Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (10): 154-166.DOI: 10.11686/cyxb2021167
Yu-jie FAN(), Hua-zhe SI, Xiao-xu WANG, Qian-long YANG, Xin-yu ZHANG, Wei ZHONG, Kai-ying WANG()
Received:
2021-04-28
Revised:
2022-01-28
Online:
2022-10-20
Published:
2022-09-14
Contact:
Kai-ying WANG
Yu-jie FAN, Hua-zhe SI, Xiao-xu WANG, Qian-long YANG, Xin-yu ZHANG, Wei ZHONG, Kai-ying WANG. Effects of arginine level on rumen flora population structure and fermentation in weaning sika deer[J]. Acta Prataculturae Sinica, 2022, 31(10): 154-166.
项目 Item | 组别Groups | ||
---|---|---|---|
A | B | C | |
原料 Ingredients | |||
玉米 Corn (%) | 49.80 | 50.90 | 51.70 |
酒糟蛋白Distillers dried grains with solubles (DDGS, %) | 3.00 | 2.80 | 2.00 |
苜蓿草粉 Alfalfa meal (%) | 36.00 | 36.00 | 36.00 |
豆粕 Soybean meal (%) | 0.00 | 1.00 | 1.00 |
玉米胚芽粕 Corn germ meal (%) | 5.00 | 2.50 | 2.20 |
糖蜜 Syrup (%) | 3.00 | 3.00 | 3.00 |
预混料 Premix1) | 1.80 | 1.80 | 1.80 |
食盐 NaCl (%) | 0.50 | 0.50 | 0.50 |
赖氨酸Lysine (Lys, %) | 0.48 | 0.48 | 0.48 |
蛋氨酸Methionine (Met, %) | 0.16 | 0.16 | 0.16 |
精氨酸Arginine (Arg, %) | 0.26 | 0.46 | 0.66 |
合计 Total | 100.00 | 100.00 | 100.00 |
营养水平 Nutrient levels | |||
干物质Dry matter (DM, %) | 92.55 | 91.94 | 92.26 |
有机物Organic matter (OM, %) | 88.42 | 88.33 | 88.65 |
粗蛋白质Crude protein (CP, %) | 12.28 | 12.28 | 12.28 |
总能Gross energy2) (GE, MJ·kg-1) | 11.60 | 10.99 | 11.19 |
粗脂肪Ether extract (EE, %) | 2.25 | 2.35 | 1.99 |
钙Calcium (Ca, %) | 0.85 | 0.85 | 0.88 |
磷Phosphorus (P, %) | 0.36 | 0.35 | 0.33 |
中性洗涤纤维Neutral detergent fiber (NDF, %) | 77.38 | 77.25 | 78.11 |
酸性洗涤纤维Acid detergent fiber (ADF, %) | 29.90 | 29.62 | 31.27 |
Table 1 Composition and nutrient levels of experiment diets (air-dry basis)
项目 Item | 组别Groups | ||
---|---|---|---|
A | B | C | |
原料 Ingredients | |||
玉米 Corn (%) | 49.80 | 50.90 | 51.70 |
酒糟蛋白Distillers dried grains with solubles (DDGS, %) | 3.00 | 2.80 | 2.00 |
苜蓿草粉 Alfalfa meal (%) | 36.00 | 36.00 | 36.00 |
豆粕 Soybean meal (%) | 0.00 | 1.00 | 1.00 |
玉米胚芽粕 Corn germ meal (%) | 5.00 | 2.50 | 2.20 |
糖蜜 Syrup (%) | 3.00 | 3.00 | 3.00 |
预混料 Premix1) | 1.80 | 1.80 | 1.80 |
食盐 NaCl (%) | 0.50 | 0.50 | 0.50 |
赖氨酸Lysine (Lys, %) | 0.48 | 0.48 | 0.48 |
蛋氨酸Methionine (Met, %) | 0.16 | 0.16 | 0.16 |
精氨酸Arginine (Arg, %) | 0.26 | 0.46 | 0.66 |
合计 Total | 100.00 | 100.00 | 100.00 |
营养水平 Nutrient levels | |||
干物质Dry matter (DM, %) | 92.55 | 91.94 | 92.26 |
有机物Organic matter (OM, %) | 88.42 | 88.33 | 88.65 |
粗蛋白质Crude protein (CP, %) | 12.28 | 12.28 | 12.28 |
总能Gross energy2) (GE, MJ·kg-1) | 11.60 | 10.99 | 11.19 |
粗脂肪Ether extract (EE, %) | 2.25 | 2.35 | 1.99 |
钙Calcium (Ca, %) | 0.85 | 0.85 | 0.88 |
磷Phosphorus (P, %) | 0.36 | 0.35 | 0.33 |
中性洗涤纤维Neutral detergent fiber (NDF, %) | 77.38 | 77.25 | 78.11 |
酸性洗涤纤维Acid detergent fiber (ADF, %) | 29.90 | 29.62 | 31.27 |
氨基酸 Amino acid | 组别Groups | |||
---|---|---|---|---|
A | B | C | ||
赖氨酸 Lysine (Lys) | 0.65 | 0.65 | 0.65 | |
蛋氨酸 Methionine (Met) | 0.16 | 0.16 | 0.16 | |
精氨酸 Arginine (Arg) | 0.80 | 1.08 | 1.26 | |
苏氨酸 Threonine (Thr) | 0.33 | 0.35 | 0.35 | |
天冬氨酸 Aspartic acid (Asp) | 0.76 | 0.82 | 0.81 | |
丝氨酸 Serine (Ser) | 0.40 | 0.43 | 0.42 | |
谷氨酸 Glutamic acid (Glu) | 1.32 | 1.38 | 1.39 | |
甘氨酸 Glycine (Gly) | 0.37 | 0.39 | 0.38 | |
丙氨酸 Alanine (Ala) | 0.71 | 0.73 | 0.71 | |
半胱氨酸 Cysteine (Cys) | 0.05 | 0.04 | 0.05 | |
