Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (1): 178-191.DOI: 10.11686/cyxb2022008
Fu LIU1,2(), Cheng CHEN1,2, Kai-xuan ZHANG2, Mei-liang ZHOU2(), Xin-quan ZHANG1()
Received:
2022-01-06
Revised:
2022-02-24
Online:
2023-01-20
Published:
2022-11-07
Contact:
Mei-liang ZHOU,Xin-quan ZHANG
Fu LIU, Cheng CHEN, Kai-xuan ZHANG, Mei-liang ZHOU, Xin-quan ZHANG. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus[J]. Acta Prataculturae Sinica, 2023, 32(1): 178-191.
引物名称Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
T-LjbHLH34-F | ATGGTTTCCGCGGAAAACACC |
T-LjbHLH34-R | TTAGGCAGCTGGTGGTCGGAG |
M13-F | TGTAAAACGACGGCCAGT |
pCAMBIA1307-LjbHLH34-F | |
pCAMBIA1307-LjbHLH34-R | |
pCAMBIA1307-F | AGGAAGTTCATTTCATTTGGA |
pAN580-LjbHLH34-F | |
pAN580-LjbHLH34-R | |
PAN580-F | ATGACGCACAATCCCACTATCC |
pGBKT7-LjbHLH34-F | |
pGBKT7-LjbHLH34-R | |
T7-F | TAATACGACTCACTATAGG |
qLj-actin3-F | GTATTGTTGGCCGACCTCGT |
qLj-actin3-R | AGCCTCAGTTAGAAGCACCG |
qLj-bHLH34-F | ATGCAGTTCGAGTGGTGACG |
qLj-bHLH34-R | AGACGGCAAAAATTGCCACA |
qAt-actin7-F | TCCATGAAACAACTTACAACTCCATCA |
qAt-actin7-R | CATCGTACTCACTCTTTGAAATCCACA |
qAtCAT1-F | GAGATCCCCGTGGTTTTGCT |
qAtCAT1-R | TGTGCAAACTCTCTGGGTGG |
qAtCAT3-F | AGCTTCCAGTCAATGCTCCC |
qAtCAT3-R | GTGAGACGTGGCTCCGATAG |
qAtRD22-F | TTCGTCTTCCTCTGATCTGTCTTC |
qAtRD22-R | TTTACTCCGCCTTTACCTACTTGG |
Table 1 Primer list
引物名称Primer name | 引物序列Primer sequence (5′-3′) |
---|---|
T-LjbHLH34-F | ATGGTTTCCGCGGAAAACACC |
T-LjbHLH34-R | TTAGGCAGCTGGTGGTCGGAG |
M13-F | TGTAAAACGACGGCCAGT |
pCAMBIA1307-LjbHLH34-F | |
pCAMBIA1307-LjbHLH34-R | |
pCAMBIA1307-F | AGGAAGTTCATTTCATTTGGA |
pAN580-LjbHLH34-F | |
pAN580-LjbHLH34-R | |
PAN580-F | ATGACGCACAATCCCACTATCC |
pGBKT7-LjbHLH34-F | |
pGBKT7-LjbHLH34-R | |
T7-F | TAATACGACTCACTATAGG |
qLj-actin3-F | GTATTGTTGGCCGACCTCGT |
qLj-actin3-R | AGCCTCAGTTAGAAGCACCG |
qLj-bHLH34-F | ATGCAGTTCGAGTGGTGACG |
qLj-bHLH34-R | AGACGGCAAAAATTGCCACA |
qAt-actin7-F | TCCATGAAACAACTTACAACTCCATCA |
qAt-actin7-R | CATCGTACTCACTCTTTGAAATCCACA |
qAtCAT1-F | GAGATCCCCGTGGTTTTGCT |
qAtCAT1-R | TGTGCAAACTCTCTGGGTGG |
qAtCAT3-F | AGCTTCCAGTCAATGCTCCC |
qAtCAT3-R | GTGAGACGTGGCTCCGATAG |
qAtRD22-F | TTCGTCTTCCTCTGATCTGTCTTC |
qAtRD22-R | TTTACTCCGCCTTTACCTACTTGG |
1 | Szczyglowski K, Stougaard J. Lotus genome: Pod of gold for legume research. Trends in Plant Science, 2008, 13(10): 515-517. |
2 | Choi H K, Mun J H, Kim D J, et al. Estimating genome conservation between crop and model legume species. Proceedings of the National Academy of Sciences, 2004, 101(43): 15289-15294. |
3 | Calzadilla P I, Signorelli S, Escaray F J, et al. Photosynthetic responses mediate the adaptation of two Lotus japonicus ecotypes to low temperature. Plant Science, 2016, 250: 59-68. |
4 | Signorelli S, Corpas F J, Borsani O, et al. Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Science, 2013, 201/202: 137-146. |
5 | Díaz P, Monza J, Márquez A. Drought and saline stress. Springer Netherlands, 2005, DOI: 10.1007/1-4020-3735-X_3. |
6 | Gong Z Z, Xiong L M, Shi H Z, et al. Plant abiotic stress response and nutrient use efficiency.Science China (Life Sciences), 2020, 63(5): 635-674. |
7 | Xie Y P, Chen P X, Yan Y, et al. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple. New Phytologist, 2018, 218(1): 201-218. |
8 | Samira R, Li B H, Kliebenstein D, et al. The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis. Plant Molecular Biology, 2018, 97(4/5): 297-309. |
9 | Govind G, Harshavardhan T G, Patricia J K, et al. Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Molecular Genetics and Genomics, 2009, 281(6): 607. |
10 | Jin J P, Zhang H, Kong L, et al. PlantTFDB 3.0: A portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Research, 2014, 42: D1182-D1187. |
11 | Heim M A, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution, 2003, 20(5): 735-747. |
12 | Feller A, Machemer K, Braun E L, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal: For Cell and Molecular Biology, 2011, 66(1): 94-116. |
