg | ||
K31 | 0 | +Si | 0.73±0.05b | 0.29±0.03a |
-Si | 0.89±0.03a | 0.24±0.02b | ||
50 | +Si | 0.48±0.04c | 0.16±0.02c | |
-Si | 0.48±0.10c | 0.10±0.01d | ||
100 | +Si | 0.39±0.01cd | 0.14±0.01c | |
-Si | 0.36±0.05de | 0.09±0.00def | ||
150 | +Si | 0.25±0.05fg | 0.10±0.01d | |
-Si | 0.19±0.03fghij | 0.09±0.01def | ||
200 | +Si | 0.09±0.00jk | 0.04±0.01g | |
-Si | 0.17±0.01hijk | 0.05±0.01efg | ||
250 | +Si | 0.07±0.01k | 0.04±0.01g | |
-Si | 0.14±0.01ijk | 0.06±0.01efg |
Table 2 Effect of Si on biomass of two tall fescue cultivars under different salinities
品种Cultivars | 盐浓度Salinity (mmol·L | 硅处理Si | SDW (g·20 plant | RDW (g·20 plant |
---|---|---|---|---|
XD | 0 | +Si | 0.73±0.12b | 0.31±0.04a |
-Si | 0.77±0.12b | 0.27±0.02b | ||
50 | +Si | 0.48±0.03c | 0.14±0.01c | |
-Si | 0.38±0.09d | 0.09±0.05def | ||
100 | +Si | 0.28±0.01ef | 0.09±0.01de | |
-Si | 0.25±0.02fg | 0.05±0.03fg | ||
150 | +Si | 0.23±0.01fgh | 0.06±0.01defg | |
-Si | 0.20±0.03fghi | 0.05±0.01g | ||
200 | +Si | 0.12±0.07ijk | 0.03±0.00g | |
-Si | 0.18±0.02ghij | 0.06±0.01efg | ||
250 | +Si | 0.09±0.00jk | 0.03±0.00g | |
-Si | 0.17±0.01ghij | 0.05±0.01efg | ||
K31 | 0 | +Si | 0.73±0.05b | 0.29±0.03a |
-Si | 0.89±0.03a | 0.24±0.02b | ||
50 | +Si | 0.48±0.04c | 0.16±0.02c | |
-Si | 0.48±0.10c | 0.10±0.01d | ||
100 | +Si | 0.39±0.01cd | 0.14±0.01c | |
-Si | 0.36±0.05de | 0.09±0.00def | ||
150 | +Si | 0.25±0.05fg | 0.10±0.01d | |
-Si | 0.19±0.03fghij | 0.09±0.01def | ||
200 | +Si | 0.09±0.00jk | 0.04±0.01g | |
-Si | 0.17±0.01hijk | 0.05±0.01efg | ||
250 | +Si | 0.07±0.01k | 0.04±0.01g | |
-Si | 0.14±0.01ijk | 0.06±0.01efg |
品种Cultivars | 盐浓度Salinity (mmol·L-1) | 硅处理Si | ||||
---|---|---|---|---|---|---|
XD | 0 | +Si | 3.27±0.23a | 0.42±0.01b | 4.70±0.05c | 0.94±0.07j |
-Si | 3.15±0.01ab | 0.42±0.02bc | 4.78±0.10c | 0.82±0.01k | ||
50 | +Si | 3.11±0.09abc | 0.41±0.01bc | 3.92±0.11e | 0.92±0.01j | |
-Si | 2.85±0.03d | 0.39±0.01cd | 3.52±0.06fgh | 1.08±0.01i | ||
100 | +Si | 3.13±0.11abc | 0.37±0.00d | 3.75±0.14ef | 1.11±0.03hi | |
-Si | 2.80±0.02de | 0.30±0.01f | 3.20±0.18hijk | 1.35±0.01e | ||
150 | +Si | 2.93±0.12bcd | 0.31±0.01f | 3.46±0.04fgh | 1.25±0.02f | |
-Si | 2.54±0.04fgh | 0.24±0.01ghi | 3.02±0.10jk | 1.57±0.01c | ||
200 | +Si | 2.53±0.01fghi | 0.26±0.02gh | 2.98±0.08k | 1.46±0.01d | |
-Si | 2.44±0.07ghij | 0.24±0.01hi | 2.56±0.04l | 1.60±0.01c | ||
250 | +Si | 2.22±0.05jkl | 0.20±0.01jk | 2.06±0.06m | 1.60±0.01c | |
-Si | 2.28±0.03ijkl | 0.20±0.01k | 1.99±0.10m | 1.62±0.03c | ||
K31 | 0 | +Si | 2.76±0.06def | 0.46±0.02a | 5.62±0.31a | 0.84±0.03k |
