Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (2): 65-74.DOI: 10.11686/cyxb2022035
Previous Articles Next Articles
Li-zhu GUO1(), Hui-zhen MENG1,2, Xi-feng FAN1, Ke TENG1, Wen-jun TENG1, Hai-feng WEN1, Yue-sen YUE1, Hui ZHANG1, Ju-ying WU1()
Received:
2022-01-18
Revised:
2022-04-09
Online:
2023-02-20
Published:
2022-12-01
Contact:
Ju-ying WU
Li-zhu GUO, Hui-zhen MENG, Xi-feng FAN, Ke TENG, Wen-jun TENG, Hai-feng WEN, Yue-sen YUE, Hui ZHANG, Ju-ying WU. Physiological responses of female and male Buchloe dactyloides plants to different nitrogen forms[J]. Acta Prataculturae Sinica, 2023, 32(2): 65-74.
项目 Item | 对照 N-free (CK) | 硝态氮 NO3-N (N1) | 铵态氮 NH4+-N (N2) | 混合态氮 NO3-N∶NH4+-N=1∶1 (N3) |
---|---|---|---|---|
氯化钾 KCl | 1.25 | - | 1.5 | 0.25 |
六水氯化钙 CaCl2·6H2O | 1.25 | - | 1.25 | - |
七水硫酸镁 MgSO4·7H2O | 0.5 | 0.5 | 0.5 | 0.5 |
磷酸二氢钾 KH2(PO4) | 0.25 | 0.25 | - | - |
硝酸钾 KNO3 | - | 1.25 | - | 1.25 |
四水硝酸钙 Ca(NO3)2·4H2O | - | 1.25 | - | 1.25 |
磷酸二氢铵 NH4H2PO4 | - | - | 0.25 | 0.25 |
氯化铵 NH4Cl | - | - | 3.5 | 3.5 |
硼酸 H3BO3 | 0.0116 | 0.0116 | 0.0116 | 0.0116 |
四水氯化锰 MnCl2·4H2O | 0.0046 | 0.0046 | 0.0046 | 0.0046 |
七水硫酸锌 ZnSO4·7H2O | 0.00019 | 0.00019 | 0.00019 | 0.00019 |
钼酸钠 Na2MoO4 | 0.00012 | 0.00012 | 0.00012 | 0.00012 |
五水硫酸铜 CuSO4·5H2O | 0.00008 | 0.00008 | 0.00008 | 0.00008 |
七水硫酸亚铁 FeSO4·7H2O | 0.0125 | 0.0125 | 0.0125 | 0.0125 |
乙二酸四乙胺二钠 Na2EDTA | 0.0125 | 0.0125 | 0.0125 | 0.0125 |
Table 1 Nutrient solution composition of nitrogen form treatments (mmol·L-1)
项目 Item | 对照 N-free (CK) | 硝态氮 NO3-N (N1) | 铵态氮 NH4+-N (N2) | 混合态氮 NO3-N∶NH4+-N=1∶1 (N3) |
---|---|---|---|---|
氯化钾 KCl | 1.25 | - | 1.5 | 0.25 |
六水氯化钙 CaCl2·6H2O | 1.25 | - | 1.25 | - |
七水硫酸镁 MgSO4·7H2O | 0.5 | 0.5 | 0.5 | 0.5 |
磷酸二氢钾 KH2(PO4) | 0.25 | 0.25 | - | - |
硝酸钾 KNO3 | - | 1.25 | - | 1.25 |
四水硝酸钙 Ca(NO3)2·4H2O | - | 1.25 | - | 1.25 |
磷酸二氢铵 NH4H2PO4 | - | - | 0.25 | 0.25 |
氯化铵 NH4Cl | - | - | 3.5 | 3.5 |
硼酸 H3BO3 | 0.0116 | 0.0116 | 0.0116 | 0.0116 |
四水氯化锰 MnCl2·4H2O | 0.0046 | 0.0046 | 0.0046 | 0.0046 |
七水硫酸锌 ZnSO4·7H2O | 0.00019 | 0.00019 | 0.00019 | 0.00019 |
钼酸钠 Na2MoO4 | 0.00012 | 0.00012 | 0.00012 | 0.00012 |
五水硫酸铜 CuSO4·5H2O | 0.00008 | 0.00008 | 0.00008 | 0.00008 |
七水硫酸亚铁 FeSO4·7H2O | 0.0125 | 0.0125 | 0.0125 | 0.0125 |
乙二酸四乙胺二钠 Na2EDTA | 0.0125 | 0.0125 | 0.0125 | 0.0125 |
处理 Treatments | 雌株Female | 雄株Male | ||||||
---|---|---|---|---|---|---|---|---|
全氮 Total nitrogen (%) | 叶绿素a Chla (mg·g-1) | 叶绿素b Chlb (mg·g-1) | 叶绿素总量 Chl (mg·g-1) | 全氮 Total nitrogen (%) | 叶绿素a Chla (mg·g-1) | 叶绿素b Chlb (mg·g-1) | 叶绿素总量 Chl (mg·g-1) | |
CK | 1.520±0.10c | 0.620±0.08b | 0.103±0.02 | 0.723±0.09b | 0.799±0.07c | 0.411±0.06c | 0.202±0.02 | 0.613±0.08b |
N1 | 1.681±0.18bc | 0.795±0.12a | 0.128±0.02 | 0.924±0.14a | 1.542±0.09a | 0.610±0.11a | 0.276±0.11 | 0.886±0.10a |