13 | Zhu L L, Zhou B. Regulation of bHLH protein in plant development and abiotic stress. Molecular Plant Breeding, 2021, http://kns.cnki.net/kcms/detail/46.1068.S.20210222.1744.012.html. |
朱璐璐, 周波. bHLH蛋白在植物发育及非生物胁迫中的调控. 分子植物育种, 2021, http://kns.cnki.net/kcms/detail/46.1068.S.20210222.1744.012.html. | |
14 | Ren Y R, Yang Y Y, Zhao Q, et al. MdCIB1, an apple bHLH transcription factor, plays a positive regulator in response to drought stress. Environmental and Experimental Botany, 2021, 188: 1-11. |
15 | Pillitteri L J, Torii K U. Breaking the silence: Three bHLH proteins direct cell-fate decisions during stomatal development. Bioessays, 2010, 29(9): 861-870. |
16 | Zhao M, Morohashi K, Hatlestad G, et al. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development, 2008, 135(11): 1991-1999. |
17 | Abe H. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15(1): 63-78. |
18 | Liu W W, Tai H H, Li S S, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytologist, 2014, 201(4): 1192-1204. |
19 | Li H G, Sun J Q, Xu Y X, et al. The bHLH-type transcription factor AtAIB positively regulates ABA response in Arabidopsis. Plant Molecular Biology, 2007, 65(5): 655-665. |
20 | Min J H, Ju H W, Yoon D, et al. Arabidopsis basic helix-loop-helix 34 (bHLH34) is involved in glucose signaling through binding to a GAGA Cis-element. Frontiers in Plant Science, 2017, 8: 1-14. |
21 | Seo J S, Joo J, Kim M J, et al. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. The Plant Journal, 2011, 65(6): 907-921. |
22 | Chen C, Liu F, Zhang K X, et al. MeJA-responsive bHLH transcription factor LjbHLH7 regulates cyanogenic glucoside biosynthesis in Lotus japonicus. Journal of Experimental Botany, 2022, 73(8): 2650-2665. |
23 | Hou Y Y, Li X, Long R C, et al. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
候怡谣, 李霄, 龙瑞才, 等. 过量表达紫花苜蓿MsHB7基因对拟南芥耐旱性的影响. 草业学报, 2021, 30(4): 170-179. | |
24 | Murre C, McCaw P S, Baltimore D. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell, 1989, 56(5): 777-783. |
25 | Atchley W R, Fitch W M. A natural classification of the basic helix-loop-helix class of transcription factors. The Proceedings of the National Academy of Sciences, 1997, 94(10): 5172-5176. |
26 | Toledo-Ortiz G, Huq E, Quail P H. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell, 2003, 15(8): 1749-1770. |
27 | Hao Y Q, Zong X M, Ren P, et al. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences, 2021, 22(13): 1-20. |
28 | Min J H, Park C R, Jang Y H, et al. A basic helix-loop-helix 104 (bHLH104) protein functions as a transcriptional repressor for glucose and abscisic acid signaling in Arabidopsis. Plant Physiology and Biochemistry, 2019, 136: 34-42. |
29 | Liu Y J, Ji X Y, Nie X G, et al. AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytologist, 2015, 207(3): 692-709. |
30 | Jiang Y, Yang B, Deyholos M K. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Molecular Genetics and Genomics, 2009, 282(5): 503-516. |
31 | Zhao Q, Fan Z H, Qiu L, et al. MdbHLH130, an apple bHLH transcription factor, confers water stress resistance by regulating stomatal closure and ROS homeostasis in transgenic tobacco. Frontiers in Plant Science, 2020, 11: 1-16. |
32 | Li Z, Liu C, Zhang Y, et al. The bHLH family member ZmPTF1 regulates drought tolerance in maize by promoting root development and abscisic acid synthesis. Journal of Experimental Botany, 2019, 70(19): 5471-5486. |
33 | Zhang H, Wang P H. Determination of relative water, content in plant leaves in vivo. Plant Physiology Communications, 1991, 27(3): 217-219. |
34 | Lanceras J C. Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiology, 2004, 135(1): 384-399. |
35 | Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 2001, 161(3): 613-619. |
36 | Pan L. Multi-Omics analysis reveal molecular mechanisms of drought resistance in annual ryegrass (Lolium multiflorum L.). Chengdu: Sichuan Agricultural University, 2018. |
潘玲. 多组学联合分析揭示多花黑麦草抗旱响应机制研究. 成都: 四川农业大学, 2018. | |
37 | Frugoli J. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiology, 1996, 112(1): 327-336. |