缬氨酸 Valine (Val) | 0.41 | 0.43 | 0.43 | |
异亮氨酸 Isoleucine (Ile) | 0.29 | 0.31 | 0.32 | |
亮氨酸 Leucine (Leu) | 0.87 | 0.91 | 0.90 | |
酪氨酸 Tyrosine (Tyr) | 0.25 | 0.26 | 0.25 | |
苯丙氨酸 Phenylalanine (Phe) | 0.40 | 0.42 | 0.43 | |
组氨酸 Histidine (His) | 0.20 | 0.20 | 0.20 | |
脯氨酸 Proline (Pro) | 0.63 | 0.64 | 0.63 |
Table 2 Amino acid contents of experiment diets (air-dry basis, %)
氨基酸 Amino acid | 组别Groups | |||
---|---|---|---|---|
A | B | C | ||
赖氨酸 Lysine (Lys) | 0.65 | 0.65 | 0.65 | |
蛋氨酸 Methionine (Met) | 0.16 | 0.16 | 0.16 | |
精氨酸 Arginine (Arg) | 0.80 | 1.08 | 1.26 | |
苏氨酸 Threonine (Thr) | 0.33 | 0.35 | 0.35 | |
天冬氨酸 Aspartic acid (Asp) | 0.76 | 0.82 | 0.81 | |
丝氨酸 Serine (Ser) | 0.40 | 0.43 | 0.42 | |
谷氨酸 Glutamic acid (Glu) | 1.32 | 1.38 | 1.39 | |
甘氨酸 Glycine (Gly) | 0.37 | 0.39 | 0.38 | |
丙氨酸 Alanine (Ala) | 0.71 | 0.73 | 0.71 | |
半胱氨酸 Cysteine (Cys) | 0.05 | 0.04 | 0.05 | |
缬氨酸 Valine (Val) | 0.41 | 0.43 | 0.43 | |
异亮氨酸 Isoleucine (Ile) | 0.29 | 0.31 | 0.32 | |
亮氨酸 Leucine (Leu) | 0.87 | 0.91 | 0.90 | |
酪氨酸 Tyrosine (Tyr) | 0.25 | 0.26 | 0.25 | |
苯丙氨酸 Phenylalanine (Phe) | 0.40 | 0.42 | 0.43 | |
组氨酸 Histidine (His) | 0.20 | 0.20 | 0.20 | |
脯氨酸 Proline (Pro) | 0.63 | 0.64 | 0.63 |
项目 Item | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
pH | 7.35±0.07a | 7.28±0.03ab | 7.21±0.03b | 0.0298 |
氨态氮 (NH3-N, mg·dL-1) | 8.22±0.54ABa | 10.98±2.13Aa | 4.79±1.94Bb | 0.0120 |
总挥发性脂肪酸Total volatile fatty acids (TVFA, mmol·L-1) | 28.46±1.27a | 20.39±2.09b | 19.41±5.78b | 0.0420 |
乙酸 Acetic acid (ACE, mmol·L-1) | 19.82±1.08Aa | 14.05±1.49Bb | 12.03±2.47Bb | 0.0043 |
丙酸 Propanoic acid (PRO, mmol·L-1) | 3.84±0.98 | 4.46±0.25 | 4.10±0.57 | 0.5536 |
异丁酸Isobutyric acid (ISOB, mmol·L-1) | 0.15±0.03Aa | 0.02±0.01Bb | 0.11±0.05ABa | 0.0126 |
丁酸 Butyric acid (BUTY, mmol·L-1) | 2.43±0.50Aa | 1.02±0.24Bb | 1.18±0.12Bb | 0.0037 |
异戊酸Isovaleric acid (ISOV, mmol·L-1) | 0.30±0.12 | 0.02±0.01 | 0.17±0.20 | 0.1140 |
戊酸 Valeric acid (VAL, mmol·L-1) | 0.16±0.03a | 0.16±0.02a | 0.11±0.01b | 0.0649 |
乙丙比Acetic∶propanoic (A∶P, mmol·L-1) | 4.37±0.14Aa | 3.10±0.16Bc | 4.04±0.08Ab | <0.0001 |
Table 3 Effects of arginine levels on rumen fermentation parameters of weaning sika deer
项目 Item | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
pH | 7.35±0.07a | 7.28±0.03ab | 7.21±0.03b | 0.0298 |
氨态氮 (NH3-N, mg·dL-1) | 8.22±0.54ABa | 10.98±2.13Aa | 4.79±1.94Bb | 0.0120 |
总挥发性脂肪酸Total volatile fatty acids (TVFA, mmol·L-1) | 28.46±1.27a | 20.39±2.09b | 19.41±5.78b | 0.0420 |
乙酸 Acetic acid (ACE, mmol·L-1) | 19.82±1.08Aa | 14.05±1.49Bb | 12.03±2.47Bb | 0.0043 |
丙酸 Propanoic acid (PRO, mmol·L-1) | 3.84±0.98 | 4.46±0.25 | 4.10±0.57 | 0.5536 |
异丁酸Isobutyric acid (ISOB, mmol·L-1) | 0.15±0.03Aa | 0.02±0.01Bb | 0.11±0.05ABa | 0.0126 |
丁酸 Butyric acid (BUTY, mmol·L-1) | 2.43±0.50Aa | 1.02±0.24Bb | 1.18±0.12Bb | 0.0037 |
异戊酸Isovaleric acid (ISOV, mmol·L-1) | 0.30±0.12 | 0.02±0.01 | 0.17±0.20 | 0.1140 |
戊酸 Valeric acid (VAL, mmol·L-1) | 0.16±0.03a | 0.16±0.02a | 0.11±0.01b | 0.0649 |
乙丙比Acetic∶propanoic (A∶P, mmol·L-1) | 4.37±0.14Aa | 3.10±0.16Bc | 4.04±0.08Ab | <0.0001 |
项目 Item | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
ACE | 1231.11±140.96ab | 1362.68±38.10a | 1161.67±36.24b | 0.0741 |
Chao1 | 1376.45±214.72b | 1653.30±90.57a | 1319.85±23.80b | 0.0486 |
