Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (8): 164-175.DOI: 10.11686/cyxb2022384
Jie ZHAO1(), Xue-jing YIN1, Si-ran WANG1, Zhi-hao DONG1, Jun-feng LI1, Yu-shan JIA2,3, Tao SHAO1()
Received:
2022-09-27
Revised:
2022-12-05
Online:
2023-08-20
Published:
2023-06-16
Contact:
Tao SHAO
Jie ZHAO, Xue-jing YIN, Si-ran WANG, Zhi-hao DONG, Jun-feng LI, Yu-shan JIA, Tao SHAO. Effects of storage time on the fermentation quality, bacterial community composition, and functional profile of sweet sorghum silage[J]. Acta Prataculturae Sinica, 2023, 32(8): 164-175.
项目Item | 含量Content |
---|---|
pH | 5.23±0.04 |
干物质Dry matter (%鲜重Fresh weight) | 31.90±1.08 |
水溶性碳水化合物Water-soluble carbohydrates (%DM) | 28.40±0.41 |
粗蛋白Crude protein (%DM) | 5.13±0.61 |
缓冲能Buffering capacity (mEq | 50.90±6.05 |
中性洗涤纤维Neutral detergent fiber (%DM) | 55.30±0.29 |
酸性洗涤纤维Acid detergent fiber (%DM) | 29.50±0.15 |
乳酸菌Lactic acid bacteria (lg CFU | 8.59±0.06 |
好氧性细菌Aerobic bacteria (lg CFU | 8.57±0.04 |
酵母菌Yeasts (lg CFU | 7.86±0.03 |
霉菌Molds (lg CFU | 6.00±0.14 |
肠杆菌Enterobacteria (lg CFU | 8.67±0.10 |
Table 1 The chemical and microbial composition of fresh sweet sorghum (means±standard deviations)
项目Item | 含量Content |
---|---|
pH | 5.23±0.04 |
干物质Dry matter (%鲜重Fresh weight) | 31.90±1.08 |
水溶性碳水化合物Water-soluble carbohydrates (%DM) | 28.40±0.41 |
粗蛋白Crude protein (%DM) | 5.13±0.61 |
缓冲能Buffering capacity (mEq | 50.90±6.05 |
中性洗涤纤维Neutral detergent fiber (%DM) | 55.30±0.29 |
酸性洗涤纤维Acid detergent fiber (%DM) | 29.50±0.15 |
乳酸菌Lactic acid bacteria (lg CFU | 8.59±0.06 |
好氧性细菌Aerobic bacteria (lg CFU | 8.57±0.04 |
酵母菌Yeasts (lg CFU | 7.86±0.03 |
霉菌Molds (lg CFU | 6.00±0.14 |
肠杆菌Enterobacteria (lg CFU | 8.67±0.10 |
项目 Item | 贮藏时间Ensiling time (d) | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 7 | 15 | 30 | 60 | |||
pH | 4.47A | 3.95B | 3.76C | 3.70CD | 3.61D | 3.59D | 0.072 | <0.001 |
乳酸Lactic acid (LA, %DM) | 0.64A | 4.29A | 5.80A | 7.85A | 12.40A | 13.20A | 1.887 | 0.438 |
乙酸Acetic acid (AA, %DM) | 0.15C | 0.78BC | 1.13BC | 1.90ABC | 2.34AB | 3.19A | 0.276 | 0.002 |
乳乙比LA/AA | 4.45A | 5.76A | 5.43A | 4.13A | 3.17A | 4.13A | 0.449 | 0.518 |
丙酸Propionic acid (%DM) | 0.04BC | 0.02BC | 0.00C | 0.03BC | 0.06B | 0.11A | 0.009 | <0.001 |
正丁酸n-butyric acid (n-BA, %DM) | ND | ND | ND | ND | ND | ND | - | - |
异丁酸Isobutyric acid (IBA, %DM) | ND | ND | ND | ND | ND | ND | - | - |
挥发性脂肪酸Volatile fatty acid (VFA, %DM) | 0.19C | 0.79BC | 1.14BC | 1.93ABC | 2.40AB | 3.30A | 0.173 | 0.002 |
乙醇Ethanol (%DM) | 0.09B | 0.04B | 0.08B | 0.16AB | 0.23AB | 0.33A | 0.027 | 0.002 |
1,2-丙二醇1,2-propanediol (%DM) | ND | ND | ND | ND | ND | ND | - | - |
干物质Dry matter (%FW) | 32.3A | 31.1AB | 29.6B | 29.5B | 29.1B | 29.5B | 0.315 | 0.006 |
水溶性碳水化合物WSC (%DM) | 28.2A | 25.1A | 25.2A | 19.2B | 18.2BC | 14.4C | 1.174 | <0.001 |
氨态氮Ammonia nitrogen (NH3-N, %TN) | 6.48A | 7.68A | 7.75A | 7.68A | 8.01A | 8.51A | 0.230 | 0.245 |
Table 2 Effects of storage time on the chemical composition and fermentation quality of sweet sorghum silage
项目 Item | 贮藏时间Ensiling time (d) | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 7 | 15 | 30 | 60 | |||
pH | 4.47A | 3.95B | 3.76C | 3.70CD | 3.61D | 3.59D | 0.072 | <0.001 |
