Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (5): 40-50.DOI: 10.11686/cyxb2021129
Previous Articles Next Articles
Ying TIAN1,2,4(), Zhe XU1, Li-zhen ZHU1,2, Jun WANG1, Xue-fei WEN3,4()
Received:
2021-04-07
Revised:
2021-06-09
Online:
2022-05-20
Published:
2022-03-30
Contact:
Xue-fei WEN
Ying TIAN, Zhe XU, Li-zhen ZHU, Jun WANG, Xue-fei WEN. Effect of cutting time during the growing season on the soil bacterial community under an artificial Caragana intermedia plantation[J]. Acta Prataculturae Sinica, 2022, 31(5): 40-50.
土壤性质 Soil properties | 处理Treatment | ||||||
---|---|---|---|---|---|---|---|
Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | |
含水量 WC (%) | 10.52±0.48ab | 9.50±0.58b | 10.55±0.96ab | 10.42±0.80ab | 10.90±0.57a | 11.04±0.39a | 10.45±0.71ab |
pH | 8.38±0.07c | 8.53±0.02a | 8.52±0.01a | 8.46±0.03b | 8.25±0.05d | 8.37±0.01c | 8.32±0.03c |
有机质SOM (g·kg-1) | 0.31±0.02b | 0.31±0.02b | 0.24±0.04c | 0.32±0.02ab | 0.36±0.02a | 0.34±0.03ab | 0.34±0.01ab |
全盐TS (g·kg-1) | 2.14±0.02d | 1.82±0.04e | 1.86±0.06e | 2.20±0.03d | 3.60±0.03a | 2.40±0.12c | 2.87±0.06b |
全氮TN (g·kg-1) | 0.13±0.01c | 0.14±0.01c | 0.14±0.01c | 0.18±0.01b | 0.27±0.02a | 0.18±0.01b | 0.17±0.02b |
全磷TP (g·kg-1) | 0.34±0.06bc | 0.28±0.01c | 0.33±0.03bc | 0.34±0.02bc | 0.45±0.06a | 0.34±0.02bc | 0.36±0.04b |
全钾TK (g·kg-1) | 16.67±0.41ab | 16.88±0.39ab | 16.85±0.33ab | 16.88±0.29ab | 16.97±0.43a | 16.28±0.16bc | 16.03±0.17c |
速效氮AN (mg·kg-1) | 6.78±0.40d | 4.95±0.06e | 4.88±0.20e | 7.00±0.03d | 12.90±0.21a | 8.99±0.22b | 7.94±0.06c |
速效磷AP (mg·kg-1) | 1.74±0.07a | 0.49±0.03d | 1.15±0.05b | 0.92±0.07c | 0.89±0.04c | 0.91±0.04c | 1.10±0.06b |
速效钾AK (mg·kg-1) | 121.49±0.94b | 95.24±0.64e | 83.60±0.83g | 125.76±1.65a | 107.10±0.64c | 102.72±1.38d | 87.25±1.07f |
Table 1 Comparison of soil physical and chemical properties
土壤性质 Soil properties | 处理Treatment | ||||||
---|---|---|---|---|---|---|---|
Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 | |
含水量 WC (%) | 10.52±0.48ab | 9.50±0.58b | 10.55±0.96ab | 10.42±0.80ab | 10.90±0.57a | 11.04±0.39a | 10.45±0.71ab |
pH | 8.38±0.07c | 8.53±0.02a | 8.52±0.01a | 8.46±0.03b | 8.25±0.05d | 8.37±0.01c | 8.32±0.03c |
有机质SOM (g·kg-1) | 0.31±0.02b | 0.31±0.02b | 0.24±0.04c | 0.32±0.02ab | 0.36±0.02a | 0.34±0.03ab | 0.34±0.01ab |
全盐TS (g·kg-1) | 2.14±0.02d | 1.82±0.04e | 1.86±0.06e | 2.20±0.03d | 3.60±0.03a | 2.40±0.12c | 2.87±0.06b |
全氮TN (g·kg-1) | 0.13±0.01c | 0.14±0.01c | 0.14±0.01c | 0.18±0.01b | 0.27±0.02a | 0.18±0.01b | 0.17±0.02b |
全磷TP (g·kg-1) | 0.34±0.06bc | 0.28±0.01c | 0.33±0.03bc | 0.34±0.02bc | 0.45±0.06a | 0.34±0.02bc | 0.36±0.04b |
全钾TK (g·kg-1) | 16.67±0.41ab | 16.88±0.39ab | 16.85±0.33ab | 16.88±0.29ab | 16.97±0.43a | 16.28±0.16bc | 16.03±0.17c |
