Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (3): 224-233.DOI: 10.11686/cyxb2022133
Jing WANG(), Ling-ying KONG, Jian-feng XU, Jing KANG, Zhen-feng SHEN, Ting LIU()
Received:
2022-03-25
Revised:
2022-04-28
Online:
2023-03-20
Published:
2022-12-30
Contact:
Ting LIU
Jing WANG, Ling-ying KONG, Jian-feng XU, Jing KANG, Zhen-feng SHEN, Ting LIU. Effects of particle size on Uraria crinita rumen in-vitro fermentation characteristics and microbial population in lambs[J]. Acta Prataculturae Sinica, 2023, 32(3): 224-233.
项目Items | 含量Content |
---|---|
饲粮组成Diet compostition | |
玉米Corn (%) | 12.76 |
米糠Rice bran (%) | 45.41 |
豆粕Soybean meal (%) | 1.63 |
棉籽粕Cottonseed meal (%) | 22.29 |
菜籽粕Rapeseed meal (%) | 0.86 |
食盐NaCl (%) | 0.68 |
预混料Premix1 (%) | 0.50 |
猫尾草U. crinite (%) | 15.87 |
合计Total (%) | 100.00 |
营养水平Nutritional level | |
代谢能Metabolic energy2 (MJ·kg -1) | 10.09 |
干物质Dry matter (%) | 89.41 |
粗蛋白质Crude protein (%) | 16.49 |
中性洗涤纤维Neutral detergent fiber (%) | 33.30 |
淀粉Starch (%) | 24.00 |
饲草来源中性洗涤纤维Neutral detergent fiber from forage grass (%) | 10.00 |
Table 1 Dietary composition and nutrient composition (dry matter basis)
项目Items | 含量Content |
---|---|
饲粮组成Diet compostition | |
玉米Corn (%) | 12.76 |
米糠Rice bran (%) | 45.41 |
豆粕Soybean meal (%) | 1.63 |
棉籽粕Cottonseed meal (%) | 22.29 |
菜籽粕Rapeseed meal (%) | 0.86 |
食盐NaCl (%) | 0.68 |
预混料Premix1 (%) | 0.50 |
猫尾草U. crinite (%) | 15.87 |
合计Total (%) | 100.00 |
营养水平Nutritional level | |
代谢能Metabolic energy2 (MJ·kg -1) | 10.09 |
干物质Dry matter (%) | 89.41 |
粗蛋白质Crude protein (%) | 16.49 |
中性洗涤纤维Neutral detergent fiber (%) | 33.30 |
淀粉Starch (%) | 24.00 |
饲草来源中性洗涤纤维Neutral detergent fiber from forage grass (%) | 10.00 |
细菌Bacteria species | 引物序列Primer sequence (5′-3′) | 片段长度Length (bp) | 参考来源Source of reference |
---|---|---|---|
总菌Total bacteria | F: CGGCAACGAGCGCAACCC R: CCATTGTAGCACGTGTGTAGCC | 130 | Denman等[ |
溶纤维丁酸弧菌B. fibrisolvens | F: TAACATGAGTTTGATCCTGGCTC R: CGTTACTCACCCGTCCGC | 136 | Lin等[ |
产琥珀酸丝状杆菌F. succinogenes | F: GTTCGGAATTACTGGGCGTAAA R: CGCCTGCCCCTGAACTATC | 121 | Denman等[ |
白色瘤胃球菌R. albus | F: GTTTTAGGATTGTAAACCTCTGTCTT R: CCTAATATCTACGCATTTCACCGC | 270 | El-Nor等[ |
甲烷杆菌Methanobacteriaceae | F: CGWAGGGAAGCTGTTAAGT R: GTTGARTCCAATTAAACCGCA | 343 | Yu等[ |
总产甲烷菌Total Methanogens | F: GGATTAGATACCCSGGTAGT R: GTTGARTCCAATTAAACCGCA | 192 | Hook等[ |
Table 2 Rumen microbial primer sequence
细菌Bacteria species | 引物序列Primer sequence (5′-3′) | 片段长度Length (bp) | 参考来源Source of reference |
---|---|---|---|
总菌Total bacteria | F: CGGCAACGAGCGCAACCC R: CCATTGTAGCACGTGTGTAGCC | 130 | Denman等[ |
溶纤维丁酸弧菌B. fibrisolvens | F: TAACATGAGTTTGATCCTGGCTC R: CGTTACTCACCCGTCCGC | 136 | Lin等[ |
产琥珀酸丝状杆菌F. succinogenes | F: GTTCGGAATTACTGGGCGTAAA R: CGCCTGCCCCTGAACTATC | 121 | Denman等[ |
白色瘤胃球菌R. albus | F: GTTTTAGGATTGTAAACCTCTGTCTT R: CCTAATATCTACGCATTTCACCGC | 270 | El-Nor等[ |