乳酸Lactic acid (LA, %DM) | 0.64A | 4.29A | 5.80A | 7.85A | 12.40A | 13.20A | 1.887 | 0.438 |
乙酸Acetic acid (AA, %DM) | 0.15C | 0.78BC | 1.13BC | 1.90ABC | 2.34AB | 3.19A | 0.276 | 0.002 |
乳乙比LA/AA | 4.45A | 5.76A | 5.43A | 4.13A | 3.17A | 4.13A | 0.449 | 0.518 |
丙酸Propionic acid (%DM) | 0.04BC | 0.02BC | 0.00C | 0.03BC | 0.06B | 0.11A | 0.009 | <0.001 |
正丁酸n-butyric acid (n-BA, %DM) | ND | ND | ND | ND | ND | ND | - | - |
异丁酸Isobutyric acid (IBA, %DM) | ND | ND | ND | ND | ND | ND | - | - |
挥发性脂肪酸Volatile fatty acid (VFA, %DM) | 0.19C | 0.79BC | 1.14BC | 1.93ABC | 2.40AB | 3.30A | 0.173 | 0.002 |
乙醇Ethanol (%DM) | 0.09B | 0.04B | 0.08B | 0.16AB | 0.23AB | 0.33A | 0.027 | 0.002 |
1,2-丙二醇1,2-propanediol (%DM) | ND | ND | ND | ND | ND | ND | - | - |
干物质Dry matter (%FW) | 32.3A | 31.1AB | 29.6B | 29.5B | 29.1B | 29.5B | 0.315 | 0.006 |
水溶性碳水化合物WSC (%DM) | 28.2A | 25.1A | 25.2A | 19.2B | 18.2BC | 14.4C | 1.174 | <0.001 |
氨态氮Ammonia nitrogen (NH3-N, %TN) | 6.48A | 7.68A | 7.75A | 7.68A | 8.01A | 8.51A | 0.230 | 0.245 |
项目 Item | 贮藏时间Ensiling time (d) | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 7 | 15 | 30 | 60 | |||
乳酸菌LAB | 8.58AB | 9.21A | 9.16A | 9.06A | 9.47A | 8.07B | 0.128 | 0.003 |
好氧性细菌Aerobic bacteria | 7.28A | 5.22AB | 3.54BC | 3.38BC | 2.09C | <2.00C | 0.524 | <0.001 |
酵母菌Yeasts | 7.74 | 4.60 | 3.94 | 2.87 | <2.00 | ND | - | - |
霉菌Molds | 5.22 | 3.22 | <2.00 | ND | ND | ND | - | - |
肠杆菌Enterobacteria | 6.03 | 4.55 | 2.20 | ND | ND | ND | - | - |
Table 3 Effects of storage time on the microbial number of SSS (lg CFU·g-1 FM)
项目 Item | 贮藏时间Ensiling time (d) | SEM | P值 P-value | |||||
---|---|---|---|---|---|---|---|---|
1 | 3 | 7 | 15 | 30 | 60 | |||
乳酸菌LAB | 8.58AB | 9.21A | 9.16A | 9.06A | 9.47A | 8.07B | 0.128 | 0.003 |
好氧性细菌Aerobic bacteria | 7.28A | 5.22AB | 3.54BC | 3.38BC | 2.09C | <2.00C | 0.524 | <0.001 |
酵母菌Yeasts | 7.74 | 4.60 | 3.94 | 2.87 | <2.00 | ND | - | - |
霉菌Molds | 5.22 | 3.22 | <2.00 | ND | ND | ND | - | - |
肠杆菌Enterobacteria | 6.03 | 4.55 | 2.20 | ND | ND | ND | - | - |
1 | Velmurugan B, Narra M, Rudakiya D M, et al. Sweet sorghum: a potential resource for bioenergy production//Kumar R P, Gnansounou E, Raman J K, et al. Refining biomass residues for sustainable energy and bioproducts. New York: Academic Press, 2020: 215-242. |
2 | Bassam E L, Jakob K. Sweet sorghum, a sustainable crop for energy production in Europe-Results of 10 years experiments (1985-1995)//Proceeding of first international sweet sorghum conference. Beijing: Chinese Academy of Sciences, 1997: 88-110. |
3 | Davila-Gomez F J, Chuck-Hernandez C, Perez-Carrillo E, et al. Evaluation of bioethanol production from five different varieties of sweet and forage sorghums (Sorghum bicolor (L.) Moench). Industrial Crops and Products, 2011, 33(3): 611-616. |
4 | Bhat B V. Breeding forage sorghum//Aruna C, Visarada K B R S, Bhat B V, et al. Breeding sorghum for diverse end uses. Oxford: Woodhead Publishing, 2019: 175-191. |
5 | Chen L. Study on the fermentation quality, aerobic stability and in vitro ruminal fermentation characteristics of sweet sorghum-alfalfa silages. Nanjing: Nanjing Agricultural University, 2018. |
