Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (9): 79-92.DOI: 10.11686/cyxb2022421
Previous Articles Next Articles
Dong ZHANG(), Chen HOU, Wen-ming MA(), Chang-ting WANG, Zhuo-ma DENGZENG, Ting ZHANG
Received:
2022-10-27
Revised:
2022-12-19
Online:
2023-09-20
Published:
2023-07-12
Contact:
Wen-ming MA
Dong ZHANG, Chen HOU, Wen-ming MA, Chang-ting WANG, Zhuo-ma DENGZENG, Ting ZHANG. Study on soil enzyme activities under shrub encroachment gradients in alpine grassland[J]. Acta Prataculturae Sinica, 2023, 32(9): 79-92.
样地类型 Plot type | 灌丛化梯度Shrub encroachment gradients | 海拔 Altitude (m) | 物种数 Species number | 灌丛盖度 Shrub coverage (%) | 重要值 Important value | 主要草本植物 Dominant herb species |
---|---|---|---|---|---|---|
PF | 轻度Lightly | 3484 | 11 | 34 | 49.3 | 剪股颖A. clavata, 薹草Carex, 垂穗披碱草E. nutans, 一把伞南星Arisaema erubescens, 发草D. cespitosa, 花锚Halenia corniculata, 矮生嵩草Kobresia humilis, 棘豆Oxytropis yunnanensis, 冷蒿Artemisia frigida, 草玉梅Anemone rivularis, 条叶银莲花Anemone coelestina var. linearis, 鹅绒委陵菜Potentilla anserina |
重度Heavily | 15 | 81 | 50.1 | |||
SA | 轻度Lightly | 3484 | 12 | 26 | 26.6 | |
重度Heavily | 14 | 68 | 51.0 | |||
CM | 轻度Lightly | 3484 | 10 | 30 | 20.1 | |
重度Heavily | 15 | 72 | 38.6 | |||
GS | 未灌丛化No shrubs | 3484 | 13 | NA | NA |
Table 1 General information on the study area
样地类型 Plot type | 灌丛化梯度Shrub encroachment gradients | 海拔 Altitude (m) | 物种数 Species number | 灌丛盖度 Shrub coverage (%) | 重要值 Important value | 主要草本植物 Dominant herb species |
---|---|---|---|---|---|---|
PF | 轻度Lightly | 3484 | 11 | 34 | 49.3 | 剪股颖A. clavata, 薹草Carex, 垂穗披碱草E. nutans, 一把伞南星Arisaema erubescens, 发草D. cespitosa, 花锚Halenia corniculata, 矮生嵩草Kobresia humilis, 棘豆Oxytropis yunnanensis, 冷蒿Artemisia frigida, 草玉梅Anemone rivularis, 条叶银莲花Anemone coelestina var. linearis, 鹅绒委陵菜Potentilla anserina |
重度Heavily | 15 | 81 | 50.1 | |||
SA | 轻度Lightly | 3484 | 12 | 26 | 26.6 | |
重度Heavily | 14 | 68 | 51.0 | |||
CM | 轻度Lightly | 3484 | 10 | 30 | 20.1 | |
重度Heavily | 15 | 72 | 38.6 | |||
GS | 未灌丛化No shrubs | 3484 | 13 | NA | NA |
理化指标 Physicochemical index | 土层 Soil depth (cm) | 未灌丛化草地 No shrubs grassland | 高山绣线菊 S. alpina | 小叶锦鸡儿 C. microphylla | 金露梅 P. fruticosa | |||
---|---|---|---|---|---|---|---|---|
轻度Lightly | 重度Heavily | 轻度Lightly | 重度Heavily | 轻度Lightly | 重度Heavily | |||
pH (1∶5) | 0~10 | 5.30±0.09d | 5.90±0.14b | 6.19±0.02a | 5.77±0.09bc | 5.51±0.36cd | 5.84±0.02b | 5.68±0.08bc |
10~20 | 5.38±0.15b | 5.92±0.14a | 6.04±0.12a | 5.71±0.31ab | 5.69±0.33ab | 5.72±0.25ab | 5.97±0.40a | |
20~40 | 5.47±0.09c | 6.18±0.08ab | 6.03±0.05ab | 6.14±0.14ab | 5.91±0.43b | 6.23±0.13ab | 6.38±0.27a | |
40~60 | 5.64±0.33c | 6.47±0.06ab | 6.21±0.05ab | 6.38±0.07ab | 5.93±0.63bc | 6.44±0.22ab | 6.59±0.19a | |
60~80 | 5.84±0.34c | 6.74±0.10a | 6.44±0.11ab | 6.40±0.10ab | 6.25±0.23b | 6.64±0.10a | 6.68±0.25a | |
土壤含水率 Soil water content (%) | 0~10 | 1.82±0.27a | 0.74±0.12b | 0.42±0.01c | 0.43±0.38c | 0.49±0.10c | 0.42±0.07c | 0.54±0.08bc |
10~20 | 1.47±0.12a | 0.58±0.03b | 0.43±0.02c | 0.29±0.22d | 0.33±0.04cd | 0.31±0.04d | 0.41±0.09cd | |