-Si | 2.85±0.06d | 0.46±0.00a | 5.30±0.06ab | 0.80±0.00k | ||
50 | +Si | 2.89±0.07cd | 0.39±0.01cd | 5.19±0.21b | 0.94±0.00j | |
-Si | 2.67±0.03defg | 0.33±0.04ef | 4.76±0.02c | 1.24±0.03fg | ||
100 | +Si | 2.79±0.04de | 0.34±0.01e | 4.72±0.12c | 1.17±0.02gh | |
-Si | 2.49±0.02ghi | 0.30±0.01f | 4.31±0.03d | 1.44±0.01d | ||
150 | +Si | 2.57±0.03efgh | 0.27±0.01g | 4.28±0.05d | 1.32±0.02e | |
-Si | 2.33±0.04hijkl | 0.23±0.01hi | 3.92±0.06e | 1.64±0.01c | ||
200 | +Si | 2.39±0.05hijk | 0.24±0.01hi | 3.61±0.05efg | 1.58±0.02c | |
-Si | 2.17±0.03kl | 0.22±0.01ijk | 3.34±0.04hijk | 1.78±0.01b | ||
250 | +Si | 2.14±0.10lm | 0.22±0.01ijk | 3.39±0.07ghi | 1.88±0.01a | |
-Si | 1.93±0.03m | 0.23±0.03ij | 3.10±0.14ijk | 1.91±0.01a |
Table 3 Effect of Si on P, K+, Na+, N content in shoots of two tall fescue cultivars under different salinities (%)
品种Cultivars | 盐浓度Salinity (mmol·L-1) | 硅处理Si | ||||
---|---|---|---|---|---|---|
XD | 0 | +Si | 3.27±0.23a | 0.42±0.01b | 4.70±0.05c | 0.94±0.07j |
-Si | 3.15±0.01ab | 0.42±0.02bc | 4.78±0.10c | 0.82±0.01k | ||
50 | +Si | 3.11±0.09abc | 0.41±0.01bc | 3.92±0.11e | 0.92±0.01j | |
-Si | 2.85±0.03d | 0.39±0.01cd | 3.52±0.06fgh | 1.08±0.01i | ||
100 | +Si | 3.13±0.11abc | 0.37±0.00d | 3.75±0.14ef | 1.11±0.03hi | |
-Si | 2.80±0.02de | 0.30±0.01f | 3.20±0.18hijk | 1.35±0.01e | ||
150 | +Si | 2.93±0.12bcd | 0.31±0.01f | 3.46±0.04fgh | 1.25±0.02f | |
-Si | 2.54±0.04fgh | 0.24±0.01ghi | 3.02±0.10jk | 1.57±0.01c | ||
200 | +Si | 2.53±0.01fghi | 0.26±0.02gh | 2.98±0.08k | 1.46±0.01d | |
-Si | 2.44±0.07ghij | 0.24±0.01hi | 2.56±0.04l | 1.60±0.01c | ||
250 | +Si | 2.22±0.05jkl | 0.20±0.01jk | 2.06±0.06m | 1.60±0.01c | |
-Si | 2.28±0.03ijkl | 0.20±0.01k | 1.99±0.10m | 1.62±0.03c | ||
K31 | 0 | +Si | 2.76±0.06def | 0.46±0.02a | 5.62±0.31a | 0.84±0.03k |
-Si | 2.85±0.06d | 0.46±0.00a | 5.30±0.06ab | 0.80±0.00k | ||
50 | +Si | 2.89±0.07cd | 0.39±0.01cd | 5.19±0.21b | 0.94±0.00j | |
-Si | 2.67±0.03defg | 0.33±0.04ef | 4.76±0.02c | 1.24±0.03fg | ||
100 | +Si | 2.79±0.04de | 0.34±0.01e | 4.72±0.12c | 1.17±0.02gh | |
-Si | 2.49±0.02ghi | 0.30±0.01f | 4.31±0.03d | 1.44±0.01d | ||
150 | +Si | 2.57±0.03efgh | 0.27±0.01g | 4.28±0.05d | 1.32±0.02e | |
-Si | 2.33±0.04hijkl | 0.23±0.01hi | 3.92±0.06e | 1.64±0.01c | ||
200 | +Si | 2.39±0.05hijk | 0.24±0.01hi | 3.61±0.05efg | 1.58±0.02c | |
-Si | 2.17±0.03kl | 0.22±0.01ijk | 3.34±0.04hijk | 1.78±0.01b | ||
250 | +Si | 2.14±0.10lm | 0.22±0.01ijk | 3.39±0.07ghi | 1.88±0.01a | |
-Si | 1.93±0.03m | 0.23±0.03ij | 3.10±0.14ijk | 1.91±0.01a |