陈雷. 甜高粱和紫花苜蓿混合青贮发酵品质、有氧稳定性和体外瘤胃发酵特性的研究. 南京: 南京农业大学, 2018. | |
6 | Li C X, Feng H S, Zhao Y G, et al. Sweet sorghum cultivation techniques. Acta Agrestia Sinica, 2013, 21(1): 114-122. |
李春喜, 冯海生, 赵延贵, 等. 甜高粱栽培技术研究. 草地学报, 2013, 21(1): 114-122. | |
7 | Tao Y, Sun Q, Li F, et al. Comparative analysis of ensiling characteristics and protein degradation of alfalfa silage prepared with corn or sweet sorghum in semiarid region of Inner Mongolia. Animal Science Journal, 2020, 91(1): e13321. |
8 | Wu X, Staggenborg S, Propheter J L, et al. Features of sweet sorghum juice and their performance in ethanol fermentation. Industrial Crops and Products, 2010, 31(1): 164-170. |
9 | Umakanth A V, Kumar A A, Vermerris W, et al. Sweet sorghum for biofuel industry//Aruna C, Visarada K B R S, Bhat B V, et al. Breeding sorghum for diverse end uses. Oxford: Woodhead Publishing, 2019: 255-270. |
10 | McDonald P, Henderson A R, Heron S J E. The biochemistry of silage (the second edition). Bucks: Chalcombe Publications, 1991. |
11 | Keshri J, Chen Y, Pinto R, et al. Bacterial dynamics of wheat silage. Frontiers in Microbiology, 2019, 10: 1532. |
12 | McAllister T A, Duniere L, Drouin P, et al. Silage review: Using molecular approaches to define the microbial ecology of silage. Journal of Dairy Science, 2018, 101(5): 4060-4074. |
13 | Asshauer K P, Wemheuer B, Daniel R, et al. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 2015, 31(17): 2882-2884. |
14 | Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 2000, 28(1): 27-30. |
15 | Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science, 1980, 63(1): 64-75. |
16 | Zhao J, Dong Z, Li J, et al. Ensiling as pretreatment of rice straw: The effect of hemicellulase and Lactobacillus plantarum on hemicellulose degradation and cellulose conversion. Bioresource Technology, 2018, 266: 158-165. |
17 | Thomas T A. An automated procedure for the determination of soluble carbohydrates in herbage. Journal of the Science of Food and Agriculture, 1977, 28(7): 639-642. |
18 | Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 1991, 74(10): 3583-3597. |
19 | Zhao J, Yin X, Wang S, et al. Separating the effects of chemical and microbial factors on fermentation quality and bacterial community of napier grass silage by using gamma-ray irradiation and epiphytic microbiota transplantation. Animal Feed Science and Technology, 2021, 280: 115082. |
20 | Zhao J, Yin X, Dong Z, et al. Using gamma-ray irradiation and epiphytic microbiota inoculation to separate the effects of chemical and microbial factors on fermentation quality and bacterial community of ensiled Pennisetum giganteum. Journal of Applied Microbiology, 2022, 132(3): 1675-1686. |
21 | Kung L, Shaver R. Interpretation and use of silage fermentation analysis reports. Focus on Forage, 2001, 3(13): 1-5. |
22 | Kung L, Shaver R D, Grant R J, et al. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of Dairy Science, 2018, 101(5): 4020-4033. |
23 | Dong Z, Shao T, Li J, et al. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile napier grass silages. Journal of Dairy Science, 2020, 103(5): 4288-4301. |
24 | Mendez-Garcia C, Pelaez A I, Mesa V, et al. Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology, 2015, 6: 475. |