20~40 | 1.14±0.15a | 0.47±0.06b | 0.49±0.01b | 0.22±0.04c | 0.22±0.05c | 0.25±0.03c | 0.28±0.06c | |
40~60 | 0.33±0.12ab | 0.30±0.10b | 0.43±0.03a | 0.16±0.02c | 0.18±0.01c | 0.17±0.01c | 0.23±0.05bc | |
60~80 | 0.28±0.09ab | 0.23±0.02bc | 0.31±0.03a | 0.18±0.02cd | 0.19±0.01cd | 0.13±0.04d | 0.17±0.04cd | |
土壤有机碳 Soil organic carbon (g·kg-1) | 0~10 | 32.45±27.87c | 115.64±12.35b | 82.81±19.62bc | 106.04±23.76b | 58.06±16.66bc | 212.00±59.18a | 198.37±66.25a |
10~20 | 31.14±19.55b | 94.24±6.40a | 95.14±25.87a | 88.04±14.29a | 99.22±39.43a | 115.18±34.80a | 89.10±5.58a | |
20~40 | 28.02±26.87a | 83.22±61.05a | 56.80±33.97a | 41.93±10.89a | 65.52±73.59a | 66.91±15.77a | 82.77±38.64a | |
40~60 | 43.20±27.56a | 54.58±39.16a | 76.65±36.26a | 31.60±25.09a | 38.58±46.82a | 55.19±43.61a | 55.27±39.78a | |
60~80 | 42.10±19.77ab | 10.32±8.38b | 28.92±18.64ab | 6.66±1.46b | 24.69±19.75ab | 68.68±48.82a | 36.96±28.75ab | |
全氮 Total nitrogen (g·kg-1) | 0~10 | 14.13±1.21a | 4.84±0.29c | 4.86±1.00c | 4.95±0.39c | 4.69±0.52c | 8.21±0.87b | 7.12±0.23b |
10~20 | 10.28±1.27a | 3.79±0.43c | 5.11±0.64bc | 3.98±0.70c | 3.79±0.85c | 5.55±0.20b | 5.10±0.44bc | |
20~40 | 5.04±1.96a | 2.66±0.90ab | 5.09±2.36a | 2.91±0.67ab | 2.23±0.08b | 3.71±0.24ab | 3.56±0.41ab | |
40~60 | 1.50±0.60cd | 0.81±0.42d | 2.72±0.48a | 1.39±0.30cd | 1.15±0.20cd | 1.87±0.12bc | 2.33±0.55ab | |
60~80 | 0.52±0.09bc | 0.35±0.01c | 1.51±0.45a | 0.84±0.13bc | 0.99±0.30ab | 0.99±0.23ab | 1.52±0.58a |
Table 2 Effect of different shrub encroachment gradients gradients on soil physicochemical properties
理化指标 Physicochemical index | 土层 Soil depth (cm) | 未灌丛化草地 No shrubs grassland | 高山绣线菊 S. alpina | 小叶锦鸡儿 C. microphylla | 金露梅 P. fruticosa | |||
---|---|---|---|---|---|---|---|---|
轻度Lightly | 重度Heavily | 轻度Lightly | 重度Heavily | 轻度Lightly | 重度Heavily | |||
pH (1∶5) | 0~10 | 5.30±0.09d | 5.90±0.14b | 6.19±0.02a | 5.77±0.09bc | 5.51±0.36cd | 5.84±0.02b | 5.68±0.08bc |
10~20 | 5.38±0.15b | 5.92±0.14a | 6.04±0.12a | 5.71±0.31ab | 5.69±0.33ab | 5.72±0.25ab | 5.97±0.40a | |
20~40 | 5.47±0.09c | 6.18±0.08ab | 6.03±0.05ab | 6.14±0.14ab | 5.91±0.43b | 6.23±0.13ab | 6.38±0.27a | |
40~60 | 5.64±0.33c | 6.47±0.06ab | 6.21±0.05ab | 6.38±0.07ab | 5.93±0.63bc | 6.44±0.22ab | 6.59±0.19a | |
60~80 | 5.84±0.34c | 6.74±0.10a | 6.44±0.11ab | 6.40±0.10ab | 6.25±0.23b | 6.64±0.10a | 6.68±0.25a | |
土壤含水率 Soil water content (%) | 0~10 | 1.82±0.27a | 0.74±0.12b | 0.42±0.01c | 0.43±0.38c | 0.49±0.10c | 0.42±0.07c | 0.54±0.08bc |
10~20 | 1.47±0.12a | 0.58±0.03b | 0.43±0.02c | 0.29±0.22d | 0.33±0.04cd | 0.31±0.04d | 0.41±0.09cd | |
20~40 | 1.14±0.15a | 0.47±0.06b | 0.49±0.01b | 0.22±0.04c | 0.22±0.05c | 0.25±0.03c | 0.28±0.06c | |
40~60 | 0.33±0.12ab | 0.30±0.10b | 0.43±0.03a | 0.16±0.02c | 0.18±0.01c | 0.17±0.01c | 0.23±0.05bc | |
60~80 | 0.28±0.09ab | 0.23±0.02bc | 0.31±0.03a | 0.18±0.02cd | 0.19±0.01cd | 0.13±0.04d | 0.17±0.04cd | |