甲烷杆菌Methanobacteriaceae | F: CGWAGGGAAGCTGTTAAGT R: GTTGARTCCAATTAAACCGCA | 343 | Yu等[ |
总产甲烷菌Total Methanogens | F: GGATTAGATACCCSGGTAGT R: GTTGARTCCAATTAAACCGCA | 192 | Hook等[ |
项目 Items | 猫尾草粒度 Particle size of U. crinita | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1.00 mm | 2.36 mm | 3.35 mm | 4.75 mm | 8.00 mm | 12.50 mm | |||
体外干物质降解率In vitro dry matter degradability | 87.77a | 85.99abc | 86.97ab | 83.27c | 83.92bc | 83.04c | 0.61 | 0.030 |
体外粗蛋白质降解率In vitro crude protein degradability | 24.31d | 25.61cd | 26.22bcd | 29.16abc | 30.17ab | 31.43a | 2.77 | 0.002 |
体外中性洗涤纤维降解率In vitro neutral detergent fiber degradability | 61.32a | 62.33a | 59.28ab | 58.04ab | 52.54bc | 49.38c | 5.12 | 0.005 |
体外酸性洗涤纤维降解率In vitro acid detergent fiber degradability | 51.39a | 50.36a | 50.95a | 51.20a | 49.69a | 50.20a | 1.54 | 0.933 |
Table 3 Effects of fermentation in vitro for 48 h on nutrient degradability of U. crinita with different particle sizes (%)
项目 Items | 猫尾草粒度 Particle size of U. crinita | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1.00 mm | 2.36 mm | 3.35 mm | 4.75 mm | 8.00 mm | 12.50 mm | |||
体外干物质降解率In vitro dry matter degradability | 87.77a | 85.99abc | 86.97ab | 83.27c | 83.92bc | 83.04c | 0.61 | 0.030 |
体外粗蛋白质降解率In vitro crude protein degradability | 24.31d | 25.61cd | 26.22bcd | 29.16abc | 30.17ab | 31.43a | 2.77 | 0.002 |
体外中性洗涤纤维降解率In vitro neutral detergent fiber degradability | 61.32a | 62.33a | 59.28ab | 58.04ab | 52.54bc | 49.38c | 5.12 | 0.005 |
体外酸性洗涤纤维降解率In vitro acid detergent fiber degradability | 51.39a | 50.36a | 50.95a | 51.20a | 49.69a | 50.20a | 1.54 | 0.933 |
处理时长 Treatment time (h) | 猫尾草粒度 Particle size of U. crinite | SEM | P值P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1.00 mm | 2.36 mm | 3.35 mm | 4.75 mm | 8.00 mm | 12.50 mm | 时间 Time | 粒度 Particle size | 时间×粒度 Time×Particle size | ||
3 | 5.80 | 5.81 | 5.83 | 5.80 | 5.76 | 5.78 | 0.09 | <0.001 | 0.040 | 0.990 |
6 | 5.74 | 5.72 | 5.76 | 5.77 | 5.75 | 5.76 | ||||
9 | 5.72 | 5.72 | 5.76 | 5.76 | 5.74 | 5.77 | ||||
12 | 5.70 | 5.70 | 5.75 | 5.78 | 5.75 | 5.75 | ||||
24 | 5.74 | 5.70 | 5.86 | 5.80 | 5.82 | 5.75 | ||||
48 | 5.78 | 5.79 | 5.91 | 5.94 | 5.87 | 5.82 |
Table 4 Dynamic pH value in vitro fermentation of U. crinita with different particle sizes
处理时长 Treatment time (h) | 猫尾草粒度 Particle size of U. crinite | SEM | P值P-value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1.00 mm | 2.36 mm | 3.35 mm | 4.75 mm | 8.00 mm | 12.50 mm | 时间 Time | 粒度 Particle size | 时间×粒度 Time×Particle size | ||
3 | 5.80 | 5.81 | 5.83 | 5.80 | 5.76 | 5.78 | 0.09 | <0.001 | 0.040 | 0.990 |
6 | 5.74 | 5.72 | 5.76 | 5.77 | 5.75 | 5.76 | ||||
9 | 5.72 | 5.72 | 5.76 | 5.76 | 5.74 | 5.77 | ||||
12 | 5.70 | 5.70 | 5.75 | 5.78 | 5.75 | 5.75 | ||||
24 | 5.74 | 5.70 | 5.86 | 5.80 | 5.82 | 5.75 | ||||