速效氮AN (mg·kg-1) | 6.78±0.40d | 4.95±0.06e | 4.88±0.20e | 7.00±0.03d | 12.90±0.21a | 8.99±0.22b | 7.94±0.06c |
速效磷AP (mg·kg-1) | 1.74±0.07a | 0.49±0.03d | 1.15±0.05b | 0.92±0.07c | 0.89±0.04c | 0.91±0.04c | 1.10±0.06b |
速效钾AK (mg·kg-1) | 121.49±0.94b | 95.24±0.64e | 83.60±0.83g | 125.76±1.65a | 107.10±0.64c | 102.72±1.38d | 87.25±1.07f |
处理 Treatment | 分类操作单元 Operational taxonomic unit (OTU) | Ace指数 Ace index | Chao 1 指数 Chao1 index | 香农指数 Shannon index | 辛普森指数 Simpson index | 覆盖率 Coverage (%) |
---|---|---|---|---|---|---|
Y4 | 1838±4ab | 1911±3a | 1920±17a | 6.62±0.01a | 0.0027±0b | 99.8 |
Y5 | 1793±43ab | 1834±42a | 1912±42a | 6.46±0.02ab | 0.0028±0b | 99.8 |
Y6 | 1812±21abc | 1812±15ab | 1895±34ab | 6.63±0.01a | 0.0026±0b | 99.7 |
Y7 | 1829±12ab | 1939±23a | 1933±31a | 6.46±0.01ab | 0.0028±0b | 99.7 |
Y8 | 1869±11a | 1946±4a | 1958±5a | 6.51±0.08a | 0.0032±0b | 99.7 |
Y9 | 1728±24c | 1801±27b | 1845±28b | 6.32±0.04b | 0.0041±0a | 99.7 |
Y10 | 1757±44bc | 1802±57b | 1839±62b | 6.61±0.02a | 0.0027±0b | 99.7 |
Table 2 α diversity of bacteria communities
处理 Treatment | 分类操作单元 Operational taxonomic unit (OTU) | Ace指数 Ace index | Chao 1 指数 Chao1 index | 香农指数 Shannon index | 辛普森指数 Simpson index | 覆盖率 Coverage (%) |
---|---|---|---|---|---|---|
Y4 | 1838±4ab | 1911±3a | 1920±17a | 6.62±0.01a | 0.0027±0b | 99.8 |
Y5 | 1793±43ab | 1834±42a | 1912±42a | 6.46±0.02ab | 0.0028±0b | 99.8 |
Y6 | 1812±21abc | 1812±15ab | 1895±34ab | 6.63±0.01a | 0.0026±0b | 99.7 |
Y7 | 1829±12ab | 1939±23a | 1933±31a | 6.46±0.01ab | 0.0028±0b | 99.7 |
Y8 | 1869±11a | 1946±4a | 1958±5a | 6.51±0.08a | 0.0032±0b | 99.7 |
Y9 | 1728±24c | 1801±27b | 1845±28b | 6.32±0.04b | 0.0041±0a | 99.7 |
Y10 | 1757±44bc | 1802±57b | 1839±62b | 6.61±0.02a | 0.0027±0b | 99.7 |
项目 Item | 含水量 WC | pH | 有机质 SOM | 全盐 TS | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|---|---|---|
分类操作单元Operational taxonomic unit (OTU) | -0.064 | 0.007 | -0.086 | -0.013 | 0.093 | 0.046 | 0.512* | 0.010 | 0.084 | 0.326 |
Ace指数Ace index | -0.012 | -0.005 | -0.024 | 0.063 | 0.207 | 0.157 | 0.630** | 0.123 | 0.011 | 0.364 |
Chao 1 指数Chao1 index | -0.029 | -0.013 | 0.017 | 0.062 | 0.202 | 0.185 | 0.635** | 0.137 | 0.041 | 0.406 |
辛普森指数Simpson index | -0.025 | -0.198 | 0.301 | 0.176 | 0.259 | 0.181 | -0.137 | 0.418 | -0.204 | 0.042 |
香农指数Shannon index | 0.019 | 0.168 | -0.338 | -0.195 | -0.308 | -0.206 | 0.103 | -0.431 | 0.308 | -0.040 |
Table 3 Correlation between soil bacteria α diversity and soil properties
项目 Item | 含水量 WC | pH | 有机质 SOM | 全盐 TS | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK |
---|---|---|---|---|---|---|---|---|---|---|
分类操作单元Operational taxonomic unit (OTU) | -0.064 | 0.007 | -0.086 | -0.013 | 0.093 | 0.046 | 0.512* | 0.010 | 0.084 | 0.326 |