Simpson | 0.0153±0.003Bb | 0.0730±0.009Aa | 0.0210±0.011Bb | 0.0003 |
Shannon | 7.316±0.147Aa | 5.657±0.195Bb | 6.751±0.479Aa | 0.0017 |
Goods_coverage | 0.99 | 0.99 | 0.99 | 0.4576 |
Table 4 Effects of different arginine levels on rumen microbial alpha diversity of weaning sika deer
项目 Item | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
ACE | 1231.11±140.96ab | 1362.68±38.10a | 1161.67±36.24b | 0.0741 |
Chao1 | 1376.45±214.72b | 1653.30±90.57a | 1319.85±23.80b | 0.0486 |
Simpson | 0.0153±0.003Bb | 0.0730±0.009Aa | 0.0210±0.011Bb | 0.0003 |
Shannon | 7.316±0.147Aa | 5.657±0.195Bb | 6.751±0.479Aa | 0.0017 |
Goods_coverage | 0.99 | 0.99 | 0.99 | 0.4576 |
组别 Groups | 总方差 Total square deviation (SS) | P值 P-value |
---|---|---|
A-B | 0.530264 | 0.021* |
A-C | 0.207164 | 0.026* |
B-C | 0.111877 | 0.185 |
Table 5 Analysis by Amova group differences analysis
组别 Groups | 总方差 Total square deviation (SS) | P值 P-value |
---|---|---|
A-B | 0.530264 | 0.021* |
A-C | 0.207164 | 0.026* |
B-C | 0.111877 | 0.185 |
门 Phylum | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
拟杆菌门Bacteroidetes | 75.77±4.04Aa | 51.96±7.05Bb | 58.93±7.03ABb | 0.0064 |
厚壁菌门Firmicutes | 18.39±2.15b | 31.50±8.26a | 25.12±6.39ab | 0.0948 |
变形菌门Proteobacteria | 1.08±0.37Bb | 24.34±6.93Aa | 10.32±8.03ABb | 0.0032 |
放线菌门Actinobacteria | 0.72±0.23Bb | 4.38±1.64Aa | 1.82±0.69Bb | 0.0022 |
广古菌门Euryarchaeota | 3.84±1.82Aa | 0.13±0.07Bb | 2.23±1.10ABab | 0.0210 |
螺旋菌门Spirochaetes | 0.51±0.18Aa | 0.07±0.02Bb | 0.14±0.10Bb | 0.0081 |
纤维杆菌门Fibrobacteres | 0.32±0.02Aa | 0.05±0.01Bc | 0.11±0.03Bb | <0.0001 |
互养菌门Synergistetes | 0.14±0.08 | 0.06±0.01 | 0.07±0.04 | 0.1953 |
软壁菌门Tenericutes | 0.09±0.01Bb | 0.14±0.03ABb | 0.25±0.08Aa | 0.0076 |
Table 6 Rumen bacteria composition on phylum level in three groups of weaning sika deer (%)
门 Phylum | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
拟杆菌门Bacteroidetes | 75.77±4.04Aa | 51.96±7.05Bb | 58.93±7.03ABb | 0.0064 |
厚壁菌门Firmicutes | 18.39±2.15b | 31.50±8.26a | 25.12±6.39ab | 0.0948 |
变形菌门Proteobacteria | 1.08±0.37Bb | 24.34±6.93Aa | 10.32±8.03ABb | 0.0032 |
放线菌门Actinobacteria | 0.72±0.23Bb | 4.38±1.64Aa | 1.82±0.69Bb | 0.0022 |
广古菌门Euryarchaeota | 3.84±1.82Aa | 0.13±0.07Bb | 2.23±1.10ABab | 0.0210 |
螺旋菌门Spirochaetes | 0.51±0.18Aa | 0.07±0.02Bb | 0.14±0.10Bb | 0.0081 |
纤维杆菌门Fibrobacteres | 0.32±0.02Aa | 0.05±0.01Bc | 0.11±0.03Bb | <0.0001 |
互养菌门Synergistetes | 0.14±0.08 | 0.06±0.01 | 0.07±0.04 | 0.1953 |
软壁菌门Tenericutes | 0.09±0.01Bb | 0.14±0.03ABb | 0.25±0.08Aa | 0.0076 |
属 Genus | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
琥珀酸弧菌属Succinivibrio | 0.260±0.135Bb | 17.678±1.198Aa | 7.483±6.939ABb | 0.0070 |
未分类普雷沃氏菌科Unidentified_Prevotellaceae | 3.071±0.287 | 7.138±4.097 | 7.160±2.687 | 0.2071 |
未分类韦荣氏球菌科Unidentified_Veillonellaceae | 1.642±0.682 | 1.015±0.436 | 1.020±0.250 | 0.2723 |
欧陆森氏菌属Olsenella | 0.189±0.097 | 2.046±2.073 | 1.030±0.494 | 0.1407 |
甲烷短杆菌属Methanobrevibacter | 3.767±1.808Aa | 0.086±0.053Bb | 0.471±0.387Bb | 0.0103 |
未分类疣微菌科Unidentified_Ruminococcaceae | 2.640±0.444 | 2.005±0.810 | 2.791±0.528 | 0.2472 |
戴阿利斯特杆菌属Dialister | 0.042±0.084b | 2.282±2.320a | 0.309±0.030ab | 0.0826 |
解琥珀酸菌属Succiniclasticum | 1.240±0.028Bb | 1.797±0.087Bb | 3.015±0.508Aa | 0.0009 |
Agathobacter | 0.005±0.005Bb | 0.474±0.182Aa | 0.258±0.036ABa | 0.0045 |