48 | 5.78 | 5.79 | 5.91 | 5.94 | 5.87 | 5.82 |
项目 Items | 猫尾草粒度 Particle size of U. crinita | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1.00 mm | 2.36 mm | 3.35 mm | 4.75 mm | 8.00 mm | 12.50 mm | |||
氨态氮Ammonia nitrogen (mg·L-1) | 119.83 ab | 110.60ab | 80.43b | 80.06b | 127.17ab | 146.58a | 7.17 | 0.010 |
总挥发性脂肪酸Total volatile fatty acid (mmol·L-1) | 24.45ab | 21.37b | 21.84b | 16.04b | 21.83b | 33.72a | 1.55 | 0.005 |
乙酸Acetate (mol·100 mol-1) | 40.53a | 37.21a | 36.66a | 34.77a | 36.55a | 42.96a | 1.36 | 0.572 |
丙酸Propionate (mol·100 mol-1) | 18.75a | 17.29ab | 15.90ab | 12.17b | 15.51ab | 16.86ab | 0.62 | 0.033 |
异丁酸Isobutyrate (mol·100 mol-1) | 0.44b | 0.75a | 0.68ab | 0.56ab | 0.81a | 0.63ab | 0.04 | 0.018 |
丁酸Butyrate (mol·100 mol-1) | 12.27b | 16.56a | 16.73a | 15.85ab | 18.93a | 16.07ab | 0.49 | 0.012 |
异戊酸Isovalerate (mol·100 mol-1) | 2.65b | 5.33a | 4.23ab | 4.30ab | 4.78ab | 3.13ab | 0.28 | 0.029 |
戊酸Valerate (mol·100 mol-1) | 7.95c | 11.92a | 11.33ab | 11.13ab | 11.64ab | 9.42bc | 0.36 | 0.012 |
乙酸/丙酸Acetate/propionate | 2.49a | 2.25a | 2.34a | 2.91a | 2.36a | 2.57a | 0.09 | 0.402 |
Table 5 Effects of different particle sizes of U. crinita on parameters of fermentation broth in vitro for 48 h
项目 Items | 猫尾草粒度 Particle size of U. crinita | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1.00 mm | 2.36 mm | 3.35 mm | 4.75 mm | 8.00 mm | 12.50 mm | |||
氨态氮Ammonia nitrogen (mg·L-1) | 119.83 ab | 110.60ab | 80.43b | 80.06b | 127.17ab | 146.58a | 7.17 | 0.010 |
总挥发性脂肪酸Total volatile fatty acid (mmol·L-1) | 24.45ab | 21.37b | 21.84b | 16.04b | 21.83b | 33.72a | 1.55 | 0.005 |
乙酸Acetate (mol·100 mol-1) | 40.53a | 37.21a | 36.66a | 34.77a | 36.55a | 42.96a | 1.36 | 0.572 |
丙酸Propionate (mol·100 mol-1) | 18.75a | 17.29ab | 15.90ab | 12.17b | 15.51ab | 16.86ab | 0.62 | 0.033 |
异丁酸Isobutyrate (mol·100 mol-1) | 0.44b | 0.75a | 0.68ab | 0.56ab | 0.81a | 0.63ab | 0.04 | 0.018 |
丁酸Butyrate (mol·100 mol-1) | 12.27b | 16.56a | 16.73a | 15.85ab | 18.93a | 16.07ab | 0.49 | 0.012 |
异戊酸Isovalerate (mol·100 mol-1) | 2.65b | 5.33a | 4.23ab | 4.30ab | 4.78ab | 3.13ab | 0.28 | 0.029 |
戊酸Valerate (mol·100 mol-1) | 7.95c | 11.92a | 11.33ab | 11.13ab | 11.64ab | 9.42bc | 0.36 | 0.012 |
乙酸/丙酸Acetate/propionate | 2.49a | 2.25a | 2.34a | 2.91a | 2.36a | 2.57a | 0.09 | 0.402 |
项目 Items | 猫尾草粒度 Particle size of U. crinita | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1.00 mm | 2.36 mm | 3.35 mm | 4.75 mm | 8.00 mm | 12.50 mm | |||
总菌Total bacteria | 12.56a | 12.16a | 12.16a | 11.99a | 12.36a | 12.54a | 0.07 | 0.160 |
溶纤维丁酸弧菌B. fibrisolvens | 13.04ab | 13.17a | 12.29bc | 12.21c | 12.68abc | 12.95abc | 0.11 | 0.049 |
产琥珀酸丝状杆菌F. succinogenes | 12.27a | 12.18a | 12.42a | 12.51a | 12.38a | 12.45a | 0.05 | 0.456 |
白色瘤胃球菌R. albus | 16.67a | 16.56a | 15.71a | 16.53a | 16.49a | 16.58a | 0.10 | 0.052 |