N2 | 1.832±0.15b | 0.763±0.14ab | 0.117±0.03 | 0.880±0.16ab | 1.391±0.06b | 0.546±0.09b | 0.255±0.09 | 0.801±0.08ab |
N3 | 2.021±0.10a | 0.723±0.09ab | 0.116±0.01 | 0.838±0.10ab | 1.448±0.09ab | 0.477±0.07bc | 0.229±0.02 | 0.705±0.09b |
Table 2 Effects of nitrogen forms on chlorophyll and nitrogen content of female and male buffalograss (mean±SD)
处理 Treatments | 雌株Female | 雄株Male | ||||||
---|---|---|---|---|---|---|---|---|
全氮 Total nitrogen (%) | 叶绿素a Chla (mg·g-1) | 叶绿素b Chlb (mg·g-1) | 叶绿素总量 Chl (mg·g-1) | 全氮 Total nitrogen (%) | 叶绿素a Chla (mg·g-1) | 叶绿素b Chlb (mg·g-1) | 叶绿素总量 Chl (mg·g-1) | |
CK | 1.520±0.10c | 0.620±0.08b | 0.103±0.02 | 0.723±0.09b | 0.799±0.07c | 0.411±0.06c | 0.202±0.02 | 0.613±0.08b |
N1 | 1.681±0.18bc | 0.795±0.12a | 0.128±0.02 | 0.924±0.14a | 1.542±0.09a | 0.610±0.11a | 0.276±0.11 | 0.886±0.10a |
N2 | 1.832±0.15b | 0.763±0.14ab | 0.117±0.03 | 0.880±0.16ab | 1.391±0.06b | 0.546±0.09b | 0.255±0.09 | 0.801±0.08ab |
N3 | 2.021±0.10a | 0.723±0.09ab | 0.116±0.01 | 0.838±0.10ab | 1.448±0.09ab | 0.477±0.07bc | 0.229±0.02 | 0.705±0.09b |
1 | Slate M L, Rosenstiel T N, Eppley S M. Sex-specific morphological and physiological differences in the moss Ceratodon purpureus (Dicranales). Annals of Botany, 2017, 120(5): 845-854. |
2 | Li N, Meng Z W, Tao M J, et al. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L. BMC Genomics, 2020, 21(1): 850. |
3 | Barrett S C H, Hough J. Sexual dimorphism in flowering plants. Journal of Experimental Botany, 2013, 63(2): 695-709. |
4 | Retuerto R, Vilas J S, Varga S. Sexual dimorphism in response to stress. Environmental and Experimental Botany, 2018, 146: 1-4. |
5 | Juvany M, Munné-Bosch S. Sex-related differences in stress tolerance in dioecious plants: A critical appraisal in a physiological context. Journal of Experimental Botany, 2015, 66(20): 6083-6092. |
6 | Xia Z C, He Y, Zhou B, et al. Sex-related responses in rhizosphere processes of dioecious Populus cathayana exposed to drought and low phosphorus stress. Environmental and Experimental Botany, 2020, 175: 104049. |
7 | Qian Y Q, Sun Z Y, Han L, et al. Photosynthate integration and regulation within clones of buffalograss under heterogeneous water supply. Acta Ecologica Sinica, 2010, 30(15): 3966-3973. |
钱永强, 孙振元, 韩蕾, 等. 异质水分环境下野牛草相连分株间光合同化物的生理整合及其调控. 生态学报, 2010, 30(15): 3966-3973. | |
8 | Li Y X, Wang X G, Cong L L, et al. Zymogram analysis of different sexual Buchloe dactyloide. Acta Agrestia Sinica, 2012, 20(3): 530-535. |
李永祥, 王显国, 丛丽丽, 等. 不同性别野牛草同工酶酶谱分析. 草地学报, 2012, 20(3): 530-535. | |
9 | Johnson P G, Riordan T P, Johnson-Cicalese J. Low-mowing tolerance in buffalograss. Crop Science, 2000, 40: 1339-1343. |
10 | Quinn J A, James L E. Life-history strategies and sex ratios for a cultivar and wild population of (Buchloe dacyloides (Nutt.) Engelm). American Journal of Botany, 1986, 73(6): 874-881. |