Ace指数Ace index | -0.012 | -0.005 | -0.024 | 0.063 | 0.207 | 0.157 | 0.630** | 0.123 | 0.011 | 0.364 |
Chao 1 指数Chao1 index | -0.029 | -0.013 | 0.017 | 0.062 | 0.202 | 0.185 | 0.635** | 0.137 | 0.041 | 0.406 |
辛普森指数Simpson index | -0.025 | -0.198 | 0.301 | 0.176 | 0.259 | 0.181 | -0.137 | 0.418 | -0.204 | 0.042 |
香农指数Shannon index | 0.019 | 0.168 | -0.338 | -0.195 | -0.308 | -0.206 | 0.103 | -0.431 | 0.308 | -0.040 |
门Phylum | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 |
---|---|---|---|---|---|---|---|
变形菌门Proteobacteria | 27.12±0.30ab | 26.02±0.87ab | 25.40±0.69ab | 25.95±0.59ab | 28.67±2.56ab | 29.74±1.99a | 24.61±0.56b |
放线菌门Actinobacteria | 23.03±0.51b | 26.34±0.83a | 22.64±0.20b | 22.02±0.78b | 22.31±1.36b | 23.28±1.02b | 24.14±0.80ab |
酸杆菌门Acidobacteria | 19.32±0.38bc | 18.61±0.27c | 20.93±0.40a | 21.25±0.58a | 18.49±0.71c | 15.53±0.53d | 20.18±0.41ab |
绿弯菌门Chloroflexi | 10.69±0.22a | 11.17±0.52a | 10.77±0.18a | 12.02±0.18a | 11.29±0.49a | 11.98±0.56a | 11.79±0.38a |
芽单胞菌门Gemmatimonadetes | 6.52±0.03cd | 6.59±0.06cd | 7.21±0.12cd | 7.46±0.08bc | 11.29±0.49a | 8.22±0.52b | 6.47±0.25d |
拟杆菌门Bacteroidetes | 3.44±0.14a | 3.60±0.05a | 3.11±0.08a | 2.98±0.20a | 3.58±0.50a | 3.13±0.17a | 2.87±0.12a |
己科河菌门Rokubacteria | 1.76±0.07b | 1.55±0.10bc | 2.38±0.06a | 2.14±0.11a | 2.33±0.17a | 1.36±0.10c | 2.30±0.12a |
疣微菌门Verrucomicrobia | 1.67±0.03a | 1.44±0.08a | 1.74±0.07a | 1.58±0.09a | 1.55±0.14a | 1.60±0.05a | 1.69±0.15a |
硝化螺旋菌门Nitrospirae | 1.30±0.07ab | 0.90±0.02bc | 1.19±0.08abc | 1.21±0.04abc | 1.12±0.07abc | 0.84±0.08c | 1.51±0.31a |
厚壁菌门Firmicutes | 1.37±0.05a | 1.21±0.08a | 1.22±0.18a | 1.12±0.03a | 1.11±0.04a | 1.23±0.64a | 1.33±0.38a |
Table 4 Difference of bacterial community composition (top ten) of relative abundance at phylum level
门Phylum | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 | Y10 |
---|---|---|---|---|---|---|---|
变形菌门Proteobacteria | 27.12±0.30ab | 26.02±0.87ab | 25.40±0.69ab | 25.95±0.59ab | 28.67±2.56ab | 29.74±1.99a | 24.61±0.56b |
放线菌门Actinobacteria | 23.03±0.51b | 26.34±0.83a | 22.64±0.20b | 22.02±0.78b | 22.31±1.36b | 23.28±1.02b | 24.14±0.80ab |
酸杆菌门Acidobacteria | 19.32±0.38bc | 18.61±0.27c | 20.93±0.40a | 21.25±0.58a | 18.49±0.71c | 15.53±0.53d | 20.18±0.41ab |
绿弯菌门Chloroflexi | 10.69±0.22a | 11.17±0.52a | 10.77±0.18a | 12.02±0.18a | 11.29±0.49a | 11.98±0.56a | 11.79±0.38a |
芽单胞菌门Gemmatimonadetes | 6.52±0.03cd | 6.59±0.06cd | 7.21±0.12cd | 7.46±0.08bc | 11.29±0.49a | 8.22±0.52b | 6.47±0.25d |
拟杆菌门Bacteroidetes | 3.44±0.14a | 3.60±0.05a | 3.11±0.08a | 2.98±0.20a | 3.58±0.50a | 3.13±0.17a | 2.87±0.12a |
己科河菌门Rokubacteria | 1.76±0.07b | 1.55±0.10bc | 2.38±0.06a | 2.14±0.11a | 2.33±0.17a | 1.36±0.10c | 2.30±0.12a |
疣微菌门Verrucomicrobia | 1.67±0.03a | 1.44±0.08a | 1.74±0.07a | 1.58±0.09a | 1.55±0.14a | 1.60±0.05a | 1.69±0.15a |