土壤有机碳 Soil organic carbon (g·kg-1) | 0~10 | 32.45±27.87c | 115.64±12.35b | 82.81±19.62bc | 106.04±23.76b | 58.06±16.66bc | 212.00±59.18a | 198.37±66.25a |
10~20 | 31.14±19.55b | 94.24±6.40a | 95.14±25.87a | 88.04±14.29a | 99.22±39.43a | 115.18±34.80a | 89.10±5.58a | |
20~40 | 28.02±26.87a | 83.22±61.05a | 56.80±33.97a | 41.93±10.89a | 65.52±73.59a | 66.91±15.77a | 82.77±38.64a | |
40~60 | 43.20±27.56a | 54.58±39.16a | 76.65±36.26a | 31.60±25.09a | 38.58±46.82a | 55.19±43.61a | 55.27±39.78a | |
60~80 | 42.10±19.77ab | 10.32±8.38b | 28.92±18.64ab | 6.66±1.46b | 24.69±19.75ab | 68.68±48.82a | 36.96±28.75ab | |
全氮 Total nitrogen (g·kg-1) | 0~10 | 14.13±1.21a | 4.84±0.29c | 4.86±1.00c | 4.95±0.39c | 4.69±0.52c | 8.21±0.87b | 7.12±0.23b |
10~20 | 10.28±1.27a | 3.79±0.43c | 5.11±0.64bc | 3.98±0.70c | 3.79±0.85c | 5.55±0.20b | 5.10±0.44bc | |
20~40 | 5.04±1.96a | 2.66±0.90ab | 5.09±2.36a | 2.91±0.67ab | 2.23±0.08b | 3.71±0.24ab | 3.56±0.41ab | |
40~60 | 1.50±0.60cd | 0.81±0.42d | 2.72±0.48a | 1.39±0.30cd | 1.15±0.20cd | 1.87±0.12bc | 2.33±0.55ab | |
60~80 | 0.52±0.09bc | 0.35±0.01c | 1.51±0.45a | 0.84±0.13bc | 0.99±0.30ab | 0.99±0.23ab | 1.52±0.58a |
1 | Pan R R, Li X Y, Hu G R, et al. Characteristis of soil organic carbon distribution and its controlling factors on hillslope in seasonal frozen area of Qinghai Lake Basin. Acta Ecologica Sinica, 2020, 40(18): 6374-6384. |
潘蕊蕊, 李小雁, 胡广荣, 等. 青海湖流域季节性冻土区坡面土壤有机碳分布特征及其影响因素. 生态学报, 2020, 40(18): 6374-6384. | |
2 | Brandt J S, Haynes M A, Kuemmerl T, et al. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 2013, 158(2): 116-127. |
3 | Van A O W. Causes and consequences of woody plant encroachment into western North American grasslands. Journal of Environment Management, 2009, 90(10): 2931-2942. |
4 | Zhang Z C, Liu Y F, Zeng C, et al. Shrub encroachment impaired the structure and functioning of alpine meadow communities on the Qinghai-Tibetan Plateau. Land Degradation and Development, 2022, 33: 2454-2463. |
5 | Liu C W, Ma W M, Zhou Q P, et al. Study on the geochemical cycles of carbon and nitrogen in shrub encroachment soils. Pratacultural Science, 2020, 37(4): 645-657. |
刘超文, 马文明, 周青平, 等. 草地灌丛化土壤碳氮地球化学循环. 草业科学, 2020, 37(4): 645-657. | |
6 | Li H, Shen H, Chen L, et al. Effects of shrub encroachment on soil organic carbon in global grasslands. Scientific Reports, 2016, 6(1): 28974. |
7 | Xiong X G, Han X G. Spatial heterogeneity in soil carbon and nitrogen resources, caused by Caragana microphylla in the thicketization of semiarid grassland, Inner Mongolia. Acta Ecologica Sinica, 2005, 25(7): 1678-1683. |
熊小刚, 韩兴国. 内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布. 生态学报, 2005, 25(7): 1678-1683. | |
8 | He J L. Effects of Potentilla fruticosa on vegetation characteristics and soil properties in alpine meadow of Tibetan Plateau. Lanzhou: Lanzhou University, 2017. |
何俊龄. 金露梅对青藏高原高寒草甸植被特征和土壤性质的影响. 兰州: 兰州大学, 2017. | |
9 | Turnbull L, Wainwright J, Brazier R E, et al. Biotic and abiotic changes in ecosystem structure over a shrub-encroachment gradient in the southwestern USA. Ecosystems, 2010, 13(8): 1239-1255. |