甲烷杆菌Methanobacteriaceae | 7.53a | 7.55a | 6.97b | 7.08b | 7.09b | 7.23ab | 0.05 | <0.001 |
总产甲烷菌Total Methanogens | 8.54b | 8.41b | 8.60ab | 8.96a | 8.98a | 8.94a | 0.05 | <0.001 |
Table 6 Effects of different particle sizes of U. crinita on the absolute number of microorganisms in fermentation broth for 48 h [log10(copies·mL-1)]
项目 Items | 猫尾草粒度 Particle size of U. crinita | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1.00 mm | 2.36 mm | 3.35 mm | 4.75 mm | 8.00 mm | 12.50 mm | |||
总菌Total bacteria | 12.56a | 12.16a | 12.16a | 11.99a | 12.36a | 12.54a | 0.07 | 0.160 |
溶纤维丁酸弧菌B. fibrisolvens | 13.04ab | 13.17a | 12.29bc | 12.21c | 12.68abc | 12.95abc | 0.11 | 0.049 |
产琥珀酸丝状杆菌F. succinogenes | 12.27a | 12.18a | 12.42a | 12.51a | 12.38a | 12.45a | 0.05 | 0.456 |
白色瘤胃球菌R. albus | 16.67a | 16.56a | 15.71a | 16.53a | 16.49a | 16.58a | 0.10 | 0.052 |
甲烷杆菌Methanobacteriaceae | 7.53a | 7.55a | 6.97b | 7.08b | 7.09b | 7.23ab | 0.05 | <0.001 |
总产甲烷菌Total Methanogens | 8.54b | 8.41b | 8.60ab | 8.96a | 8.98a | 8.94a | 0.05 | <0.001 |
项目 Items | 总菌 Total bacteria | 溶纤维丁酸弧菌B. fibrisolvens | 产琥珀酸丝状杆菌F. succinogenes | 白色瘤胃球菌 R. albus | 甲烷杆菌 Methanobacteriaceae | 总产甲烷菌 Total Methanogens |
---|---|---|---|---|---|---|
pH | -0.691 | -0.980** | 0.794 | -0.534 | -0.898* | 0.536 |
氨态氮Ammonia nitrogen | 0.836* | 0.731 | -0.218 | 0.576 | 0.384 | 0.216 |
总挥发性脂肪酸Total volatile fatty acid | 0.810 | 0.537 | -0.006 | 0.176 | 0.196 | 0.102 |
乙酸Acetate | 0.880* | 0.638 | -0.129 | 0.337 | 0.413 | -0.032 |
丙酸Propionate | 0.748 | 0.822* | -0.732 | 0.157 | 0.695 | -0.626 |
异丁酸Isobutyrate | -0.263 | 0.000 | -0.112 | -0.260 | -0.289 | 0.116 |
丁酸Butyrate | -0.366 | -0.296 | 0.241 | -0.306 | -0.574 | 0.422 |
异戊酸Isovalerate | -0.711 | -0.158 | -0.204 | -0.206 | -0.160 | -0.096 |
戊酸Valerate | -0.764 | -0.370 | 0.043 | -0.383 | -0.412 | 0.063 |
乙酸/丙酸Acetate/propionate | -0.237 | -0.493 | 0.705 | 0.293 | -0.284 | 0.598 |
体外干物质降解率In vitro dry matter degradability | 0.134 | 0.236 | -0.628 | -0.321 | 0.418 | -0.864* |
体外粗蛋白质降解率In vitro crude protein degradability | 0.065 | -0.242 | 0.688 | 0.167 | -0.539 | 0.911* |
体外中性洗涤纤维降解率In vitro neutral detergent fiber degradability | -0.400 | 0.067 | -0.587 | -0.134 | 0.456 | -0.826* |
体外酸性洗涤纤维降解率In vitro acid detergent fiber degradability | -0.194 | -0.280 | 0.068 | -0.126 | 0.130 | -0.358 |
Table 7 Correlation analysis of rumen fermentation characteristics and microorganisms
项目 Items | 总菌 Total bacteria | 溶纤维丁酸弧菌B. fibrisolvens | 产琥珀酸丝状杆菌F. succinogenes | 白色瘤胃球菌 R. albus | 甲烷杆菌 Methanobacteriaceae | 总产甲烷菌 Total Methanogens |
---|---|---|---|---|---|---|
pH | -0.691 | -0.980** | 0.794 | -0.534 | -0.898* | 0.536 |
氨态氮Ammonia nitrogen | 0.836* | 0.731 | -0.218 | 0.576 | 0.384 | 0.216 |
总挥发性脂肪酸Total volatile fatty acid | 0.810 | 0.537 | -0.006 | 0.176 | 0.196 | 0.102 |