未分类毛螺菌科Unidentified_Lachnospiraceae | 1.002±0.034Bb | 0.993±0.097Bb | 1.458±0.051Aa | 0.0002 |
奎因氏菌属Quinella | 0.744±0.132Aa | 0.206±0.137Bb | 0.213±0.142Bb | 0.0008 |
双歧杆菌属Bifidobacterium | 0.227±0.126 | 0.312±0.089 | 0.241±0.038 | 0.5224 |
Kandleria | 0.009±0.011 | 0.223±0.273 | 0.127±0.051 | 0.2328 |
未分类理研菌科Unidentified_Rikenellaceae | 0.270±0.045b | 0.285±0.069b | 0.481±0.167a | 0.0664 |
未分类拟杆菌目Unidentified_Bacteroidales | 0.270±0.052 | 0.258±0.164 | 0.192±0.087 | 0.6218 |
互营球菌属Syntrophococcus | 0.100±0.032Bb | 0.263±0.102Aa | 0.223±0.034ABa | 0.0137 |
纤维杆菌属Fibrobacter | 0.326±0.020Aa | 0.054±0.010Bb | 0.105±0.047Bb | <0.0001 |
未分类螺旋体科Unidentified_Spirochaetaceae | 0.437±0.156Aa | 0.047±0.008Bb | 0.132±0.089ABb | 0.0085 |
聚乙酸菌属Acetitomaculum | 0.250±0.065Bb | 0.157±0.026Bb | 0.492±0.055Aa | 0.0005 |
厌氧弧菌属Anaerovibrio | 0.642±0.218 | 0.323±0.226 | 0.636±0.187 | 0.1582 |
Table 7 Rumen bacteria composition on genus level in three groups of weaning sika deer (%)
属 Genus | 组别 Groups | P值 P-value | ||
---|---|---|---|---|
A | B | C | ||
琥珀酸弧菌属Succinivibrio | 0.260±0.135Bb | 17.678±1.198Aa | 7.483±6.939ABb | 0.0070 |
未分类普雷沃氏菌科Unidentified_Prevotellaceae | 3.071±0.287 | 7.138±4.097 | 7.160±2.687 | 0.2071 |
未分类韦荣氏球菌科Unidentified_Veillonellaceae | 1.642±0.682 | 1.015±0.436 | 1.020±0.250 | 0.2723 |
欧陆森氏菌属Olsenella | 0.189±0.097 | 2.046±2.073 | 1.030±0.494 | 0.1407 |
甲烷短杆菌属Methanobrevibacter | 3.767±1.808Aa | 0.086±0.053Bb | 0.471±0.387Bb | 0.0103 |
未分类疣微菌科Unidentified_Ruminococcaceae | 2.640±0.444 | 2.005±0.810 | 2.791±0.528 | 0.2472 |
戴阿利斯特杆菌属Dialister | 0.042±0.084b | 2.282±2.320a | 0.309±0.030ab | 0.0826 |
解琥珀酸菌属Succiniclasticum | 1.240±0.028Bb | 1.797±0.087Bb | 3.015±0.508Aa | 0.0009 |
Agathobacter | 0.005±0.005Bb | 0.474±0.182Aa | 0.258±0.036ABa | 0.0045 |
未分类毛螺菌科Unidentified_Lachnospiraceae | 1.002±0.034Bb | 0.993±0.097Bb | 1.458±0.051Aa | 0.0002 |
奎因氏菌属Quinella | 0.744±0.132Aa | 0.206±0.137Bb | 0.213±0.142Bb | 0.0008 |
双歧杆菌属Bifidobacterium | 0.227±0.126 | 0.312±0.089 | 0.241±0.038 | 0.5224 |
Kandleria | 0.009±0.011 | 0.223±0.273 | 0.127±0.051 | 0.2328 |
未分类理研菌科Unidentified_Rikenellaceae | 0.270±0.045b | 0.285±0.069b | 0.481±0.167a | 0.0664 |
未分类拟杆菌目Unidentified_Bacteroidales | 0.270±0.052 | 0.258±0.164 | 0.192±0.087 | 0.6218 |
互营球菌属Syntrophococcus | 0.100±0.032Bb | 0.263±0.102Aa | 0.223±0.034ABa | 0.0137 |
纤维杆菌属Fibrobacter | 0.326±0.020Aa | 0.054±0.010Bb | 0.105±0.047Bb | <0.0001 |
未分类螺旋体科Unidentified_Spirochaetaceae | 0.437±0.156Aa | 0.047±0.008Bb | 0.132±0.089ABb | 0.0085 |
聚乙酸菌属Acetitomaculum | 0.250±0.065Bb | 0.157±0.026Bb | 0.492±0.055Aa | 0.0005 |
厌氧弧菌属Anaerovibrio | 0.642±0.218 | 0.323±0.226 | 0.636±0.187 | 0.1582 |
1 | Diao Q Y, Zhang R. Growth and digestive physiology characteristies of young ruminants in China. Chinese Journal of Animal Science, 2017, 53(7): 4-8. |
刁其玉, 张蓉. 我国幼龄反刍动物生长与消化生理发育特点.中国畜牧杂志, 2017, 53(7): 4-8. | |
2 | Saro C, Hohenester U M, Bernard M, et al. Effectiveness of interventions to modulate the rumen microbiota composition and function in pre-ruminant and ruminant lambs. Fronties in Microbiology, 2018, 9: 1273. |
3 | Abecia L, Ramos-Morales E, Martínez-Fernandez G, et al. Feeding management in early life influences microbial colonisation and fermentation in the rumen of newborn goat kids. Animal Production Science, 2014, 54(9): 1449-1454. |