10 | Liu X L, Hu J, Zhou Q P, et al. Effects of typical shrub-encroached grassland on vegetation characteristics and soil nutrients in the Zoige Plateau. Acta Agrestia Sinica, 2022, 30(4): 901-908. |
刘小龙, 胡健, 周青平, 等. 若尔盖高原典型草地灌丛化对植被特征和土壤养分的影响. 草地学报, 2022, 30(4): 901-908. | |
11 | Du H P, Zhan Z Y, Li X G. Differences in biological stability of soil organic carbon pools between shrub and Polygonum viviparum grassland at alpine site. Journal of Gansu Agricultural University, 2007, 42(3): 91-96. |
杜慧平, 展争艳, 李小刚. 高寒灌丛与珠芽蓼草地土壤有机碳的稳定性. 甘肃农业大学学报, 2007, 42(3): 91-96. | |
12 | Hughes R F, Archer S R, Asner G P, et al. Changes in aboveground primary production and carbon and nitrogen pools accompanying woody plant encroachment in a temperate savanna. Global Change Biology, 2006, 12(9): 1733-1747. |
13 | Ding W, Wang Y B, Xiang G H, et al. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe. Chinese Journal of Plant Ecology, 2020, 44(1): 33-43. |
丁威, 王玉冰, 向官海, 等. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响. 植物生态学报, 2020, 44(1): 33-43. | |
14 | Wang Z W, Wan S Z, Jiang H M, et al. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau. Chinese Journal of Plant Ecology, 2021, 45(5): 528-538. |
汪子微, 万松泽, 蒋洪毛, 等. 青藏高原不同高寒草地类型土壤酶活性及其影响因子. 植物生态学报, 2021, 45(5): 528-538. | |
15 | Shi H L, Liu M P, Pang W H, et al. Determination and analysis of soil enzyme activities in different alpine grasslands. Hubei Agricultural Sciences, 2017, 56(15): 2835-2839. |
史惠兰, 刘梦萍, 庞文豪, 等. 不同类型高寒草地土壤酶活性测定与分析. 湖北农业科学, 2017, 56(15): 2835-2839. | |
16 | Howard K S C, Eldridge D J, SoliveresS. Positive effects of shrubs on plant species diversity do not change along a gradient in grazing pressure in an arid shrubland. Basic and Applied Ecology, 2012, 13(2): 159-168. |
17 | Suo N J, Tan Y R, Zhu W X, et al. Soil enzyme activity of different grassland types on the eastern edge of the Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 2012, 21(4): 10-15. |
索南吉, 谈嫣蓉, 朱炜歆, 等. 青藏高原东缘不同草地类型土壤酶活性研究. 草业学报, 2012, 21(4): 10-15. | |
18 | Wu X D, Zhang X J, Xie Y Z, et al. Vertical distribution characters of soil organic carbon and soil enzyme activity in alfalfa field with different growing years. Acta Prataculturae Sinica, 2013, 22(1): 245-251. |
吴旭东, 张晓娟, 谢应忠, 等. 不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征. 草业学报, 2013, 22(1): 245-251. | |
19 | Tai J C, Yang H S, Zhang Q G, et al. Soil enzyme activity and distribution in alfalfa field with different growing years. Pratacultural Science, 2008, 25(4): 76-78. |
邰继承, 杨恒山, 张庆国, 等. 不同生长年限紫花苜蓿人工草地土壤酶活性及分布. 草业科学, 2008, 25(4): 76-78. | |
20 | Liao C, Clark P E, Degloria S D. Bush encroachment dynamics and rangeland management implications in southern Ethiopia. Ecology and Evolution, 2018, 8(23): 11694-11703. |
21 | Lu R K. Soil agrochemical analysis methods. Beijing: Agricultural Science and Technology Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 农业科技出版社, 2000. | |
