Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (10): 75-86.DOI: 10.11686/cyxb2021410
Previous Articles Next Articles
Yu-han WU(), Wen-hui LIU(), Kai-qiang LIU, Yong-chao ZHANG
Received:
2021-11-09
Revised:
2022-02-08
Online:
2022-10-20
Published:
2022-09-14
Contact:
Wen-hui LIU
Yu-han WU, Wen-hui LIU, Kai-qiang LIU, Yong-chao ZHANG. Effects of drought stress on leaf senescence and the active oxygen scavenging system of oat seedlings[J]. Acta Prataculturae Sinica, 2022, 31(10): 75-86.
因素Factors | 叶绿素含量Chl | 类胡萝卜素含量Car | 过氧化氢含量H2O2 | 氧自由基含量O2- |
---|---|---|---|---|
干旱时间Drought time (DT) | 137.592** | 72.904** | 169.602** | 95.278** |
干旱程度Drought degree (DD) | 692.148** | 117.385** | 317.876** | 26.757** |
干旱时间×干旱程度DT×DD | 27.335** | 66.314** | 100.038** | 32.121** |
Table 1 The variance analysis of effects on oat leaf physiological indicators under drought stress
因素Factors | 叶绿素含量Chl | 类胡萝卜素含量Car | 过氧化氢含量H2O2 | 氧自由基含量O2- |
---|---|---|---|---|
干旱时间Drought time (DT) | 137.592** | 72.904** | 169.602** | 95.278** |
干旱程度Drought degree (DD) | 692.148** | 117.385** | 317.876** | 26.757** |
干旱时间×干旱程度DT×DD | 27.335** | 66.314** | 100.038** | 32.121** |
因素Factors | 净光合速率Pn | 蒸腾速率Tr | 气孔导度Gs | 胞间CO2浓度Ci |
---|---|---|---|---|
干旱时间Drought time (DT) | 510.775** | 104.285** | 131.488** | 102.176** |
干旱程度Drought degree (DD) | 1412.088** | 243.187** | 512.582** | 329.770** |
干旱时间×干旱程度DT×DD | 134.985** | 14.767** | 37.173** | 20.407** |
Table 2 The variance analysis of effects on oat gas exchange parameters under drought stress
因素Factors | 净光合速率Pn | 蒸腾速率Tr | 气孔导度Gs | 胞间CO2浓度Ci |
---|---|---|---|---|
干旱时间Drought time (DT) | 510.775** | 104.285** | 131.488** | 102.176** |
干旱程度Drought degree (DD) | 1412.088** | 243.187** | 512.582** | 329.770** |
干旱时间×干旱程度DT×DD | 134.985** | 14.767** | 37.173** | 20.407** |
指标 Index | 干旱时间 Drought time (d) | 干旱程度Drought degree | ||
---|---|---|---|---|
CK | P10 | P20 | ||
净光合速率Pn (μmol·m-2·s-1) | 4 | 15.33±0.03aA | 13.54±0.10aB | 8.82±0.26aC |
7 | 16.04±1.57aA | 9.33±0.22bB | 4.18±0.36bC | |
10 | 15.20±0.81aA | 1.94±0.09cB | 0.31±0.07cC | |
蒸腾速率Tr (mmol·m-2·s-1) | 4 | 4.61±0.47aA | 4.06±0.32aA | 1.90±0.09aB |
7 | 3.90±0.14aA | 2.36±0.20bB | 0.92±0.13bC | |
10 | 3.70±0.60aA | 0.64±0.07cB | 0.26±0.01cB | |
气孔导度Gs (mol·m-2·s-1) | 4 | 0.28±0.03aA | 0.25±0.03aA | 0.10±0.00aB |
7 | 0.26±0.01aA | 0.10±0.01bB | 0.04±0.01bC | |
10 | 0.26±0.01aA | 0.02±0.00cB | 0.01±0.00cC | |
胞间CO2浓度Ci (μmmol·mol-1) | 4 | 288.95±8.06aA | 286.62±6.23aA | 238.39±5.06aB |
7 | 289.63±12.56aA | 233.01±3.61bB | 184.94±7.75bC | |
10 | 273.15±2.21aA | 235.63±8.88bB | 155.25±8.91cC |
Table 3 Changes of gas exchange parameters of oat under different water stress
指标 Index | 干旱时间 Drought time (d) | 干旱程度Drought degree | ||
---|---|---|---|---|
CK | P10 | P20 | ||
净光合速率Pn (μmol·m-2·s-1) | 4 | 15.33±0.03aA | 13.54±0.10aB | 8.82±0.26aC |
7 | 16.04±1.57aA | 9.33±0.22bB | 4.18±0.36bC | |
10 | 15.20±0.81aA | 1.94±0.09cB | 0.31±0.07cC | |