11 | Li D Y. Different response to water deficient male and female plants of buffalograss. Acta Horticulturae Sinica, 1996, 23(1): 62-66. |
李德颖. 野牛草雌雄单性植株对水分胁迫反应的差异. 园艺学报, 1996, 23(1): 62-66. | |
12 | Tatiana K, Gras D E, Gutiérrez A G, et al. A holistic view of nitrogen acquisition in plants.Journal of Experimental Botany, 2011, 62(4): 1455-1466. |
13 | Kaur B, Kaur G, Asthir B. Biochemical aspects of nitrogen use efficiency: An overview. Journal of Plant Nutrition, 2017, 40(4): 506-523. |
14 | Xu G, Fan X, Miller A. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology, 2012, 63: 153-182. |
15 | Britto D T, Kronzucker H J. Ecological significance and complexity of N-source preference in plants. Annals of Botany, 2013, 112(6): 957-963. |
16 | Zou N, Huang L, Chen H J, et al. Nitrogen form plays an important role in the growth of moso bamboo (Phyllostachys edulis) seedlings. Peer J, 2020, 8(6): e9938. |
17 | Tehryung K, Mills H, Wetzstein H. Studies on effects of nitrogen form on growth, development, and nutrient uptake in pecan. Journal of Plant Nutrition, 2002, 25(3): 497-508. |
18 | Fan M Y, Pan K X, Han W J, et al. A strategy for introducing an endangered plant Mosla hangchowensis to urban area based on nitrogen preference. Acta Physiologiae Plantarum, 2016, 38(11): 265. |
19 | Hachiya T, Sakakibara H. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 2017, 68(10): 2501-2512. |
20 | Bauer B, Wir E N V. Modulating tiller formation in cereal crops by the signaling function of fertilizer nitrogen forms. Scientific Reports, 2020,10: 20504. |
21 | Zhang Y L. Effects of N form on photosynthetic electron allocation and xanthophyll cycle activity of cucumber and rice. Hangzhou: Zhejiang University, 2007. |
张一利. 不同氮素形态对黄瓜和水稻光合电子传递及叶黄素循环的影响. 杭州: 浙江大学, 2007. | |
22 | Piñero M C, Perez-Jimenez M, Lopez-Marin J, et al. Differential effect of the nitrogen form on the leaf gas exchange, amino acid composition, and antioxidant response of sweet pepper at elevated CO2 . Plant Growth Regulation, 2018, 86: 37-48. |
23 | Sun Y D, Luo W R, Liu H C. Effects of different nitrogen forms on the nutritional quality and physiological characteristics of Chinese chive seedlings. Plant Soil & Environment, 2014, 60(5): 216-220. |
24 | Saleh S, Liu G, Liu M, et al. Do NH4∶NO3 ratio and harvest time affect celery (Apium graveolens) productivity and product quality? Folia Horticulturae, 2019, 31(2): 343-353. |
25 | Pompeiano A, Patton A J. Growth and root architecture responses of zoysiagrass to changes in fertilizer nitrate∶urea ratio. Journal of Plant Nutrition and Soil Science, 2017, 180: 528-534. |