22 | Guan S Y. Soil enzyme and its research methods. Beijing: Agriculture Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
23 | Chen H. Effects of shrub-encroached grassland on the stability of soil aggregates and their cements in alpine grassland. Chengdu: Southwest Minzu University, 2021. |
陈红. 高寒草地灌丛化对土壤团聚体稳定性及其胶结物质的影响. 成都: 西南民族大学, 2021. | |
24 | Liu J X. Correlative research on the activity of enzyme and soil nutrient in the different types of farmland. Chinese Journal of Soil Science, 2004(4): 523-525. |
刘建新. 不同农田土壤酶活性与土壤养分相关关系研究. 土壤通报, 2004(4): 523-525. | |
25 | Liao J D, Boutton T W. Soil microbial biomass response to woody plant invasion of grassland. Soil Biology and Biochemistry, 2008, 40(5): 1207-1216. |
26 | She Y D, Yang X Y, Ma L, et al. Study on the characteristics and interrelationship of plant community and soil in degraded alpine meadow. Acta Agrestia Sinica, 2021, 29(S1): 62-71. |
佘延娣, 杨晓渊, 马丽, 等. 退化高寒草甸植物群落和土壤特征及其相互关系研究. 草地学报, 2021, 29(S1): 62-71. | |
27 | Lett M S, Knapp A K. Woody plant encroachment and removal in mesic grassland: production and composition responses of herbaceous vegetation. American Midland and Naturalist, 2015, 153(2): 217-231. |
28 | Li W, Cheng Y X, Sun Y, et al. Effects of different straw returning amount on aquaculture water, soil nutrients, and enzyme activity in rice-crayfish fields during spring. Journal of Nanjing Agricultural University, 2023, 46(1): 83-91. |
李威, 成永旭, 孙颖, 等. 不同秸秆还田量对春季稻虾田水质、土壤养分及酶活性的影响. 南京农业大学学报, 2023, 46(1): 83-91. | |
29 | Wei Y L, Cao W X, Li J H, et al. Phospholipid fatty acid (PLFA) analysis of soil microbial community structure with different intensities of grazing and fencing in alpine shrubland. Acta Ecologica Sinica, 2018, 38(13): 4897-4908. |
韦应莉, 曹文侠, 李建宏, 等. 不同放牧与围封高寒灌丛草地土壤微生物群落结构PLFA分析. 生态学报, 2018, 38(13): 4897-4908. | |
30 | Li S Y, Sun J, Wang Y, et al. Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau. Pratacultural Science, 2020, 37(12): 2389-2402. |
李邵宇, 孙建, 王毅, 等. 青藏高原不同退化梯度草地土壤酶活性特征. 草业科学, 2020, 37(12): 2389-2402. | |
31 | Hao J C, Wu Y Y, Lian B, et al. Properties of polyphenol oxidase in soil and its significance. Chinese Journal of Soil Science, 2006, 37(3): 470-474. |
郝建朝, 吴沿友, 连宾, 等. 土壤多酚氧化酶性质研究及意义. 土壤通报, 2006, 37(3): 470-474. | |
32 | Wang H, Yang Y, Xi D, et al. Impacts of labile organic carbon input on the priming effect of three forest soils in Wuyi Mountain. Acta Ecologica Sinica, 2020, 40(24): 9184-9194. |
王浩, 杨钰, 习丹, 等. 易分解有机碳输入量对武夷山不同林型土壤激发效应的影响. 生态学报, 2020, 40(24): 9184-9194. | |
33 | Liu S, Sheng K Y, Liu X S, et al. Contents of soil organic carbon and nitrogen forms in rhizosphere soil of Cunninghamia lanceolata and the rhizosphere effect. Chinese Journal of Ecology, 2017, 36(7): 1957-1964. |
刘顺, 盛可银, 刘喜帅, 等. 陈山红心杉根际土壤有机碳、氮含量及根际效应. 生态学杂志, 2017, 36(7): 1957-1964. | |
34 | Ha W X, Zhou J X, Pang D B, et al. Soil organic carbon fraction and enzyme activities under different restoration methods in karst area. Journal of Beijing Forestry University, 2019, 41(2): 1-11. |
哈文秀, 周金星, 庞丹波, 等. 岩溶区不同恢复方式下土壤有机碳组分及酶活性研究. 北京林业大学学报, 2019, 41(2): 1-11. | |