蒸腾速率Tr (mmol·m-2·s-1) | 4 | 4.61±0.47aA | 4.06±0.32aA | 1.90±0.09aB |
7 | 3.90±0.14aA | 2.36±0.20bB | 0.92±0.13bC | |
10 | 3.70±0.60aA | 0.64±0.07cB | 0.26±0.01cB | |
气孔导度Gs (mol·m-2·s-1) | 4 | 0.28±0.03aA | 0.25±0.03aA | 0.10±0.00aB |
7 | 0.26±0.01aA | 0.10±0.01bB | 0.04±0.01bC | |
10 | 0.26±0.01aA | 0.02±0.00cB | 0.01±0.00cC | |
胞间CO2浓度Ci (μmmol·mol-1) | 4 | 288.95±8.06aA | 286.62±6.23aA | 238.39±5.06aB |
7 | 289.63±12.56aA | 233.01±3.61bB | 184.94±7.75bC | |
10 | 273.15±2.21aA | 235.63±8.88bB | 155.25±8.91cC |
因素Factors | 初始荧光量Fo | 最大光化学效率Fv/Fm | 实际光化学效率ΦPSⅡ | 非光化学猝灭NPQ |
---|---|---|---|---|
干旱时间Drought time (DT) | 175.315** | 12.517** | 62.283** | 21.924** |
干旱程度Drought degree (DD) | 0.272 | 27.036** | 121.852** | 33.601** |
干旱时间×干旱程度DT×DD | 40.407** | 7.484** | 13.504** | 7.481** |
Table 4 The variance analysis of effects on oat chlorophyll fluorescence characteristics under drought stress
因素Factors | 初始荧光量Fo | 最大光化学效率Fv/Fm | 实际光化学效率ΦPSⅡ | 非光化学猝灭NPQ |
---|---|---|---|---|
干旱时间Drought time (DT) | 175.315** | 12.517** | 62.283** | 21.924** |
干旱程度Drought degree (DD) | 0.272 | 27.036** | 121.852** | 33.601** |
干旱时间×干旱程度DT×DD | 40.407** | 7.484** | 13.504** | 7.481** |
指标 Index | 干旱时间 Drought time (d) | 干旱程度Drought degree | ||
---|---|---|---|---|
CK | P10 | P20 | ||
初始荧光量 Fo | 4 | 156.40±11.70aB | 168.98±4.26aAB | 181.51±3.50aA |
7 | 154.76±1.37aB | 169.72±5.70aA | 171.98±2.00bA | |
10 | 150.22±5.00aA | 125.43±3.20bB | 105.13±4.21cC | |
最大光化学效率 Fv/Fm | 4 | 0.80±0.12aA | 0.81±0.11aA | 0.80±0.01aA |
7 | 0.82±0.10aA | 0.81±0.10aA | 0.74±0.02bB | |
10 | 0.80±0.00aA | 0.78±0.01bB | 0.69±0.05cC | |
实际光化学效率 ΦPSⅡ | 4 | 0.46±0.01aA | 0.42±0.03aA | 0.33±0.06aB |
7 | 0.43±0.01aA | 0.35±0.02bB | 0.24±0.01bC | |
10 | 0.44±0.05aA | 0.17±0.01cB | 0.14±0.02cB | |
非光化学猝灭 NPQ | 4 | 0.76±0.03aB | 0.71±0.10bB | 1.06±0.03cA |
7 | 0.68±0.18aB | 1.14±0.45bAB | 1.43±0.19bA | |
10 | 0.72±0.02aB | 1.78±0.09aA | 1.69±0.03aA |
Table 5 Changes of fluorescence parameters of oat under different water stress
指标 Index | 干旱时间 Drought time (d) | 干旱程度Drought degree | ||
---|---|---|---|---|
CK | P10 | P20 | ||
初始荧光量 Fo | 4 | 156.40±11.70aB | 168.98±4.26aAB | 181.51±3.50aA |
7 | 154.76±1.37aB | 169.72±5.70aA | 171.98±2.00bA | |
10 | 150.22±5.00aA | 125.43±3.20bB | 105.13±4.21cC | |
最大光化学效率 Fv/Fm | 4 | 0.80±0.12aA | 0.81±0.11aA | 0.80±0.01aA |
7 | 0.82±0.10aA | 0.81±0.10aA | 0.74±0.02bB | |
10 | 0.80±0.00aA | 0.78±0.01bB | 0.69±0.05cC | |
实际光化学效率 ΦPSⅡ | 4 | 0.46±0.01aA | 0.42±0.03aA | 0.33±0.06aB |
7 | 0.43±0.01aA | 0.35±0.02bB | 0.24±0.01bC | |
10 | 0.44±0.05aA | 0.17±0.01cB | 0.14±0.02cB | |
非光化学猝灭 NPQ | 4 | 0.76±0.03aB | 0.71±0.10bB | 1.06±0.03cA |
7 | 0.68±0.18aB | 1.14±0.45bAB | 1.43±0.19bA | |
10 | 0.72±0.02aB | 1.78±0.09aA | 1.69±0.03aA |
因素 Factors | 超氧化物 歧化酶SOD | 过氧化氢酶 CAT | 抗坏血酸过 氧化物酶APX | 谷胱甘肽过氧 化物酶GPX | 脱氢抗坏血酸 还原酶DHAR | 谷胱甘肽 还原酶GR |
---|---|---|---|---|---|---|
干旱时间Drought time (DT) | 670.452** | 2.413 | 0.649 | 23.032** | 21.719** | 5.998 |