乙酸Acetate | 0.880* | 0.638 | -0.129 | 0.337 | 0.413 | -0.032 |
丙酸Propionate | 0.748 | 0.822* | -0.732 | 0.157 | 0.695 | -0.626 |
异丁酸Isobutyrate | -0.263 | 0.000 | -0.112 | -0.260 | -0.289 | 0.116 |
丁酸Butyrate | -0.366 | -0.296 | 0.241 | -0.306 | -0.574 | 0.422 |
异戊酸Isovalerate | -0.711 | -0.158 | -0.204 | -0.206 | -0.160 | -0.096 |
戊酸Valerate | -0.764 | -0.370 | 0.043 | -0.383 | -0.412 | 0.063 |
乙酸/丙酸Acetate/propionate | -0.237 | -0.493 | 0.705 | 0.293 | -0.284 | 0.598 |
体外干物质降解率In vitro dry matter degradability | 0.134 | 0.236 | -0.628 | -0.321 | 0.418 | -0.864* |
体外粗蛋白质降解率In vitro crude protein degradability | 0.065 | -0.242 | 0.688 | 0.167 | -0.539 | 0.911* |
体外中性洗涤纤维降解率In vitro neutral detergent fiber degradability | -0.400 | 0.067 | -0.587 | -0.134 | 0.456 | -0.826* |
体外酸性洗涤纤维降解率In vitro acid detergent fiber degradability | -0.194 | -0.280 | 0.068 | -0.126 | 0.130 | -0.358 |
1 | Du W H. Research advance in nutritive value, cultivation and utilization of timothy. Grassland and Turf, 2003(4): 7-11. |
杜文华. 猫尾草营养价值及栽培利用研究进展. 草原与草坪, 2003(4): 7-11. | |
2 | Yi X B. Factors affecting milk fat rate of dairy cows and ways to improve. Modern Animal Husbandry Science and Technology, 2020(11): 46-48. |
伊学彬. 影响奶牛乳脂率的因素及提高途径. 现代畜牧科技, 2020(11): 46-48. | |
3 | Yang P N, An X Z, Ma W X, et al. The study on the production performance and nutritional value of a new line of Phleum pretense in central Gansu Province. Chinese Journal of Grassland, 2021, 43(9): 44-51. |
杨鹏年, 安学忠, 马文馨, 等. 猫尾草新品系在甘肃省中部地区的生产性能和营养价值研究. 中国草地学报, 2021, 43(9): 44-51. | |
4 | Nemati M, Amanlou H, Khorvash M, et al. Effect of different alfalfa hay levels on growth performance,rumen fermentation, and structural growth of Holstein dairy calves.Journal of Animal Science, 2016, 94(3): 1141-1148. |
5 | Mirzaei M, Khorvash M, Ghorbani G R, et al. Interactions between the physical form of starter (mashed versus textured) and corn silage provision on performance, rumen fermentation, and structural growth of Holstein calves. Journal of Animal Science, 2016, 94(2): 678-686. |
6 | Xie B, Zhang N F, Zhang C X, et al. Effects of forage on rumen development in young ruminants and its mechanisms. Chinese Journal of Animal Nutrition, 2018, 30(4): 1245-1252. |
解彪, 张乃锋, 张春香, 等. 粗饲料对幼龄反刍动物瘤胃发育的影响及其作用机制. 动物营养学报, 2018, 30(4): 1245-1252. | |
7 | Suárez B J, Reenen C, Stockhofe N, et al. Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves. Journal of Dairy Science, 2007, 90(5): 2390-2403. |
8 | Wang H, Wu F, Guan T, et al. Chopping roughage length improved rumen development of weaned calves as revealed by rumen fermentation and bacterial community. Animals, 2020, 10(11): 2149. |
9 | National Research Council (US). Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids. Washington, DC: The National Academics Press, 2007. |
10 | Kearl L C. Nutrient requirements of ruminants in developing countries. Logan, UT: International Feedstuffs Institute, 1982. |