38 | Velinov V, Vaseva I, Zehirov G, et al. Overexpression of the NMig1 gene encoding a NudC domain protein enhances root growth and abiotic stress tolerance in Arabidopsis thaliana. Frontiers in Plant Science, 2020, DOI: 10.3389/fpls.2020.00815. |
39 | Zou J J, Li X D, Ratnasekera D, et al. Arabidopsis calcium-dependent protein kinase8 and catalase3 function in abscisic acid-mediated signaling and H2O2 homeostasis in stomatal guard cells under drought stress. The Plant Cell, 2015, 27(5): 1445-1460. |
40 | Wang R S, Pandey S, Li S, et al. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics, 2011, 12(1): 1-24. |
[1] | Ling-shuang ZENG, Pei-ying LI, Zong-jiu SUN, Xiao-fan SUN. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance [J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. |
[2] | Yi-ting JIN, Wen-hui LIU, Kai-qiang LIU, Guo-ling LIANG, Zhi-feng JIA. Effect of water deficit stress on the chlorophyll fluorescence parameters of Avena sativa ‘Qingyan No.1’ over the whole crop growth period [J]. Acta Prataculturae Sinica, 2022, 31(6): 112-126. |
[3] | Shi-ping SU, Yi LI, Xiao-e LIU, Pei-fang CHONG, Li-shan SHAN, You-li HOU. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica [J]. Acta Prataculturae Sinica, 2022, 31(6): 127-138. |
[4] | Xiao-fan SUN, Yi-long ZHANG, Pei-ying LI, Zong-jiu SUN. Effects of different nitrogen application rates on antioxidant activity and content of substances involved in osmotic adjustment in Cynodon dactylon under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(6): 69-78. |
[5] | Zhi-heng WANG, Yu-qing WEI, Yan-rong ZHAO, Yue-juan WANG. A transcriptomic study of physiological responses to drought and salt stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2022, 31(3): 71-84. |
[6] | Peng-fei GAO, Jing ZHANG, Wei-fang FAN, Bing GAO, Hong-juan HAO, Jian-hui WU. Effects of drought stress on root characteristics structure and physiological characteristics of Potentilla bifurca var. glabrata [J]. Acta Prataculturae Sinica, 2022, 31(2): 203-212. |
[7] | Yu-han WU, Wen-hui LIU, Kai-qiang LIU, Yong-chao ZHANG. Effects of drought stress on leaf senescence and the active oxygen scavenging system of oat seedlings [J]. Acta Prataculturae Sinica, 2022, 31(10): 75-86. |
[8] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[9] | Zhen-feng ZANG, Jie BAI, Cong LIU, Kan-zhuo ZAN, Ming-xiu LONG, Shu-bin HE. Variety specificity of alfalfa morphological and physiological characteristics in response to drought stress [J]. Acta Prataculturae Sinica, 2021, 30(6): 73-81. |
[10] | Qiao-yu LUO, Yan-long WANG, Zhi CHEN, Yong-gui MA, Qi-mei REN, Yu-shou MA. Effect of water stress on proline accumulation and metabolic pathways in Deschampsia caespitosa [J]. Acta Prataculturae Sinica, 2021, 30(5): 75-83. |
[11] | Yi-yao HOU, Xiao LI, Rui-cai LONG, Qing-chuan YANG, Jun-mei KANG, Chang-hong GUO. Effect of overexpression of the alfalfa MsHB7 gene on drought tolerance of Arabidopsis [J]. Acta Prataculturae Sinica, 2021, 30(4): 170-179. |
[12] | Kai-qiang LIU, Wen-hui LIU, Zhi-feng JIA, Guo-ling LIANG, Xiang MA. Effects of drought stress on yield and dry matter accumulation and distribution of Avena sativa cv. Qingyan No.1 [J]. Acta Prataculturae Sinica, 2021, 30(3): 177-188. |
[13] | Dong LI, Hong-tao SHEN, Yan-fang WANG, Yue-hua WANG, Li-jun WANG, Shi-min ZHAO, Ling LIU. Effects of exogenous melatonin on photosynthetic carbon assimilation and endogenous hormones in tobacco seedlings under drought stress [J]. Acta Prataculturae Sinica, 2021, 30(1): 130-139. |
[14] | ZENG Ling-shuang, LI Pei-ying, SUN Xiao-fan, SUN Zong-jiu. A multi-trait evaluation of drought resistance of bermudagrass (Cynodon dactylon) germplasm from different habitats in Xinjiang province [J]. Acta Prataculturae Sinica, 2020, 29(8): 155-169. |
[15] | HOU Jie-ru, DUAN Xiao-yue, LI Zhou, PENG Yan. Cloning and expression analysis of TrSAMDC1 in white clover [J]. Acta Prataculturae Sinica, 2020, 29(8): 170-178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||