4 | Rey M, Enjalbert F, Combes S, et al. Establishment of ruminal bacterial community in dairy calves from birth to weaning is sequential. Journal of Applied Microbiology, 2014, 116(2): 245-257. |
5 | Zhang Y, Cheng J, Zheng N, et al. Different milk replacers alter growth performance and rumen bacterial diversity of dairy bullcalves. Livestock Science, 2020, 231: 103862. |
6 | Kim J, Erikson D W, Burghardt R C, et al. Secreted phosphoprotein 1 binds integrins to initiate multiple cell signaling pathways, including FRAP1/mTOR, to support attachment and force-generated migration of trophectoderm cells. Matrix Biology, 2010, 29(5): 369-382. |
7 | Yao K, Yin Y L, Chu W, et al. Dietary arginine supplementation increases m-tor signaling activity in skeletal muscle of neonatal pigs. The Journal of Nutrition, 2008, 138(5): 867-872. |
8 | Li Z P, Wrighta D G, Liu H L, et al. Response of the rumen microbiota of sika deer (Cervus nippon) fed different concentrations of tannin rich plants. PLoS One, 2015, 10(5): e0123481. |
9 | Feng Z C, Gao M. Improvement of colorimetric method for determination of ammonia nitrogen in rumen fluid. Animal Husbandry and Feed Science, 2010, 31(6/7): 37. |
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(6/7): 37. | |
10 | Kleen J L, Cannizzo C. Incidence, prevalence and impact of SARA in dairy herds. Animal Feed Science and Technology, 2012, 172(s1/2): 4-8. |
11 | Liu J, Diao Q Y, Zhao Y G, et al. Effects of dietary NFC/NDF ratios on rumen pH, NH3-N and VFA of meat sheep. Chinese Journal of Animal Nutrition, 2012(6): 1069-1077. |
刘洁, 刁其玉, 赵一广, 等. 饲粮不同NFC/NDF对肉用绵羊瘤胃pH、氨态氮和挥发性脂肪酸的影响. 动物营养学报, 2012(6): 1069-1077. | |
12 | Ren C Y, Bi Y L, Du H C, et al. Effects of different starter NDF levels on the growth performance, rumen environments and serum biochemical parameters of calves. Acta Prataculturae Sinica, 2018, 27(5): 210-218. |
任春燕, 毕研亮, 杜汉昌, 等. 开食料中不同NDF水平对犊牛生长性能、瘤胃内环境及血清生化指标的影响. 草业学报, 2018, 27(5): 210-218. | |
13 | Liu Y J, Wang C, Liu Q, et al. Effects of isobutyrate supplementation on growth performance, ruminal fermentation and cellulolytic bacterial abundance in calves. Acta Prataculturae Sinica, 2019, 28(7): 151-158. |
刘永嘉, 王聪, 刘强, 等. 日粮补充异丁酸对犊牛生长性能、瘤胃发酵和纤维分解菌菌群的影响. 草业学报, 2019, 28(7): 151-158. | |
14 | Aschenbach J R, Penner G B, Stumpff F, et al. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 2011, 89(4): 1092-1107. |
15 | Li W. The study on the effect of rumen liquid pH, osmotic pressure, volatile fatty acids (VFAs) concentration on the absorption of VFAs across ruminal epithelium of sheep. Qingdao: Shandong Agricultural University, 2014. |
李文. 瘤胃液pH值, 渗透压, 挥发性脂肪酸(VFAs)浓度对绵羊瘤胃上皮VFAs吸收影响的研究. 青岛: 山东农业大学, 2014. | |
16 | Melo L Q, Costa S F, Lopes F, et al. Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption. Journal of Animal Science, 2013, 91(4): 1775-1783. |
17 | Jia Y D. Effects of forage to concentrate ration on rumen anaerobic bacterial, volatile fatty acids and blood indexes in dairy cows. Tai’an: Shandong Agricultural University, 2008. |
贾玉东. 日粮精粗比对奶牛瘤胃厌氧细菌和挥发性脂肪酸及血液指标的影响. 泰安: 山东农业大学, 2008. | |
18 | Yan L, Zhang B, Shen Z. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats. Journal of Dairy Science, 2014, 97(9): 5668-5675. |
19 | Ryle M, Orskov E R. Energy nutrition in ruminants. Berlin: Springer Netherlands, 1990. |