品种Cultivars | 盐浓度Salinity (mmol·L-1) | 硅处理Si | ||||
---|---|---|---|---|---|---|
XD | 0 | +Si | 3.85±0.05a | 0.51±0.01a | 1.83±0.07cde | 1.57±0.09j |
-Si | 3.99±0.06a | 0.50±0.01ab | 1.77±0.01ef | 1.61±0.05j | ||
50 | +Si | 3.66±0.06b | 0.48±0.01bc | 1.80±0.01def | 3.46±0.20hi | |
-Si | 3.24±0.05d | 0.45±0.01de | 1.75±0.01efg | 4.52±0.32g | ||
100 | +Si | 3.43±0.03c | 0.46±0.00cd | 1.77±0.01ef | 4.39±0.30g | |
-Si | 3.02±0.13e | 0.42±0.01fg | 1.70±0.00fgh | 5.71±0.14f | ||
150 | +Si | 3.26±0.03d | 0.43±0.01ef | 1.72±0.01fg | 5.80±0.31f | |
-Si | 2.75±0.03f | 0.37±0.01h | 1.66±0.01ghi | 6.60±0.14de | ||
200 | +Si | 2.99±0.04e | 0.39±0.02gh | 1.65±0.00ghi | 6.97±0.75cd | |
-Si | 2.52±0.09gh | 0.33±0.01i | 1.57±0.00ij | 7.55±0.20b | ||
250 | +Si | 2.43±0.03hi | 0.32±0.01ij | 1.51±0.01jk | 8.23±0.14a | |
-Si | 2.30±0.05ij | 0.31±0.01ij | 1.50±0.01jk | 8.67±0.11a | ||
K31 | 0 | +Si | 2.62±0.08fg | 0.41±0.00fg | 2.29±0.00a | 0.85±0.06k |
-Si | 2.58±0.03fgh | 0.36±0.01h | 2.28±0.00a | 0.80±0.02k | ||
50 | +Si | 2.71±0.03f | 0.37±0.01h | 2.27±0.01a | 0.94±0.03j | |
-Si | 2.21±0.01j | 0.33±0.00i | 2.17±0.01b | 1.24±0.16fg | ||
100 | +Si | 2.42±0.03hi | 0.33±0.01i | 2.20±0.10ab | 1.17±0.14gh | |
-Si | 1.94±0.06k | 0.29±0.01j | 1.87±0.01cd | 1.44±0.13d | ||
150 | +Si | 2.03±0.05k | 0.29±0.00j | 1.91±0.01c | 1.32±0.04e | |
-Si | 1.74±0.01l | 0.24±0.01k | 1.61±0.03hi | 1.64±0.11c | ||
200 | +Si | 1.64±0.05l | 0.25±0.01k | 1.43±0.03kl | 1.58±0.23c | |
-Si | 1.36±0.03m | 0.20±0.01l | 1.29±0.03m | 1.78±0.12b | ||
250 | +Si | 1.02±0.06n | 0.20±0.01l | 1.41±0.02l | 1.88±0.06a | |
-Si | 0.93±0.02n | 0.18±0.01l | 1.21±0.01m | 1.91±0.12a |
Table 4 Effect of Si on P, K+, Na+, N content in roots of two tall fescue cultivars under different salinities (%)
品种Cultivars | 盐浓度Salinity (mmol·L-1) | 硅处理Si | ||||
---|---|---|---|---|---|---|
XD | 0 | +Si | 3.85±0.05a | 0.51±0.01a | 1.83±0.07cde | 1.57±0.09j |
-Si | 3.99±0.06a | 0.50±0.01ab | 1.77±0.01ef | 1.61±0.05j | ||
50 | +Si | 3.66±0.06b | 0.48±0.01bc | 1.80±0.01def | 3.46±0.20hi | |
-Si | 3.24±0.05d | 0.45±0.01de | 1.75±0.01efg | 4.52±0.32g | ||
100 | +Si | 3.43±0.03c | 0.46±0.00cd | 1.77±0.01ef | 4.39±0.30g | |
-Si | 3.02±0.13e | 0.42±0.01fg | 1.70±0.00fgh | 5.71±0.14f | ||
150 | +Si | 3.26±0.03d | 0.43±0.01ef | 1.72±0.01fg | 5.80±0.31f | |
-Si | 2.75±0.03f | 0.37±0.01h | 1.66±0.01ghi | 6.60±0.14de | ||
200 | +Si | 2.99±0.04e | 0.39±0.02gh | 1.65±0.00ghi | 6.97±0.75cd | |
-Si | 2.52±0.09gh | 0.33±0.01i | 1.57±0.00ij | 7.55±0.20b | ||