干旱程度Drought degree (DD) | 601.082** | 89.800** | 30.032** | 17.910** | 29.933** | 44.709 |
干旱时间×干旱程度DT×DD | 244.314** | 49.034** | 32.713** | 72.259** | 8.202** | 68.187** |
Table 6 The variance analysis of effects on activity of enzymatic antioxidants under different drought stress
因素 Factors | 超氧化物 歧化酶SOD | 过氧化氢酶 CAT | 抗坏血酸过 氧化物酶APX | 谷胱甘肽过氧 化物酶GPX | 脱氢抗坏血酸 还原酶DHAR | 谷胱甘肽 还原酶GR |
---|---|---|---|---|---|---|
干旱时间Drought time (DT) | 670.452** | 2.413 | 0.649 | 23.032** | 21.719** | 5.998 |
干旱程度Drought degree (DD) | 601.082** | 89.800** | 30.032** | 17.910** | 29.933** | 44.709 |
干旱时间×干旱程度DT×DD | 244.314** | 49.034** | 32.713** | 72.259** | 8.202** | 68.187** |
因素 Factors | 抗坏血酸 ASA | 谷胱甘肽 GSH | 脱氢抗坏血酸DHA | 氧化型谷胱甘肽GSSG | 抗坏血酸清除能力ASA/DHA | 谷胱甘肽清除能力GSH/GSSG |
---|---|---|---|---|---|---|
干旱时间Drought time (DT) | 196.468** | 43.573** | 4.183* | 65.876** | 31.198** | 12.772** |
干旱程度Drought degree (DD) | 229.823** | 177.413** | 51.824** | 84.209** | 18.961** | 4.688* |
干旱时间×干旱程度DT×DD | 75.408** | 11.303** | 2.471 | 11.602** | 19.176** | 2.859 |
Table 7 The variance analysis of effects on activity of non-enzymatic antioxidants under different drought stress
因素 Factors | 抗坏血酸 ASA | 谷胱甘肽 GSH | 脱氢抗坏血酸DHA | 氧化型谷胱甘肽GSSG | 抗坏血酸清除能力ASA/DHA | 谷胱甘肽清除能力GSH/GSSG |
---|---|---|---|---|---|---|
干旱时间Drought time (DT) | 196.468** | 43.573** | 4.183* | 65.876** | 31.198** | 12.772** |
干旱程度Drought degree (DD) | 229.823** | 177.413** | 51.824** | 84.209** | 18.961** | 4.688* |
干旱时间×干旱程度DT×DD | 75.408** | 11.303** | 2.471 | 11.602** | 19.176** | 2.859 |
1 | Chaves M M, Pereira J S, Maroco J, et al. How plants cope with water stress in the field. Photosynthesis and Growth. Annals of Botany, 2002, 89(7): 907-916. |
2 | Zhang L, Xin Z, Yu X, et al. Osmotic stress induced cell death in heat is alleviated by tauroursodeoxycholic acid and involves edoplasmic reticulum stress-Related gene expression. Frontiers in Plant Science, 2017, 1(8): 667. |
3 | Lourens P, Frans B. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 2006, 87(7): 1733-1743. |
4 | Freschet G T, Cornelissen J H C, Logtestijn R S P V, et al. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology, 2010, 98(2): 362-373. |
5 | Habap D L, Molina E, Matal D L, et al. High temperature promotes early senescence in primary leaves of sunflower (Helianthus annuus L.) plants. Canadian Journal of Plant Science, 2014, 94(4): 659-669. |
6 | Xing X, Zhou Q, Xing H, et al. Early abscisic acid accumulation regulates ascorbate and glutathione metabolism in soybean leaves under progressive water stress. Journal of Plant Growth Regulation, 2016, 35(3): 865-876. |
7 | Lin D D, Zhao G Q, Ju Z L, et al. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
蔺豆豆, 赵桂琴, 琚泽亮, 等. 15份燕麦材料苗期抗旱性综合评价. 草业学报, 2021, 30(11): 108-121. | |
8 | Sun A, Deng H F, Li K Y, et al. Effects of PEG stress on enzyme activity of oat seedling. Journal of Domestic Animal Ecology, 2012, 33(1): 50-52. |
孙鏖, 邓荟芬, 李科云, 等. PEG胁迫对燕麦苗期保护酶的影响. 家畜生态学报, 2012, 33(1): 50-52. | |