20 | Shabat S K, Sasson G, Doron-Faigenboim A, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME Journal, 2016, 10(12): 2958-2972. |
21 | Li Z J. The ruminal manipulation strategies for enhancing propionate fermentation and their dynamic effects on carbohydrate metabolism. Xianyang: Northwest A & F University, 2018. |
李宗军. 瘤胃丙酸发酵的增强策略及其对碳水化合物代谢的动态影响. 咸阳: 西北农林科技大学, 2018. | |
22 | Dong C X, Lv J Y, Niu X L, et al. Effects of dietary roughage sources on the rumen microflora and muscle fatty acids in finishing Hu lambs. Pratacultural Science, 2019, 36(11): 2926-2936. |
董春晓, 吕佳颖, 牛骁麟, 等. 粗饲料来源对育肥湖羊瘤胃微生物区系及肌肉脂肪酸组成的影响. 草业科学, 2019, 36(11): 2926-2936. | |
23 | Russell J B, Wilson D B. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? Journal of Dairy Science, 1996, 79(8): 1503-1509. |
24 | Broderick G A, Muck R E. Effect of alfalfa silage storage structure and rumen-protected methionine on production in lactating dairy cows. Journal of Dairy Science, 2009, 92(3): 1281-1289. |
25 | Dai Z L, Li X L, Xi P B, et al. Regulatory role for l-arginine in the utilization of amino acids by pig small-intestinal bacteria. Amino Acids, 2012, 43(1): 233-244. |
26 | Wu G, Bazer F W, Dai Z, et al. Amino acid nutrition in animals: Protein synthesis and beyond. Annual Review of Animal Biosciences, 2014, 2: 387-417. |
27 | Thao N T, Wanapat M, Cherdthong A, et al. Effects of eucalyptus crude oils supplementation on rumen fermentation, microorganism and nutrient digestibility in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 2014, 27(1): 46-54. |
28 | Lv X K. Effects of different diets on rumen development of 20-60 day-old goat kids. Beijing: Chinese Academy of Agricultural Sciences, 2019. |
吕小康. 不同饲粮对20~60日龄山羊羔羊瘤胃发育的影响. 北京: 中国农业科学院, 2019. | |
29 | Hulbert L E, Moisá S J. Stress, immunity, and the management of calves. Journal of Dairy Science, 2016, 99(4): 3199-3216. |
30 | Xiao J X, Guo L Y, Alugongo G M, et al. Effects of different feed type exposure in early life on performance, rumen fermentation, and feed preference of dairy calves. Journal of Dairy Science, 2018, 101(9): 8169-8181. |
31 | Stewart C S, Fonty G, Gouet P. The establishment of rumen microbial communities. Animal Feed Science & Technology, 1988, 21(2/3/4): 69-97. |
32 | Dias J, Marcondes M I, Motta de Souza S, et al. Bacterial community dynamics across the gastrointestinal tracts of dairy calves during preweaning development. Applied and Environmental Microbiology, 2018, 84(9): e02675-17. |
33 | Jami E, Israel A, Kotser A, et al. Exploring the bovine rumen bacterial community from birth to adulthood. The ISME Journal, 2013, 7(6): 1069-1079. |
34 | Koringa P G, Thakkar J R, Pandit R J, et al. Metagenomic characterisation of ruminal bacterial diversity in buffaloes from birth to adulthood using 16S rRNA gene amplicon sequencing. Functional & Integrative Genomics, 2019, 19(2): 237-247. |
35 | Dehority B A, Orpin C G. Development of, and natural fluctuations in, rumen microbial populations. Rumen Microbial Ecosystem, 1997, https://doi.org/10.1007/978-94-009-1453-7_5. |
36 | Tajima K, Arai S, Ogata K, et al. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 2000, 6(5): 273-284. |
37 | Meale S J, Li S, Azevedo P, et al. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Frontiers in Microbiology, 2016, 7: 582. |