硝化螺旋菌门Nitrospirae | 1.30±0.07ab | 0.90±0.02bc | 1.19±0.08abc | 1.21±0.04abc | 1.12±0.07abc | 0.84±0.08c | 1.51±0.31a |
厚壁菌门Firmicutes | 1.37±0.05a | 1.21±0.08a | 1.22±0.18a | 1.12±0.03a | 1.11±0.04a | 1.23±0.64a | 1.33±0.38a |
项目 Item | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 |
---|---|---|---|---|---|---|
Y5 | 0.185 | |||||
Y6 | 0.174 | 0.971 | ||||
Y7 | 0.313 | 0.732 | 0.705 | |||
Y8 | 0.149 | 0.896 | 0.925 | 0.637 | ||
Y9 | 0.000 | 0.001 | 0.001 | 0.001 | 0.002 | |
Y10 | 0.001 | 0.017 | 0.018 | 0.008 | 0.022 | 0.225 |
Table 5 Bacterial community difference P value between different treats (Permanova)
项目 Item | Y4 | Y5 | Y6 | Y7 | Y8 | Y9 |
---|---|---|---|---|---|---|
Y5 | 0.185 | |||||
Y6 | 0.174 | 0.971 | ||||
Y7 | 0.313 | 0.732 | 0.705 | |||
Y8 | 0.149 | 0.896 | 0.925 | 0.637 | ||
Y9 | 0.000 | 0.001 | 0.001 | 0.001 | 0.002 | |
Y10 | 0.001 | 0.017 | 0.018 | 0.008 | 0.022 | 0.225 |
1 | Cui J, Chen Y M, Cao Y, et al. Soil carbon sequestration characteristics of Caragana microphylla forest and its influencing factors in loess hilly semiarid region. Chinese Journal of Eco-Agriculture, 2012, 20(9): 1197-1203. |
崔静, 陈云明, 曹扬, 等. 黄土丘陵半干旱区人工柠条林土壤固碳特征及其影响因素. 中国生态农业学报, 2012, 20(9): 1197-1203. | |
2 | Yu R X, Wang L, Yang X G, et al. Soil moisture dynamics and physiological characteristics of moving of Caragana intermedia. Acta Ecologica Sinica, 2019, 39(19): 7249-7257. |
于瑞鑫, 王磊, 杨新国, 等. 平茬柠条的土壤水分动态及生理特征. 生态学报, 2019, 39(19): 7249-7257. | |
3 | Ma C C, Gao Y B, Guo H Y, et al. Physiological adaptations of four dominant Caragana species in the desert region of the Inner Mongolia Plateau. Journal of Arid Environments, 2007, 72(3): 247-254. |
4 | Yang Y S, Bu C F, Gao G X. Effect of pruning measure on physiology character and soil waters of Caragana korshinskii. Acta Ecologica Sinica, 2012, 32(4): 1327-1336. |
杨永胜, 卜崇峰, 高国雄. 平茬措施对柠条生理特征及土壤水分的影响. 生态学报, 2012, 32(4): 1327-1336. | |
5 | Zhang H N. Ecophysiology compensatory mechanisms of Caragana korshinskii after clipping. Lanzhou: Gansu Agricultural University, 2011. |
张海娜. 柠条锦鸡儿平茬后补偿生长的生理生态机制. 兰州: 甘肃农业大学, 2011. | |
6 | Zhou J J. Effects of different cropping patterns on feeding characteristics and habitat of artificial Caragena intermedia in desert steppe in Ningxia. Yinchuan: Ningxia University, 2017. |
周静静. 不同平茬方式对宁夏荒漠草原人工柠条饲用特性及生境的影响. 银川: 宁夏大学, 2017. | |
7 | Yu W T. Effect of pruning measure on physiology character and soil physicochemical properties Caragana korshinskii. Xianyang: Northwest A&F Univertity, 2016. |
于文涛. 平茬措施对柠条生理特性及土壤理化性质的影响. 咸阳: 西北农林科技大学, 2016. | |
8 | Wen X F. Stumping of Caragana korshinskii Kom during growth period:Effects on the storage of nutrients in roots. Chinese Agricultural Science Bulletin, 2020, 36(5): 53-59. |