11 | Mc Dougall E I. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochemical Journal, 1948, 43(1): 99-109. |
12 | Kajikawa H, Jin H, Terada F, et al. Operation and characteristics of newly improved and marketable artificial rumen (Rusitec). Memoirs of National Institute of Livestock and Grassland Science, 2003, 2: 1-49. |
13 | Feng Z C, Gao M. Improvement of colorimetric method for determination of ammonia nitrogen content in rumen fluid. Animal Husbandry and Feed Science, 2010, 31(6/7): 37. |
冯宗慈, 高民. 通过比色测定瘤胃液氨氮含量方法的改进. 畜牧与饲料科学, 2010, 31(6/7): 37. | |
14 | Zheng C, Hao Z L, Li F D, et al. Effect of different processed diets on the concentration of volatile fatty acid in sheep rumen. China Animal Husbandry and Veterinary Medicine, 2012, 39(9): 102-105. |
郑琛, 郝正里, 李发弟, 等. 不同加工处理日粮对绵羊瘤胃挥发性脂肪酸的影响. 中国畜牧兽医, 2012, 39(9): 102-105. | |
15 | Zhang R, Zheng C, Yan X G, et al. Effects of oregano oil on ruminal fermentation characteristics and methane production of sheep by gas production technique in vitro. Chinese Journal of Animal Nutrition, 2018, 30(8): 3168-3175. |
张然, 郑琛, 闫晓刚, 等. 体外产气法研究牛至油对绵羊瘤胃发酵特性和甲烷产量的影响. 动物营养学报, 2018, 30(8): 3168-3175. | |
16 | Cunniff P. Official methods of analysis of AOAC international. Volume I agricultural chemicals, contaminants, drugs. Volume II Food composition, additives, natural contaminants. Gaithersburg Md Aoac International Appendix D, 1995, 6(11): 382. |
17 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
18 | Yuan M Z, Min Z X, Rong W, et al. Effects of hemical and mechanical lysis on microbial DNA yield, integrity, and downstream amplicon sequencing of rumen bacteria and protozoa. Frontiers in Microbiology, 2020, 11: 2812. |
19 | Denman S E, Mcsweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiology Ecology, 2006, 58(3): 572-582. |
20 | Lin B, Lu Y, Salem A Z M, et al. Effects of essential oil combinations on sheep ruminal fermentation and digestibility of a diet with fumarate included. Animal Feed Science and Technology, 2013, 184(1): 24-32. |
21 | El-Nor S A, Abughazaleh A A, Potu R B, et al. Effects of differing levels of glycerol on rumen fermentation and bacteria. Animal Feed Science and Technology, 2010, 162(3): 99-105. |
22 | Yu Y, Lee C, Kim J, et al. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 2005, 89(6): 670-679. |
23 | Hook S E, Northwood K S, Wright A, et al. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogens in the rumen of the lactating dairy cow. Applied and Environmental Microbiology, 2009, 75(2): 374-380. |
24 | Kamalak A, Canbolat O, Gurbuz Y, et al. Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech Journal of Animal Science, 2005, 50(2): 60-67. |