38 | Thoetkiattikul H, Mhuantong W, Laothanachareon T, et al. Comparative analysis of microbial profiles in cow rumen fed with different dietary fiber by tagged 16S rRNA gene pyrosequencing. Current Microbiology, 2013, 67(2): 130-137. |
39 | Mao S, Zhang M, Liu J, et al. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Scientific Reports, 2015, 5: 16116. |
40 | Zened A, Combes S, Cauquil L, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiology Ecology, 2013, 83(2): 504-514. |
41 | Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122): 1027-1031. |
42 | Stenzel U, Hofreiter M, Meyer M. Parallel tagged sequencing on the 454 platform. Nature Protocols, 2008, 3(2): 267-278. |
43 | Wu S, Baldwin R L, Li W, et al. The bacterial community composition of the bovine rumen detected using pyrosequencing of 16S rRNA genes. Metagenomics, 2012, 1(1): 1-11. |
44 | Pitta D W, Pinchak W E, Dowd S, et al. Longitudinal shifts in bacterial diversity and fermentation pattern in the rumen of steers grazing wheat pasture. Anaerobe, 2014, 30: 11-17. |
45 | Si H, Liu H, Nan W, et al. Effects of arginine supplementation on serum metabolites and the rumen bacterial community of sika deer (Cervus nippon). Frontiers in Veterinary Science, 2021, 8: 630686. |
46 | Aguilar-Marin S B, Betancur-Murillo C L, Isaza G A, et al. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. BMC Microbiology, 2020, 20(1): 364. |
47 | McCabe M S, Cormican P, Keogh K, et al. Illumina miSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS One, 2015, 10(7): e0133234. |
48 | Pope P B, Smith W, Denman S E, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from Tammar wallabies. Science, 2011, 333(6042): 646-648. |
49 | St-Pierre B, Wright A D. Diversity of gut methanogens in herbivorous animals. Animal, 2013, 1: 49-56. |
50 | Yanagita K, Kamagata Y, Kawaharasaki M, et al. Phylogenetic analysis of methanogens in sheep rumen ecosystem and detection of Methanomicrobium mobile by fluorescence in situ hybridization. Bioscience Biotechnology Biochemistry, 2000, 64(8): 1737-1742. |
51 | Yang S. Effects of feeding types and breeds on rumen methanogens and related microflora in Inner Mongolia cashmere goats. Hohhot: Inner Mongolia Agricultural University, 2018. |
杨硕. 养殖方式和绒山羊类型对瘤胃产甲烷菌及相关微生物区系的影响. 呼和浩特: 内蒙古农业大学, 2018. | |
52 | Sakamoto M, Ikeyama N, Toyoda A, et al. Dialister hominis sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(1): 589-595. |
53 | Cui Z, Wu S, Li J, et al. Effect of alfalfa hay and starter feeding intervention on gastrointestinal microbial community, growth and immune performance of yak calves. Frontiers in Microbiology, 2020, 11: 994. |
54 | Watanabe Y, Nagai F, Morotomi M. Characterization of Phascolarctobacterium succinatutens sp. nov., an asaccharolytic, succinate-utilizing bacterium isolated from human feces. Applied Environmental Microbiology, 2012, 78(2): 511-518. |
[1] | Dong-wen DAI, Kai-yue Pang, xun WANG, Ying-kui YANG, Sha-tuo CHAI, Shu-xiang WANG. Effects of different concentrate supplement levels on rumen fermentation and microbial community structure of grazing yaks in the warm season [J]. Acta Prataculturae Sinica, 2022, 31(5): 169-177. |