温学飞. 柠条生长季平茬对根系贮藏营养物质的影响. 中国农学通报, 2020, 36(5): 53-59. | |
9 | Zhou B. Bacteria community composition and isolation and characterization in PGPR in rhizosphere of Caragana spp. Yinchuan: Ningxia University, 2017. |
周波. 柠条根际细菌群落组成及促生菌的分离筛选和特性研究. 银川: 宁夏大学, 2017. | |
10 | Niu S F. The characteristics of different soil type in rhizosphere microbial community structure and diversity of artificial Caragana korshinskii shrubland in desert steppe. Yinchuan: Ningxia University, 2018. |
牛宋芳. 荒漠草原不同土壤类型人工柠条林根际微生物群落结构及多样性特征研究. 银川: 宁夏大学, 2018. | |
11 | Shu W H, Jiang Q, Wang Z J, et al. Impact of different density of Caragana korshinskii shrubs on soil microbes in Ningxia Yanchi. Journal of Ningxia University (Natural Science Edition), 2012, 33(2): 205-209. |
舒维花, 蒋齐, 王占军, 等. 宁夏盐池沙地不同密度人工柠条林对土壤微生物的影响. 宁夏大学学报(自然科学版), 2012, 33(2): 205-209. | |
12 | Delmont T O, Prestat E, Keegan K P, et al. Structure, fluctuation and magnitude of a natural grassland soil metagenome. Multidisciplinary Journal of Microbial Ecology, 2012, 6(9): 1677-1687. |
13 | Wei P, An S Z, Dong Y Q, et al. A high-throughput sequencing evaluation of bacterial diversity and community structure of the desert soil in the Junggar Basin. Acta Prataculturae Sinica, 2020, 29(5): 182-190. |
魏鹏, 安沙舟, 董乙强, 等. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征. 草业学报, 2020, 29(5): 182-190. | |
14 | Leblanc N, Kinkel L L, Kistle H C. Soil fungal communities respond to grassland plant community richness and soil edaphics. Microbial Ecology, 2015, 70(1): 188-195. |
15 | Adair K L, Wratten S, Lear G. Soil phosphorus depletion and shift in plant communities change bacterial community structure in a long-term grassland management trial. Environmental Microbiology Reports, 2013, 5(3): 404-413. |
16 | Chen Y L, Hu H W, Han H Y, et al. Abundance and community structure of ammonia-oxidizing Archea and Bacteria in response to fertilization and mowing in a temperate steppe in Inner Mongolia. Tems Microbiol Ecology, 2014, 89(2): 67-79. |
17 | Zheng J H, Zhang F, Yang Y, et al. Effects of stubble height on the structure and diversity of soil microbial community in Stipa grandis steppe. Chinese Journal of Grassland, 2021, 43(1): 68-75. |
郑佳华, 张峰, 杨阳, 等. 刈割留茬高度对大针茅草原土壤微生物群落结构及多样性的影响. 中国草地学报, 2021, 43(1): 68-75. | |
18 | Kateryna Z, Raquel D, Patricia D Q, et al. Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 2015, 69(2): 395-406. |
19 | Lgar C K, Vallino J J. Predicting microbial nitrate eduction pathways in coastal sediments. Aquatic Mi-crobial Ecology, 2014, 71(3): 223-238. |
20 | Bao S D. Soil agrochemical analysis (Third edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
21 | Lu R K. Soil agricultural chemical analysis method. Beijing: China Agriculture Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业出版社, 2000. | |