250 | +Si | 2.43±0.03hi | 0.32±0.01ij | 1.51±0.01jk | 8.23±0.14a | |
-Si | 2.30±0.05ij | 0.31±0.01ij | 1.50±0.01jk | 8.67±0.11a | ||
K31 | 0 | +Si | 2.62±0.08fg | 0.41±0.00fg | 2.29±0.00a | 0.85±0.06k |
-Si | 2.58±0.03fgh | 0.36±0.01h | 2.28±0.00a | 0.80±0.02k | ||
50 | +Si | 2.71±0.03f | 0.37±0.01h | 2.27±0.01a | 0.94±0.03j | |
-Si | 2.21±0.01j | 0.33±0.00i | 2.17±0.01b | 1.24±0.16fg | ||
100 | +Si | 2.42±0.03hi | 0.33±0.01i | 2.20±0.10ab | 1.17±0.14gh | |
-Si | 1.94±0.06k | 0.29±0.01j | 1.87±0.01cd | 1.44±0.13d | ||
150 | +Si | 2.03±0.05k | 0.29±0.00j | 1.91±0.01c | 1.32±0.04e | |
-Si | 1.74±0.01l | 0.24±0.01k | 1.61±0.03hi | 1.64±0.11c | ||
200 | +Si | 1.64±0.05l | 0.25±0.01k | 1.43±0.03kl | 1.58±0.23c | |
-Si | 1.36±0.03m | 0.20±0.01l | 1.29±0.03m | 1.78±0.12b | ||
250 | +Si | 1.02±0.06n | 0.20±0.01l | 1.41±0.02l | 1.88±0.06a | |
-Si | 0.93±0.02n | 0.18±0.01l | 1.21±0.01m | 1.91±0.12a |
1 | Cao Y J, Wei Q, Liao Y, et al. Ectopic overexpression of AtHDG11 in tall fescue resulted in enhanced tolerance to drought and salt stress. Plant Cell Reports, 2009, 28(4): 579-588. |
2 | Abbasdokht H, Edalatpisheh M R. The effect of priming and salinity on physiological and chemical characteristics of wheat (Triticum aestivum L.). Desert, 2013, 17(1): 183-192. |
3 | Rozema J, Flowers T. Crops for a salinized world. Science, 2008, 322: 1478-1480. |
4 | Soylemezoglu G, Demir K, Inal A, et al. Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae, 2009, 123(2): 240-246. |
5 | Yin L, Wang S, Li J, et al. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum, 2013, 35(11): 3099-3107. |
6 | Hellal F A, Abdelhameid M, Abo-Basha D M, et al. Alleviation of the adverse effects of soil salinity stress by foliar application of silicon on faba bean (Vica faba L.). Journal of Applied Sciences Research, 2012, 8(8): 4428-4433. |
7 | Hussein M. Growth and mineral status of moringa plants as affected by silicate and salicylic acid under salt stress. International Journal of Plant & Soil Science, 2014, 3(2): 163-177. |
8 | Ali A, Basra S M A, Iqbal J, et al. Silicon mediated biochemical changes in wheat under salinized and non-salinized solution cultures. African Journal of Biotechnology, 2012, 11(3): 606-615. |
9 | Ali A, Basra S M A, Ahmad R, et al. Optimizing silicon application to improve salinity tolerance in wheat. Soil and Environment, 2009, 28(2): 136-144. |
10 | Liu D L, Zhang H, Cao X C, et al. Effects of silicon on the physiological metabolism of tested Pennisetum under salt stress. Acta Agrestia Sinica, 2013(6): 1119-1123. |