25 | Zhao Y L, Yan S M, He Z X, et al. Effects of volume weight, processing method and processing index of barley grain on in situ digestibility of dry matter and starch in beef heifers. Animal Feed Science and Technology, 2015, 199: 93-103. |
26 | Ueda K, Ichinohe T, Tamura T, et al. Influence of fiber fermentation, size reduction and passage of ruminal particles on fiber digestibility in sheep fed hays. Animal Science Journal, 2001, 72(3): 198-208. |
27 | Han H Z, Guo Y L, Zheng C, et al. Effect of particle size of feed on rumen fermentation of sheep using the rumen simulation technique (Rusitec). China Animal Husbandry and Veterinary Medicine, 2017, 44(5): 1375-1381. |
韩海珠, 郭艳丽, 郑琛, 等. 用Rusitec系统研究两种粒度日粮对绵羊瘤胃发酵特性的影响. 中国畜牧兽医, 2017, 44(5): 1375-1381. | |
28 | Zhang R, Zheng C, Han H Z, et al. Effect of mannan oligosaccharides on ruminal fermentation of sheep in an in vitro Rusitec-S system. Pratacultural Science, 2018, 35(9): 2262-2269. |
张然, 郑琛, 韩海珠, 等. 应用Rusitec-S系统研究甘露寡糖对绵羊体外瘤胃发酵的影响. 草业科学, 2018, 35(9): 2262-2269. | |
29 | Krause K M, Oetzel G R. Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Animal Feed Science and Technology, 2006, 126(3/4): 215-236. |
30 | Zeng Y, He M, Cao Z J, et al. Effects of roughage particle size of TMR on chewing activity and rumen fermentation in dairy cows. Chinese Journal of Animal Nutrition, 2010, 22(6): 1571-1578. |
曾银, 贺鸣, 曹志军, 等. 全混合日粮中粗饲料长度对奶牛咀嚼行为和瘤胃发酵的影响. 动物营养学报, 2010, 22(6): 1571-1578. | |
31 | Zhou W C, Yue Y X, Qi K. Effects of different pellet particle sizes of concentrate diets on rumen fermentation of beef. China Feed, 2019(2): 16-20. |
周万才, 岳玉秀, 齐凯. 不同饲料颗粒大小对肉牛瘤胃发酵性能的影响. 中国饲料, 2019(2): 16-20. | |
32 | Kononoff P J, Heinrichs A J. The effect of reducing alfalfa haylage particle size on cows in early lactation. Journal of Dairy Science, 2003, 86(4): 1445-1457. |
33 | Yang W Z, Beauchemin K A, Rode L M. Effects of particle size of alfalfa-based dairy cow diets on site and extent of digestion. Journal of Dairy Science, 2002, 85(8): 1958-1968. |
34 | Zhang Y, Xia T C, Chang Y, et al. Evaluation of the associative effects of rape straw, corn and soybean meal using an in vitro gas production technique. Acta Prataculturae Sinica, 2016, 25(11): 185-191. |
张勇, 夏天婵, 常誉, 等. 体外产气法评价油菜秆与玉米、豆粕的组合效应. 草业学报, 2016, 25(11): 185-191. | |
35 | Hildebrand B, Boguhn J, Rodehutscord M. Effect of maize silage to grass silage ratio and feed particle size on ruminal fermentation in vitro. Animal: An International Journal of Animal Bioscience, 2011, 5(4): 528-536. |
36 | Li J, Sheng G X. Effect of different particle size of soybean meal on fermentation and outflow rate in rumen of sheep. Journal of Northeast Agricultural University, 2008, 39(12): 62-66. |
李杰, 生广旭. 不同粒度豆粕对绵羊瘤胃发酵及其外流速度的影响. 东北农业大学学报, 2008, 39(12): 62-66. | |
37 | Hu W L. Influence of saponins on in vitro rumen fermentation, methane emission and growth performance of goats. Hangzhou: Zhejiang University, 2005. |