22 | Jia Z, Xiao X, Qian Z, et al. The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients, 2015, 7(8): 6924-6937. |
23 | Magoč T, Salzberg S L. Flash: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011, 27(21): 2957-2963. |
24 | Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society. Biological Sciences, 2005, 360(1642): 1935-1943. |
25 | Yang Y, Jia L X, Qiao J R, et al. Effects of heavy grazing on soil nutrients and microbial diversity in desert steppe. Chinese Journal of Grassland, 2019, 41(4): 72-79. |
杨阳, 贾丽欣, 乔荠瑢, 等. 重度放牧对荒漠草原土壤养分及微生物多样性的影响. 中国草地学报, 2019, 41(4): 72-79. | |
26 | He J Z, Li J, Zheng Y M. Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 2013, 21(4): 411-420. |
贺纪正, 李晶, 郑袁明. 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 2013, 21(4): 411-420. | |
27 | Sharma S K, Ramesh A, Sharma M P, et al. Microbial community structure and diversity as indicators for evaluating soil quality. Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. 2010, 5: 317-358. |
28 | Hao G, Wang X P, Ding X F. Effects of pruning on soil microbial community in the Caragana microphylla-encroached grassland. Chinese Journal of Ecology, 2019, 38(11): 3291-3297. |
郝广, 王小平, 丁新峰. 平茬对小叶锦鸡儿灌丛化草原土壤微生物群落的影响. 生态学杂志, 2019, 38(11): 3291-3297. | |
29 | Zheng S G, Jia L M, Pang Q W, et al. Stumping effects on number and distribution of roots of Caragana microphylla Lam. plantations. Journal of Beijing Forestry University, 2010, 32(3): 64-69. |
郑士光, 贾黎明, 庞琪伟, 等. 平茬对柠条林地根系数量和分布的影响. 北京林业大学学报, 2010, 32(3): 64-69. | |
30 | Song P, Ren H, Jia Q, et al. Effects of historical logging on soil microbial communities in a subtropical forest in Southern China. Plant and Soil, 2015, 397(1): 1-12. |
31 | Araújo A S F, Borges C D, Tsai S M, et al. Soil bacterial diversity in degraded and restored lands of Northeast Brazi. Antonie van Leeuwen-hoek, 2014, 106(5): 891-899. |
32 | Aanderud Z, Shulaman M I, Drenovsky R E, et al. Shrubinterspace dynamics alter relationships between microbial community composition and belowground ecosystem characteristics. Soil Biology and Biochemistry, 2008, 40(9): 2206-2216. |
33 | Lange M, Habekost M, Eisenhauer N, et al. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLoS One, 2014, 9(5): e96182. |
34 | Bian Y Y, Chen L, Wang J M, et al. Effect of prune measure on soil properties of artificial Caragana intermedia forest in desert steppe. Acta Agrestia Sinica, 2018, 26(6): 1347-1353. |
卞莹莹, 陈林, 王建明, 等. 平茬对荒漠草原区人工柠条林地土壤理化性质的影响. 草地学报, 2018, 26(6): 1347-1353. | |
35 | Wang F, Zuo Z, Zhang H, et al. Study on Caragana microphylla feed process and its related problem. Pratacultural Science, 2005, 22(6): 75-80. |
王峰, 左忠, 张浩, 等. 柠条饲料加工相关问题的探讨. 草业科学, 2005, 22(6): 75-80. | |