[2] | Shi-yu ZOU, Si-kui CHEN, Qi-yuan TANG, Dong CHEN, Yuan-wei CHEN, Pan DENG, Xu-lai HUANG, Fu-qiang LI. Effects of silage additives on quality and in vitro rumen fermentation characteristics of first season ratoon rice whole silage [J]. Acta Prataculturae Sinica, 2021, 30(7): 122-132. |
[3] | Chen LI, Ali Ahmad ANUM, Jian-bo ZHANG, Ze-yi LIANG, Xue-zhi DING, Ping YAN. Comparative study of grazing behavior, serum biochemical indexes, and rumen fermentation parameters of yaks and cattle in the cold seaso [J]. Acta Prataculturae Sinica, 2021, 30(6): 162-169. |
[4] | Yuan CAI, Yu-zhu LUO, Rong-xin ZANG, Chun-yang LI, Ying-pai ZHAXI. Effect of N-carbamylglutamate supplementation during early pregnancy on early embryonic survival and blood indexes in ewes [J]. Acta Prataculturae Sinica, 2021, 30(6): 170-179. |
[5] | Xiong-xiong LI, Ting JIAO, Sheng-guo ZHAO, Wei-na QIN, Xue-mei GAO, Zheng-wen WANG, Jian-ping WU, Zhao-min LEI. Synergistic effect of oregano essential oil and organic cobalt on degradation characteristics of silage maize stalks and rumen fermentation of sheep [J]. Acta Prataculturae Sinica, 2021, 30(11): 191-202. |
[6] | ZHAN Jin-shun, YANG Qun, HU Yao, WU Yan-ping, HUO Jun-hong. Effects of dietary concentration:roughage ratio on rumen fermentation and flora population structure in Hu sheep [J]. Acta Prataculturae Sinica, 2020, 29(7): 122-130. |
[7] | CHEN Ya-kun, WANG Jian-ping, BU Deng-pan, LIU Ning, LIU Wei. Effects of complex enzyme on rumen fermentation and milk production in early lactation dairy cows [J]. Acta Prataculturae Sinica, 2018, 27(4): 170-177. |
[8] | DENG Kai-Ping, WANG Feng, MA Tie-Wei, WANG Zhen, YU Xiao-Qing, DING Li-Ren, TAO Xiao-Qiang, FAN Yi-Xuan. Effect of dietary Perilla frutescens seed intake on rumen fermentation characteristics, apparent nutrient digestibility, and growth performance of Hu sheep [J]. Acta Prataculturae Sinica, 2017, 26(5): 205-212. |
[9] | CHEN Zhi-Yuan, MA Ting-Ting, FANG Wei, ZUO Xiao-Xin, LIN Miao, ZHAO Guo-Qi. Effects of dietary nitrate dosage on ruminal nitrate disappearance rate, fermentation parameters and concentration of blood methemoglobin of Hu Sheep [J]. Acta Prataculturae Sinica, 2016, 25(2): 95-104. |
[10] | HU Jiang, WANG Yi, ZHAO Fang-Fang, LIU Xiu, QUAN Jin-Peng, NIU Xiao-Liang, HAN Xiang-Min. Effects of straw pellets on rumen function and live weight gain of beef cattle [J]. Acta Prataculturae Sinica, 2016, 25(10): 163-170. |
[11] | WANG Dong-sheng, HUANG Jiang-li, ZHANG Zhi-hong, TIAN Xiao-juan, HUANG Huang, YIN Yu-long, DING Jian-nan. Effects of plant solid powder and ethanol extract of Impatiens balsamina on microbial metabolic parameters during in vitro rumen fermentation [J]. Acta Prataculturae Sinica, 2013, 22(2): 87-93. |
[12] |
WANG Cong, LIU Qiang, DONG Kuan-hu, ZHAO Xiang, LIU Sheng-qiang, HE Ting-ting, LIU Zhuang-yu. Effects of grass mixture cultivated in light, moderate and serious alkali-saline grassland on rumen fermentation, feed digestibility and nitrogen balance in sheep [J]. Acta Prataculturae Sinica, 2010, 19(5): 38-44. |
[13] |
WANG Cong, LIU Qiang, DONG Qun, YANG Xiao-min, HE Dong-chang, DONG Kuan-hu.
Effects of malic acid supplementation on rumen fermentation, nutrient digestion and metabolism in Simmental steer [J]. Acta Prataculturae Sinica, 2009, 18(3): 224-231. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||