9 | Ehlers W. Transpirations efficiency of oat. Agronomy Journal, 1989, 81(5): 810-817. |
10 | Islam M R, Ren C Z, Zeng Z H, et al. Fertilizer use efficiency of drought-stressed oat (Avena sativa L.) following soil amendment with a water-saving superabsorbent polymer. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 2011, 61(8): 721-729. |
11 | Zhao G Q, Shi S L.The current situation of oat research and production, problems and strategy in Tibetan Plateau. Pratacultural Science, 2004, 21(11): 17-21. |
赵桂琴, 师尚礼. 青藏高原饲用燕麦研究与生产现状,存在问题与对策. 草业科学, 2004, 21(11): 17-21. | |
12 | Cui X X, Hou F J, Chang S H, et al. Comparison of yield and nutritional quality of two oat (Avena sativa) varieties grown in the alpine pastoral region of China. Pratacultural Science, 2018, 35(6): 1489-1495. |
崔雄雄, 侯扶江, 常生华, 等. 高寒牧区两个燕麦品种的产量与品质比较. 草业科学, 2018, 35(6): 1489-1495. | |
13 | Liu W Y, Zhou F, Yang R Q, et al. A study of Avena nuda L. seeding under drought stress. Journal of Shanxi Datong University (Natural Science Edition), 2013, 29(4): 53-55, 75. |
刘文英, 周凤, 杨瑞卿, 等. 干旱胁迫对裸燕麦幼苗生长的影响. 山西大同大学学报(自然科学版), 2013, 29(4): 53-55, 75. | |
14 | Liu J X, Wang J C, Wang R J, et al. Effects of nitric oxide on growth and physiological characteristics of oat seedlings under drought stress. Chinese Journal of Grassland, 2015, 37(2): 41-45. |
刘建新, 王金成, 王瑞娟, 等. 干旱胁迫下一氧化氮对燕麦幼苗生长和生理特性的影响. 中国草地学报, 2015, 37(2): 41-45. | |
15 | Qi H, Xu J, Meng X H, et al. Study on photosynthetic characteristics of oat in seedling stage under water stress.Agricultural Science and Technology Newsletter, 2009(5): 31-34. |
齐华, 许晶, 孟显华, 等. 水分胁迫对燕麦苗期光合特性的影响. 农业科技通讯, 2009(5): 31-34. | |
16 | Wang D. Exogenously applied trehalose protects the structure and function of photosystem Ⅱ (PSⅡ) under heat stress. Shanghai: East China Normal University, 2016. |
王迪. 外源海藻糖在高温胁迫下保护光系统Ⅱ的结构和功能. 上海: 华东师范大学, 2016. | |
17 | Schneider K, Schlegel H G. Production of superoxide radicals by soluble hydrogenase from Alcaligenes eutrophus H16. Biochemical Journal, 1981, 193(1): 99-107. |
18 | Liu Z J,Guo Y K, Bai J G. Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress. Journal of Plant Growth Regulation, 2010, 29(2): 171-183. |
19 | Asish K P A, Anath B D A B, Prasanna M B. Defense potentials to NaCl in a mangrove, Bruguiera parviflora: Differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology, 2004, 161(5): 531-542. |
20 | Zhang J, Kirkham M B. Antioxidant responses to drought in sunflower and sorghum seedlings. New Phytologist, 1996, 132(3): 361-373. |
21 | Yoshiyuki N, Kozi A. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1980, 22(5): 867-880. |
22 | Elia A C, Galarini R, Taticchi M I, et al. Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure. Ecotoxicology & Environmental Safety, 2003, 55(2): 162-167. |
23 | Foyer C H, Halliwell B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 1976, 133(1): 21-25. |