36 | Spain A M, Krumhol L R, Elshahed M S. Abundance, composition, diversity and novelty of soil Proteobacteria. Multidisciplinary Journal of Microbial Ecology, 2009, 3(8): 992-1000. |
37 | Sun H B. Soil bacterial communities diversity and distribution in Alidiqu of Tiaetan Plateau. Nanjing: Nanjing Agricultural University, 2013. |
孙怀博. 青藏高原阿里地区土壤细菌群落多样性及其分布的研究. 南京: 南京农业大学, 2013. | |
38 | Cruz-Martinez K, Rosling A, Zhang Y, et al. Effect of reinfall-induced soil geochenmistry dynamics on grassland soil microbial communities. Applied and Environmental Microbiology, 2012, 78(21): 75-87. |
39 | Wang G H, Liu J J, Yu Z H, et al. Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 2016, 32(2): 14-20. |
王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 2016, 32(2): 14-20. | |
40 | Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils. Environmental Microbiology, 2011, 13(6): 1642-1654. |
41 | Ramirez K S, Craine J M, Fierer N. Consistent effects of nitrogen amedments on soil microbial communities and processes across biome. Global Change Biology, 2012, 18(6): 1918-1927. |
42 | Yin N. Changes in structure and diversity of soil microbial communities across the main grasslands in Northern China. Changchun: Northeast Normal University, 2014. |
尹娜. 中国北方主要草地类型土壤细菌群落结构和多样性变化. 长春: 东北师范大学, 2014. | |
43 | Oliverio A M, Bradford M, Afierer N. Identifying the microbial taxa that consistently respond to soil warming across time and space. Global Change Biology, 2017, 23(8): 2117-2129. |
44 | Luo D, Chen J X, Cheng L, et al. Analysis of bacteria diversity in the rhizosphere soil of three main plants and its correlation with the soil physical and chemical properties in the desertification area of Northern Shaanxi. Journal of Arid Land Resources and Environment, 2019, 33(3): 151-157. |
罗旦, 陈吉祥, 程琳, 等. 陕北沙化区3种主要植物根际土壤细菌多样性与土壤理化性质相关性分析. 干旱区资源与环境, 2019, 33(3): 151-157. |
[1] | Ya-ni WANG, Yi-gang HU, Zeng-ru WANG, Yi-kang LI, Zhen-hua ZHANG, Hua-kun ZHOU. Impacts of desertification and artificial revegetation on soil bacterial communities in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(5): 26-39. |
[2] | Li-tao TANG, Rui MAO, Chang-ting WANG, Jie LI, Lei HU, Hong-biao ZI. Effects of nitrogen and phosphorus addition on root characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2021, 30(9): 105-116. |
[3] | Zhong-chao SUN, Tian-dou GUO, Lu YU, Yan-ping MA, Ya-nan ZHAO, Xue-ying LI, Hong-mei WANG. Changes in soil particle size distribution and fractal characteristics across an anthropogenic transition from desert steppe grassland to shrubland in eastern Ningxia [J]. Acta Prataculturae Sinica, 2021, 30(4): 34-45. |