26 | Guo H R, Wu S L, Lu X L, et al. Effects of different nitrogen supply forms on the growth and quality of Zoysia japonica cv. lanyin No. 3. Journal of Huazhong Agricultural University, 2008, 27(1): 59-64. |
郭和蓉, 吴淑龙, 卢小良, 等. 氮形态对兰引3号结缕草(Zoysia japonica cv. lanyin No.3)生长及草坪质量的影响. 华中农业大学学报, 2008, 27(1): 59-64. | |
27 | Frank K W, Gaussoin R E, Riordan T P, et al. Nitrogen rate and mowing height effects on turf-type buffalograss. Crop Science, 2004, 44(5): 1615-1621. |
28 | Springer T L, Taliaferro C M, Hattey J A. Nitrogen source and rate effects on the production of buffalograss forage grown with irrigation. Crop Science, 2005, 45(2): 668-672. |
29 | Alderman E J, Hoyle J A, Keeley S J, et al. Buffalograss divot recovery as affected by nitrogen source and rate. Crop, Forage & Turfgrass Management, 2017, 3: cftm2016.06.0044. |
30 | Darwin C. The different forms of flowers on plants of the same species. Cambridge: Cambridge University Press, 1877. |
31 | Quinn J A. Relationship between synaptospermy and dioecy in the life history strategies of Buchloe dactyloides (Gamineae). American Journal of Botany, 1987, 74(8): 1167-1172. |
32 | deLima C P, Backes C, Santos A J M, et al. Nutrients quantities extracted by bermuda grass in function of nitrogen doses. Bioscience Journal, 2015, 31(5): 1432-1440. |
33 | Jiang Y, Li Y, Nie G, et al. Leaf and root growth, carbon and nitrogen contents, and gene expression of perennial ryegrass to different nitrogen supplies. Journal of the American Society for Horticultural Science, 2016, 141(6): 555-562. |
34 | Niu Z M, Zhang G B, Liu Z F, et al. Effects of different nitrogen forms on nutrient uptake, yield formation and quality of cabbage. Acta Prataculturae Sinica, 2013, 22(6): 68-76. |
牛振明, 张国斌, 刘赵帆, 等. 氮素形态及配比对甘蓝养分吸收、产量以及品质的影响. 草业学报, 2013, 22(6): 68-76. | |
35 | Britto D T, Herbert J, Kronzucker. NH4 + toxicity in higher plants: A critical review. Journal of Plant Physiology, 2002, 159: 567-584. |
36 | Esteban R, Ariz I, Cruz C, et al. Review: Mechanisms of ammonium toxicity and the quest for tolerance. Plant Science, 2016, 248: 92-101. |
37 | Roosta H, Estaji A, Niknam F. Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica, 2018, 56(2): 606-615. |
38 | Dai T B, Cao W X, Sun C F, et al. Effect of enhanced ammonium nutrition on photosynthesis and nitrate reductase and glutamine synthetase activities of winter wheat. Chinese Journal of Applied Ecology, 2003, 14(9): 1529-1532. |
戴廷波, 曹卫星, 孙传范, 等. 增铵营养对小麦光合作用及硝酸还原酶和谷氨酰胺合成酶的影响. 应用生态学报, 2003, 14(9): 1529-1532. | |
39 | Miflin B J, Dimah Z H. The role of glutamine systhetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. Journal of Experimental Botany, 2002, 53(370): 979-987. |
40 | Pang Q Q, Chen R Y, Liu H C, et al. Effects of fulvic acid on the growth and activities of nitrogen metabolism enzymes in pakchoi under NO3 - stress. Acta Agriculturae Zhejiangensis, 2015, 27(12): 2136-2140. |