刘大林, 张华, 曹喜春, 等. 硅对盐胁迫下不同狼尾草属牧草生理代谢的影响. 草地学报, 2013(6): 1119-1123. | |
11 | Zhu Y X, Xu X B, Hu Y H, et al. Silicon improves salt tolerance by increasing root water uptake in Cucumis sativus L. Plant Cell Reports, 2015, 34(9): 1629-1646. |
12 | Wang Y P, Wang Y X, Bai X L, et al. Effects of exogenous silicon on melon seed germination and the growth of seedlings under NaCl stress. Acta Prataculturae Sinica, 2015, 24(5): 108-116. |
王玉萍, 王映霞, 白向利, 等. 硅对NaCl胁迫下甜瓜种子萌发及幼苗生长的影响. 草业学报, 2015, 24(5): 108-116. | |
13 | Liu H X, Guo X H, Guo Z G. Effect of silicon supply on tall fescue (Festuca arundinacea) growth under the salinization conditions. Acta Ecologica Sinica, 2011, 31(23): 7039-7046. |
刘慧霞, 郭兴华, 郭正刚. 盐生境下硅对坪用高羊茅生物学特性的影响. 生态学报, 2011, 31(23): 7039-7046. | |
14 | Fahad S, Hussain S, Matloob A, et al. Phytohormones and plant responses to salinity stress: A review. Plant Growth Regulation, 2014, 75(2): 391-404. |
15 | Asish K P, Anath B D. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349. |
16 | Mali M, Aery N C. Effect of silicon on growth, biochemical constituents, and mineral nutrition of cowpea. Communications in Soil Science and Plant Analysis, 2009, 40(7/8): 1041-1052. |
17 | Eun J B, Kwang S L, Moo R H, et al. Silicon significantly alleviates the growth inhibitory effects of NaCl in salt-sensitive ‘Perfection’ and ‘Midnight’ kentucky bluegrass ( Poa pratensis L.). Horticulture, Environment, and Biotechnology, 2012, 53(6): 477-483. |
18 | Zhu Z J, Wei G Q, Li J, et al. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 2004, 167(3): 527-533. |
19 | Wang G Y, Cui L. Effects of different substrate compositions on growth of potted Pyrus calleryana seedlings. Guizhou Agricultural Sciences, 2013, 41(3): 132-134. |
王贵元, 崔菻. 不同基质配比对盆栽豆梨实生苗生长的影响. 贵州农业科学, 2013, 41(3): 132-134. | |
20 | Wang G Y, Hu R. Effects of different substrate compositions on growth of pot trifoliate orange of seedlings. Henan Agricultural Sciences, 2012, 41(4): 121-124. |
王贵元, 胡容. 不同基质配比对盆栽枳壳实生苗生长的影响. 河南农业科学, 2012, 41(4): 121-124. | |
21 | Liang X L, Wang H H, Hu Y F, et al. Silicon does not mitigate cell death in cultured tobacco BY-2 cells subjected to salinity without ethylene emission. Plant Cell Reports, 2015, 34(2): 331-343. |
22 | Lekshmy S, Sairam R K, Kushwaha S R. Effect of long-term salinity stress on growth and nutrient uptake in contrasting wheat genotypes. Indian Journal of Plant Physiology, 2013, 18(4): 344-353. |
23 | Gurmani A R, Bano A, Ullah N, et al. Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa indica). Australian Journal of Crop Science, 2013, 7(9): 1219-1226. |