[4] | Chao ZHANG, Rui-rui YAN, Qing-wei LIANG, Ri-su NA, Tong LI, Xiu-fang YANG, Yu-hai BAO, Xiao-ping XIN. Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes [J]. Acta Prataculturae Sinica, 2021, 30(4): 90-98. |
[5] | Xin MA, Zhu-zhu LUO, Yao-quan ZHANG, Jia-he LIU, Yi-ning NIU, Li-qun CAI. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau [J]. Acta Prataculturae Sinica, 2021, 30(3): 54-67. |
[6] | Da-cheng SONG, Li-de WANG, Hao WU, Chun-rong WU, He-ran ZHAO, Sheng-hui HAN, Bao-yi XU. A study of change in soil characteristics with recovery time in degraded grassland in Minqin [J]. Acta Prataculturae Sinica, 2021, 30(2): 59-68. |
[7] | Wen ZHAO, Ya-li YIN, Shi-xiong LI, Yan LIU, Jing-jing LIU, Yi-ling DONG, Shi-feng SU, Ling-he JI. The characteristics of bacterial communities in different vegetation types in the Qilian Mountains [J]. Acta Prataculturae Sinica, 2021, 30(12): 161-171. |
[8] | Zhao-bi CHE, Peng-fei XU, Ya-ya GUO, Jia-min CAO, Xing-yu HUANG, Han-jun YANG, Wei-hua LU. Effects of the ant species Formica aquilonia on soil seed banks in mountain meadows [J]. Acta Prataculturae Sinica, 2021, 30(11): 40-51. |
[9] | WEI Peng, AN Sha-zhou, DONG Yi-qiang, SUN Zong-jiu, Bieerdawulieti·Xihayi, LI Chao. A high-throughput sequencing evaluation of bacterial diversity and community structure of the desert soil in the Junggar Basin [J]. Acta Prataculturae Sinica, 2020, 29(5): 182-190. |
[10] | Cheng-yi LI, Xi-lai LI, Yuan-wu YANG, Hong-lin LI, De-fei LIANG. Effect of nitrogen addition on soil bacterial diversity in alpine degraded grasslands of differing slope [J]. Acta Prataculturae Sinica, 2020, 29(12): 161-170. |
[11] | LIU Hong-mei, YANG Dian-lin, ZHANG Hai-fang, ZHAO Jian-ning, WANG Hui, ZHANG Nai-qin. Effects of nitrogen addition on the soil bacterial community structure of Stipa baicalensis steppe [J]. Acta Prataculturae Sinica, 2019, 28(9): 23-32. |
[12] | HE Zhen-fu, HE Chun-gui, WANG Guo-dong. Effect of different cultivation patterns on yield and nutritional contents of photoperiod-sensitive sorghum-sudangrass hybrids [J]. Acta Prataculturae Sinica, 2019, 28(9): 110-122. |
[13] | LI Zheng-yan, XU Zhi-ming, SHI Shang-li, HE Chun-gui. Effects of different crop rotations on alfalfa yield and soil quality in the Jiang-huai area [J]. Acta Prataculturae Sinica, 2019, 28(8): 28-39. |
[14] | LIU Xue-er, MA Jin-feng, YANG Cheng-de, LI Tong-hua. Antifungal activity and identification of soil bacteria from the rhizosphere of Stipa plants in alpine grassland of Qinghai [J]. Acta Prataculturae Sinica, 2019, 28(8): 161-169. |
[15] | WU Wen-xian, ZHANG Lei, HUANG Xiao-qin, YANG Xiao-xiang, XUE Long-hai, LIU Yong. Difference in soil microbial diversity in artificial grasslands of the Northwest Plateau of Sichuan Province [J]. Acta Prataculturae Sinica, 2019, 28(3): 29-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||