庞强强, 陈日远, 刘厚诚, 等. 硝酸盐胁迫下黄腐酸对小白菜生长及氮代谢相关酶活性的影响. 浙江农业学报, 2015, 27(12): 2136-2140. | |
41 | Lam H M, Coschigano K T, Oliveira I C, et al. The molecular genetics of nitrogen assimilation into amino acids in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 569-593. |
[1] | Wen-ting GUO, Guo-hua WANG, Qian-qian GOU, Jing LIU. Module growth and biomass allocation of three typical Chenopodiaceae annuals in a typical desert-oasis ecotone of the Hexi Corridor in Gansu Province, China [J]. Acta Prataculturae Sinica, 2022, 31(2): 25-38. |
[2] | Bo-kun ZOU, Xin-ming WANG, Zhang-shan CHU, Xin-hui HUANG, Yu-feng CHEN, Yong-qiang QIAN. Effects of nitrogen forms on growth and nitrogen assimilation and utilization of Buchloe dactyloides [J]. Acta Prataculturae Sinica, 2022, 31(11): 118-127. |
[3] | Meng-han WANG, Li-li DONG, Fu-cui LI, Lie-bao HAN, Xiang WANG. Effects of different organic ∶inorganic nitrogen addition ratios on nitrogen distribution and transformation in a grassland soil [J]. Acta Prataculturae Sinica, 2022, 31(1): 36-46. |
[4] | Qing XUE, Bin CHEN, Xiao-mei YANG, Yu-jia YANG, Zi-wei LI, Shan BO, Miao HE. Biomass allocation, water use characteristics, and photosynthetic light response of four Commelinaceae plants under different light intensities [J]. Acta Prataculturae Sinica, 2022, 31(1): 69-80. |
[5] | Feng-hui GUO, Yong DING, Wen-jing MA, Xian-song LI, Xi-liang LI, Xiang-yang HOU. Maternal grazing exposure altered the responses of Leymus chinensis cloned offspring to drought environment [J]. Acta Prataculturae Sinica, 2021, 30(8): 119-126. |
[6] | Lei PENG, Li ZHANG, Xiao-long ZHOU, Yan-bo WAN, Qing-dong SHI. Effects of water stress on life history strategy of Salsola nitraria in Zhundong, Xinjiang [J]. Acta Prataculturae Sinica, 2021, 30(5): 65-74. |
[7] | FAN Gao-Hua, HUANG Ying-Xin, ZHAO Xue-Yong, SHEN Xiang-Jin. Effect of population density on the allometric growth of Agriophyllum squarrosum [J]. Acta Prataculturae Sinica, 2017, 26(3): 53-64. |
[8] | FAN Xing, CAI Jian, LIU Jin-Ping, LI Ying, ZHANG Xiao-Jing, ZENG Xiao-Lin. Effect of partial shading on the morphological plasticity and biomass allocation of Potentilla anserina [J]. Acta Prataculturae Sinica, 2016, 25(3): 172-180. |
[9] | LIU Xiu-xiang, YANG Yun-fei. Allometry analysis of reproductive ramets of Phragmites australis populations from different habitats in the Songnen Plain of China [J]. Acta Prataculturae Sinica, 2012, 21(4): 313-318. |
[10] | WU Jian-shuang, SHEN Zhen-xi, ZHANG Xian-zhou, FU Gang. Effect of nitrogen fertilizer application on Elymus nutans biomass allocationin an alpine meadow zone on the Tibetan Plateau [J]. Acta Prataculturae Sinica, 2009, 18(6): 113-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||