24 | Niu K J. The regulatory mechanism of exogenous 5-aminolevulinic acid on the photosynthesis of Poa pratensis under drought stress. Lanzhou: Gansu Agricultural University, 2018. |
牛奎举. 外源5-氨基乙酰丙酸对干旱胁迫下草地早熟禾光合作用的调控机制. 兰州: 甘肃农业大学, 2018. | |
25 | Yi F Y, Peng K L. Study on the growth characteristics and culture utilization of Eohinochloa crusgalli. Pratacultural Science, 1993, 10(5): 62-64. |
易凤银, 彭科林. 饲用稗草生育特性及栽培利用的研究. 草业科学, 1993, 10(5): 62-64. | |
26 | Pack A I. Current opinion in biotechnology. Elsevier Science, 1998, 3(6): 3-9. |
27 | Zhang H. Physiological and quantitative proteomics study of chloroplast response to Na2CO3 stress in Puccinellia tenuiflora. Harbin: Northeast Forestry University, 2012. |
张恒. 星星草(Puccinellia tenuiflora)叶绿体Na2CO3胁迫应答的生理学与定量蛋白质组学研究. 哈尔滨: 东北林业大学, 2012. | |
28 | Wu X L. Studies on physiological characteristics of different alfalfa varieties. Xianyang: Northwest A & F University, 2008. |
吴晓丽. 不同紫花苜蓿品种的抗旱生理特性比较研究. 咸阳: 西北农林科技大学, 2008. | |
29 | Xu Y P, Hu C M, Zhang W H, et al. Effect of simulated drought stress on photosynthesis related indexes at seedling stage of wild soybeans. Soybean Science, 2013, 32(3): 341-344. |
徐艳平, 胡翠美, 张文会, 等. 干旱胁迫对野生大豆幼苗光合作用相关指标的影响. 大豆科学, 2013, 32(3): 341-344. | |
30 | Schreiber U, Bilger W, Neubauer C. Chlorophyll fluorescence as a nonintrusive indicator for rapid sessment of in vivo photosynthesis. Berlin, Heidelberg: Springer-Verlag, 1995. |
31 | Genty B, Briantai J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. BBA-General Subjects, 1989, 990(1): 87-92. |
32 | Chen M Y. Responses and physiological mechanism of seedling growth of two provenances of quercus variabilis to drought stress. Beijing: Chinese Academy of Forestry, 2019. |
陈梦园. 两个种源栓皮栎幼苗生长对干旱胁迫的响应及生理机制. 北京: 中国林业科学研究院, 2019. | |
33 | Kate M, Johnson G N. Chlorophyll fluorescence-A practical guide. Journal of Experimental Botany, 2000, 51(345): 659-668. |
34 | Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. European Journal of Biochemistry, 1996, 237(2): 323-343. |
35 | Gao C T. Appraisal and appliance of barley germplasm resources. Hohhot: Inner Mongolia Agricultural University, 2005. |
高彩婷. 大麦种质资源评价与利用. 呼和浩特: 内蒙古农业大学, 2005. | |
36 | Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55(1): 373-399. |
37 | Bai J, Tai K, Wu H, et al. Relative contribution of photorespiration and antioxidative mechanisms in Caragana korshinskii under drought conditions across the Loess Plateau. Functional Plant Biology, 2017, 44(11): 10.1071/FP17060. |
38 | Han Y S. Advances of the function of beta-carotene and carotenoid. Journal of China Agricultural University, 1999, 4(1): 5-9. |
韩雅珊. 类胡萝卜素的功能研究进展. 中国农业大学学报, 1999, 4(1): 5-9. | |
39 | Dong S K, Ma Y L, Li S, et al. Effect of drought stress and re-watering on ascorbate-glutathionecycle of soybean. Journal of Northeast Agricultural University, 2018, 49(1): 10-18. |
董守坤, 马玉玲, 李爽, 等. 干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响. 东北农业大学学报, 2018, 49(1): 10-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||