胡伟莲. 皂甙对瘤胃发酵与甲烷产量及动物生产性能影响的研究. 杭州: 浙江大学, 2005. | |
38 | Rodríguez-Prado M, Calsamiglia S, Ferret A. Effects of fiber content and particle size of forage on the flow of microbial amino acids from continuous culture fermenters. Journal of Dairy Science, 2004, 87(5): 1413-1424. |
39 | Benchaar C, Romero-Perez G A, Chouinard P Y, et al. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. Journal of Dairy Science, 2012, 95(8): 4578-4590. |
40 | Abderzak L, Chaouki B, Mark I A. Diet-induced alterations in total and metabolically active microbes within the rumen of dairy cows. PLoS One, 2013, 8(4): e60978. |
41 | Zhao X G, Wang M, Tan Z L, et al. Effects of rice straw particle size on chewing activity, feed intake, rumen fermentation and digestion in goats. Asian-Australasian Journal of Animal Sciences, 2009, 22(9): 1256-1266. |
42 | Wang J Q, Feng Y L. Study on the synthetic efficiencies of rumen microbial protein from various sources of fermentable carbohydrates and degradable nitrogens. Acta Veterinaria et Zootechnica Sinica, 1996(2): 97-104. |
王加启, 冯仰廉.不同来源可发酵碳水化合物和可降解氮合成瘤胃微生物蛋白质效率的研究. 畜牧兽医学报, 1996(2): 97-104. | |
43 | Shi L G, Xun W J, Yue W B. Research progress of cellulose-decomposing bacteria in ruminant nutrition metabolism. Feed China, 2008(21): 23-24, 27. |
施力光, 荀文娟, 岳文斌. 纤维素分解菌在反刍动物营养代谢中的研究进展. 饲料广角, 2008(21): 23-24, 27. | |
44 | Andriani Y, Pratiwy F M. Isolation and identification of rumen microbes and rumen fluid enzymes to use as the bio-degradator feed in aquaculture. International Journal of Fisheries and Aquatic Studies, 2020, 8(4): 61-64. |
45 | Wang H Z, Wang J Q, Gong Y S, et al.The degradation mechanism of the roughage fiber in the rumen and the manipulation methods. China Animal Husbandry and Veterinary Medicine, 2002(4): 3-7. |
王海珍, 王加启, 龚月生, 等. 瘤胃内粗纤维的降解机制及其调控. 中国畜牧兽医, 2002(4): 3-7. | |
46 | Lin J, Zhao X Y, Du W, et al. Effects of compound enzyme preparation on rumen fermentation, nutrient apparent digestibility and performance of lactating cows. Chinese Journal of Animal Nutrition, 2017, 29(6): 2124-2133. |
林静, 赵鑫源, 都文, 等. 复合酶制剂对泌乳奶牛瘤胃发酵、营养物质表观消化率及生产性能的影响. 动物营养学报, 2017, 29(6): 2124-2133. | |
47 | Cheng Y F, Mao S Y, Theodorou M K, et al. Effects of anaerobic fungi activities and passage frequency on metabolism of fungi cultured with methane bacteria and flora. Nanjing: Papers of the Sixth National Feed Nutrition Symposium, 2010: 528. |
成艳芬, 毛胜勇, Theodorou M K, 等. 厌氧真菌活力及传代频率对真菌与产甲烷菌共培养液代谢与菌群的影响. 南京: 第六次全国饲料营养学术研讨会论文集, 2010: 528. | |
48 | Zhang J L, Huang L R, Mo F, et al. Particle size distribution effect of total mixed rations on growth performance and rumen fermentation in crossbred beef cattle. Chinese Journal of Animal Science, 2020, 56(2): 110-116. |
张娟利, 黄乐然, 莫放, 等. TMR制作粒度对肉牛增重与瘤胃微生物发酵的影响. 中国畜牧杂志, 2020, 56(2): 110-116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||