35 | Ma W W, Wang L X, Li N, et al. Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content. Acta Ecologica Sinica, 2019, 39(19): 7218-7228. |
马伟伟, 王丽霞, 李娜, 等. 不同水氮水平对川西亚高山林地土壤酶活性的影响. 生态学报, 2019, 39(19): 7218-7228. | |
36 | Xia G D, Zhu S X, Li W J, et al. Effects of land use types on soil nutrients, enzyme activities and stoichiometric characteristics in karst coal mining areas. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(6): 67-76. |
夏国栋, 朱四喜, 李武江, 等. 喀斯特煤矿区土地利用类型对土壤养分、酶活性及化学计量特征的影响. 中国无机分析化学, 2022, 12(6): 67-76. | |
37 | Li Y S, Wang G X, Ding Y J, et al. Spatial heterogeneity of soil moisture in alpine meadow area of the Qinghai-Xizang Plateau. Advances in Water Science, 2008(1): 61-67. |
李元寿, 王根绪, 丁永建, 等. 青藏高原高寒草甸区土壤水分的空间异质性. 水科学进展, 2008(1): 61-67. | |
38 | Wang Y, Liu B Y, Liu M, et al. Synergistic and inhibitory effects of soil enzymes along desertified gradients of the Zoige alpine meadow. Pratacultural Science, 2019, 36(4): 939-951. |
王毅, 刘碧颖, 刘苗, 等. 若尔盖地区沙化草地土壤酶协同和抑制效应. 草业科学, 2019, 36(4): 939-951. | |
39 | Qin J H, Zhang Y, Zhao Y C, et al. Soil physicochemical properties and variations of nutrients and enzyme activity in the degrading grasslands in the upper reaches of the Heihe River, Qilian Mountains. Journal of Glaciology and Geocryology, 2014, 36(2): 335-346. |
秦嘉海, 张勇, 赵芸晨, 等. 祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律. 冰川冻土, 2014, 36(2): 335-346. | |
40 | Bai X, Dippold M A, An S, et al. Extracellular enzyme activity and stoichiometry: The effect of soil microbial element limitation during leaf litter decomposition. Ecological Indicators, 2021, 121: 107200. |
41 | Zhang Q, Yin B F, Li J W, et al. Effects of moss mortality on soil enzyme activities in a temperate desert. Chinese Journal of Plant Ecology, 2022, 46(3): 350-361. |
张庆, 尹本丰, 李继文, 等. 荒漠藓类植物死亡对表层土壤酶活性的影响. 植物生态学报, 2022, 46(3): 350-361. | |
42 | Mikutta R, Kleber M, Torn M S, et al. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance. Biogeochemistry, 2006, 77(1): 25-56. |
[1] | Zi-qi FENG, Wen-yi SUN, Xing-min MU, Peng GAO, Guang-ju ZHAO, Shuai CHEN. Factors influencing undergrowth herbaceous diversity of Cunninghamialanceolata plantations in southern mountainous areas [J]. Acta Prataculturae Sinica, 2023, 32(9): 17-26. |
[2] | Da-cheng SONG, Hao WU, Li-de WANG, Fei WANG, Yu-kai ZHANG, Xue-cheng ZHAO. Distribution of heavy metals and their effects on enzymatic activity in soil of artificial Hippophae rhamnoides forests of different ages near abandoned mines in Shuanglonggou [J]. Acta Prataculturae Sinica, 2023, 32(8): 61-70. |
[3] | Song-ke MA, Ke HUO, Dong-xia ZHANG, Jing ZHANG, Jun-hao ZHANG, Xue-ru CHAI, He-zheng WANG. Effects of maize straw return combined with nitrogen on soil enzyme activity and nitrogen fertilizer use efficiency in western dryland wheat fields of Henan Province [J]. Acta Prataculturae Sinica, 2023, 32(6): 120-133. |