24 | Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681. |
25 | Liang Y C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 1999, 209(2): 217-224. |
26 | Manivannan A, Soundararajan P, ArumAbinaya L S, et al. Silicon-mediated enhancement of physiological and biochemical characteristics of Zinnia elegans “Dreamland Yellow” grown under salinity stress. Horticulture, Environment, and Biotechnology, 2016, 56(6): 721-731. |
27 | Liang Y, Zhang W, Qin C, et al. Effect of exogenous silicon (Si) on H+-ATPase activity, phospholipids and fluidity of plasma membrane in leaves of salt-stressed barley (Hordeum vulgare L.). Environmental & Experimental Botany, 2006, 57(3): 212-219. |
28 | Tuna A L, Kaya C, Higgs D, et al. Silicon improves salinity tolerance in wheat plants. Environmental and Experimental Botany, 2007, 62(1): 10-16. |
29 | Liang Y C, Ding R X, Liu Q. Effects of silicon on salt tolerance of barley and its mechanism. Scientia Agricultura Sinica, 1999(6): 75-83. |
梁永超, 丁瑞兴, 刘谦. 硅对大麦耐盐性的影响及其机制. 中国农业科学, 1999(6): 75-83. | |
30 | Frechilla S, Lasa B, Ibarretxe L, et al. Pea responses to saline stress is affected by the source of nitrogen nutrition (ammonium or nitrate). Plant Growth Regulation, 2001, 35(2): 171-179. |
[1] | Ge-xia QIN, Jing WU, Chun-bin LI, Zhen-xia JI, Zheng-chao QIU, Ying LI. Inversion of grassland aboveground biomass in Tianzhu Zangzu Autonomous County based on a machine learning algorithm [J]. Acta Prataculturae Sinica, 2022, 31(4): 177-188. |
[2] | Wen-ting GUO, Guo-hua WANG, Qian-qian GOU, Jing LIU. Module growth and biomass allocation of three typical Chenopodiaceae annuals in a typical desert-oasis ecotone of the Hexi Corridor in Gansu Province, China [J]. Acta Prataculturae Sinica, 2022, 31(2): 25-38. |
[3] | Xiao-yu HAN, Ning GUO, Dong-dong LI, Ming-yang XIE, Feng JIAO. Effects of nitrogen addition on soil carbon and nitrogen and biomass change in different grassland types in Inner Mongolia [J]. Acta Prataculturae Sinica, 2022, 31(1): 13-25. |
[4] | Zhi-min YANG, Rui XING, Yun-jia DING, Li-li ZHUANG. Analysis of differentially expressed genes in relation to tiller development and plant height based on transcriptomic sequencing of two tall fescue cultivars [J]. Acta Prataculturae Sinica, 2022, 31(1): 145-163. |
[5] | Qing XUE, Bin CHEN, Xiao-mei YANG, Yu-jia YANG, Zi-wei LI, Shan BO, Miao HE. Biomass allocation, water use characteristics, and photosynthetic light response of four Commelinaceae plants under different light intensities [J]. Acta Prataculturae Sinica, 2022, 31(1): 69-80. |