25 | Muck R E. Recent advances in silage microbiology. Agricultural and Food Science, 2013, 22(1): 3-15. |
26 | Cai Y, Benno Y, Ogawa M, et al. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Applied and Environmental Microbiology, 1998, 64(8): 2982-2987. |
27 | Yuan X, Dong Z, Li J, et al. Microbial community dynamics and their contributions to organic acid production during the early stage of the ensiling of napier grass (Pennisetum purpureum). Grass and Forage Science, 2019, 75(1): 37-44. |
28 | Yang L, Yuan X, Li J, et al. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresource Technology, 2019, 275: 280-287. |
29 | Bai J, Ding Z, Ke W, et al. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa: Ensiling characteristics, dynamics of bacterial community and their functional shifts. Microbial Biotechnology, 2021, 14(3): 1171-1182. |
30 | Flythe M D, Russell J B. The effect of pH and a bacteriocin (bovicin HC5) on Clostridium sporogenes MD1, a bacterium that has the ability to degrade amino acids in ensiled plant materials. FEMS Microbiology Ecology, 2004, 47(2): 215-222. |
31 | Liu Q, Wu J, Shao T. Roles of microbes and lipolytic enzymes in changing the fatty acid profile, α-tocopherol and β-carotene of whole-crop oat silages during ensiling and after exposure to air. Animal Feed Science and Technology, 2019, 253: 81-92. |
32 | Pessione A, Lamberti C, Pessione E. Proteomics as a tool for studying energy metabolism in lactic acid bacteria. Molecular BioSystems, 2010, 6(8): 1419-1430. |
33 | Xu D, Wang N, Rinne M, et al. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microbial Biotechnology, 2021, 14(2): 561-576. |
34 | Kilstrup M, Hammer K, Ruhdal J P, et al. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiology Reviews, 2005, 29(3): 555-590. |
35 | Banfalvi G. Conversion of oxidative energy to reductive power in the citrate cycle. Biochemical Education, 1991, 19(1): 24-26. |
36 | Abdel-Rahman M A, Tashiro Y, Sonomoto K. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: Overview and limits. Journal of Biotechnology, 2011, 156(4): 286-301. |
[1] | Wen-qing LING, Lei ZHANG, Jue LI, Qi-xian FENG, Yan LI, Yi ZHOU, Yi-jia LIU, Fu-lin YANG, Jing ZHOU. Effects of Lentilactobacillus buchneri combined with different sugars on nutrient composition, fermentation quality, rumen degradation rate, and aerobic stability of alfalfa silage [J]. Acta Prataculturae Sinica, 2023, 32(7): 122-134. |
[2] | Hao-qian DANG, Juan-qing QIN, Yu-kang GUO, Fu ZHANG, Ying-gang WANG, Qing-hua LIU. Effects of different additives on fermentation quality of bamboo shoot shell and growth performance and rumen fermentation function of Hu Sheep [J]. Acta Prataculturae Sinica, 2023, 32(7): 135-148. |
[3] | Jia LIANG, Zhao-yang HU, Zhi-ming XIE, Liu-feng MA, Yun CHEN, Zhi-gang FANG. Exogenous melatonin alleviates the physiological effects of drought stress in sweet sorghum seedlings [J]. Acta Prataculturae Sinica, 2023, 32(7): 206-215. |
[4] | Cong-ze JIANG, Na SHOU, Wei GAO, Ren-shi MA, Yu-ying SHEN, Xian-long YANG. A multivariate evaluation of production performance and nutritional quality of different varieties of silage maize in the dry plateau area of Longdong [J]. Acta Prataculturae Sinica, 2023, 32(7): 216-228. |