[4] | Zhi-ting WANG, Ting-xi LIU, Xin TONG, Li-min DUAN, Dong-fang LI, Xiao-yong LIU. Changes in vegetation characteristics and soil enzyme activities under different treatments in semi-arid meadow grassland [J]. Acta Prataculturae Sinica, 2023, 32(3): 41-55. |
[5] | Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland [J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68. |
[6] | Fen-sheng CHENG, Long-hui YOU, Jin-lin YU, Hui-chang XU, Hui-ming YOU, Sen NIE, Jian-min LI, Gong-fu YE. Effects of cold-season green manure on soil biochemical properties and the microbial community in a Castanea henryi orchard, China [J]. Acta Prataculturae Sinica, 2021, 30(11): 62-75. |
[7] | Shi-jing ZHOU, Jia-ning LUO, Zhong-miao LIU, Chao DONG, Yan QIN, Shu-juan WU, Hong-jun GAN, Fei XIE, Guang-hui ZHUANG, Bing-zhe FU, De-cao NIU. The effects of Vicia sativa planting density on soil microbial nutrient metabolism [J]. Acta Prataculturae Sinica, 2021, 30(10): 63-72. |
[8] | CHEN Hong, MA Wen-ming, ZHOU Qing-ping, YANG Zhi, LIU Chao-wen, LIU Jin-qiu, DU Zhong-man. Shrub encroachment effects on the stability of soil aggregates and the differentiation of Fe and Al oxides in Qinghai-Tibet alpine grassland [J]. Acta Prataculturae Sinica, 2020, 29(9): 73-84. |
[9] | ZONG Wen-zhen, GUO Jia-hao, JIA Yun-long, ZHENG Yong-xing, YANG Xu, HU Fang-di, WANG Jing. Advances in research on the roles of tannins in plant-soil nitrogen cycling [J]. Acta Prataculturae Sinica, 2020, 29(7): 174-183. |
[10] | DONG Xue, HAO Yu-guang, XIN Zhi-ming, DUAN Rui-bing, HUANG Ya-ru, LI Xin-le, MA Yuan, LIU Fang. Fractal features of soil and their relationship with soil fertility under three shrub species in Otindag sandy land [J]. Acta Prataculturae Sinica, 2020, 29(6): 172-181. |
[11] | FENG Jun, SHI Chao, MEN Sheng-nan, Hafiz Athar Hussain, KE Jian-hong, Linna Cholidah, CHEN Jin-fen, GUO Xin, WU Hai-yan, RAN Tai-lin, XIANG Xin-hua, WANG Long-chang. Effects of water and fertilizer saving techniques on soil nutrient levels and enzyme activities under two different seasons with contrasting rainfall patterns [J]. Acta Prataculturae Sinica, 2020, 29(4): 51-62. |
[12] | ZHANG Jian-jun, DANG Yi, ZHAO Gang, WANG Lei, FAN Ting-lu, LI Shang-zhong, LEI Kang-ning. Effect of no-tillage with film and stubble residues on soil nutrients, microbial populations and enzyme activity in dryland maize fields [J]. Acta Prataculturae Sinica, 2020, 29(2): 123-133. |
[13] | LI Guo-qi, ZHAO Pan-pan, SHAO Wen-shan, JIN Chang-qing. Studies on the soil physical and chemical properties and enzyme activities of two fenced plant communities in desert steppe grassland [J]. Acta Prataculturae Sinica, 2019, 28(7): 49-59. |
[14] | WANG Li-jia, LIU Xing-yuan. Herders’ satisfaction with the grassland ecological reward policy in Gansu rangeland areas [J]. Acta Prataculturae Sinica, 2019, 28(4): 1-11. |
[15] | LI Wen-bin, NING Chu-han, XU Meng, LIU Run-jin, GUO Shao-xia. Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil [J]. Acta Prataculturae Sinica, 2018, 27(11): 131-141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||