[6] | Feng-hui GUO, Yong DING, Wen-jing MA, Xian-song LI, Xi-liang LI, Xiang-yang HOU. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment [J]. Acta Prataculturae Sinica, 2021, 30(8): 119-126. |
[7] | Jing-jing MA, Yun-hua LIU, Jian-dong SHENG, Ning LI, Hong-qi WU, Hong-tao JIA, Zong-jiu SUN, Jun-hui CHENG. Changes of relationships between dominant species and their relative biomass along elevational gradients in Xinjiang grasslands [J]. Acta Prataculturae Sinica, 2021, 30(8): 25-35. |
[8] | Lei PENG, Li ZHANG, Xiao-long ZHOU, Yan-bo WAN, Qing-dong SHI. Effects of water stress on life history strategy of Salsola nitraria in Zhundong, Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(5): 65-74. |
[9] | Yi-ran ZHANG, Ting-xi LIU, Xin TONG, Li-min DUAN, Yu-chen WU. Hyperspectral remote sensing inversion of meadow aboveground biomass based on an XGBoost algorithm [J]. Acta Prataculturae Sinica, 2021, 30(4): 1-12. |
[10] | Zi-xin WANG, Guo-zheng HU, Hong-wei SHUI, Yi-qing GE, Ling HAN, Qing-zhu GAO, Ganjurjav HASBAGAN, Luo-bu DANJIU. Effect of seasonal timing of drought on carbon exchange in the alpine meadow ecosystem of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2021, 30(4): 24-33. |
[11] | Ji-xiong GU, Tian-dou GUO, Hong-mei WANG, Xue-ying LI, Dan-ni LIANG, Qing-lian YANG, Jin-yue GAO. Responses of soil microbes across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 46-57. |
[12] | Ru ZHANG, Jian-ping LI, Wen-dong PENG, Fang WANG, Zhi-gang LI. Effects of mulching with caragana (Caragana intermedia) branches on soil moisture content and temperature and reseeded forage biomass in desertified grassland in Ningxia Province, China [J]. Acta Prataculturae Sinica, 2021, 30(4): 58-67. |
[13] | Guang-yi LV, Xue-bao XU, Cui-ping GAO, Zhi-hui YU, Xin-ya WANG, Cheng-jie WANG. Effects of grazing on total nitrogen and stable nitrogen isotopes of plants and soil in different types of grasslands in Inner Mongolia [J]. Acta Prataculturae Sinica, 2021, 30(3): 208-214. |
[14] | Dian-dai ZHANG, Xue-mei WANG, Mei ZAN. Estimation of vegetation aboveground biomass in the Wei-Ku Oasis based on Landsat 8 OLI images [J]. Acta Prataculturae Sinica, 2021, 30(11): 1-12. |
[15] | Ling-ling WANG, Kunduzay·Turgun, Guang-fei MENG, Zheng-gang GUO. Effect of soil moisture and plant density on vegetative propagation traits and biomass of Elymus nutans [J]. Acta Prataculturae Sinica, 2021, 30(11): 52-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||