[5] | Meng-qi LIANG, Qi-feng WU, Tao SHAO, Ai-li WU, Qin-hua LIU. Effects of additives on the fermentation quality and α-tocopherol and β-carotene contents in Italian ryegrass silage [J]. Acta Prataculturae Sinica, 2023, 32(5): 180-189. |
[6] | Li-li ZHU, Ye-meng ZHANG, Wan-cai LI, Ya-li ZHAO, Xiang LI, Zhi-guo CHEN. Adaption to the Plateau climate in Qinghai of 39 silage maize varieties cultivated in different ecological regions of China [J]. Acta Prataculturae Sinica, 2023, 32(4): 68-78. |
[7] | Dong-qing FU, Chun-ying JIA, Li ZHANG, Fan-fan ZHANG, Chun-hui MA. Agronomic traits and fermentation quality of maize silage harvested at different grain-development stages in irrigated drought areas of southern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 111-125. |
[8] | Ying-zheng LI, Yu-lin CHENG, Lu-lu XU, Wan-song LI, Xu YAN, Xiao-feng LI, Ru-yu HE, Yang ZHOU, Jun-jun ZHENG, Xing-yu WANG, De-long ZHANG, Ming-jun CHENG, Yun-hong XIA, Jian-mei HE, Qi-lin TANG. A comparative study of silage quality characteristics of whole-plant, whole-ear and whole-straw silage of different maize varieties (lines) [J]. Acta Prataculturae Sinica, 2022, 31(8): 144-156. |
[9] | Ji-peng TIAN, Bei-yi LIU, Hong-ru GU, Cheng-long DING, Yun-hui CHENG, Zhu YU. Effects of lactic acid bacteria and calcium propionate on fermentation quality and mycotoxin contents of whole plant maize and oat silages [J]. Acta Prataculturae Sinica, 2022, 31(8): 157-166. |
[10] | Yong-jie WU, Hao DING, Tao SHAO, Jie ZHAO, Dong DONG, Tong-tong DAI, Xue-jing YIN, Cheng ZONG, Jun-feng LI. Effects of enzyme additives on fermentation quality and in vitro digestion characteristics of rice straw silage [J]. Acta Prataculturae Sinica, 2022, 31(8): 167-177. |
[11] | Zi-wei JIANG, Gui-yu LIU, Hao-yun AN, Wei SHI, Sheng-hua CHANG, Cheng ZHANG, Qian-min JIA, Fu-jiang HOU. Effects of planting density and nitrogen application on forage yield, quality and nitrogen use efficiency in a maize/forage soybean intercropping system [J]. Acta Prataculturae Sinica, 2022, 31(7): 157-171. |
[12] | Lu-hua YAO, Cai QI, Jian-feng YANG, Yan-jun GUO. Effects of seed priming on cuticular wax and resistance of sweet sorghum [J]. Acta Prataculturae Sinica, 2022, 31(7): 185-196. |
[13] | Jian-zhen GE, Wen-hui FU, Lu ZHANG, Bao-jun LIN, Shuai ZHAO, Ma-ga-weng BAI, Jian-cun KOU. Degradation of carbendazim in orchard white clover silage and its effect on the microbial fermentative community [J]. Acta Prataculturae Sinica, 2022, 31(7): 64-75. |
[14] | Jing TIAN, Xiang YIN, Yang FAN, Xin-qin LI, Jian-guo ZHANG. Effects of wilting and additives on the fermentation quality and dominant microbial genera in Napier grass silage at different temperatures [J]. Acta Prataculturae Sinica, 2022, 31(7): 76-84. |
[15] | Jun-feng LI, Jie ZHAO, Xiao-yue TANG, Tong-tong DAI, Dong DONG, Cheng ZONG, Tao SHAO. Effect of a rumen cellulolytic microbial consortium on the degradation of structural carbohydrate in sterile rice straw silage [J]. Acta Prataculturae Sinica, 2022, 31(7): 85-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||