Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (9): 68-78.DOI: 10.11686/cyxb2022412
Previous Articles Next Articles
Guo-liang YU(), Zi-jing MA, Zi-li LYU, Bin LIU()
Received:
2022-10-17
Revised:
2022-12-07
Online:
2023-09-20
Published:
2023-07-12
Contact:
Bin LIU
Guo-liang YU, Zi-jing MA, Zi-li LYU, Bin LIU. Altitude and plant community jointly regulate soil stoichiometry characteristics of natural grassland in the Baluntai area on the southern slope of the middle Tianshan Mountains, China[J]. Acta Prataculturae Sinica, 2023, 32(9): 68-78.
海拔Altitude (m) | SWC (%) | pH | TS (g·kg-1) | Margalefs | Margalefh | SOC (g·kg-1) |
---|---|---|---|---|---|---|
2200 | 17.87±2.94c | 7.79±0.07a | 3.90±0.07abc | 2.11±0.16a | 12.92±2.26a | 13.49±2.89c |
2350 | 25.23±9.22abc | 7.68±0.14a | 5.38±1.31abc | 1.00±0.00a | 12.89±2.53a | 35.92±6.31ab |
2500 | 35.69±6.34a | 7.78±0.09a | 13.93±2.71a | 2.67±0.47a | 8.67±2.59a | 22.73±6.74bc |
2650 | 16.53±2.33c | 7.86±0.14a | 11.49±3.08ab | 2.44±1.13a | 11.00±2.60a | 21.07±6.28bc |
2800 | 19.03±3.77bc | 7.89±0.11a | 12.17±1.74ab | 1.56±0.42a | 16.33±4.50a | 21.99±7.65bc |
2950 | 31.65±0.99a | 7.95±0.30a | 1.83±0.97c | 0 | 14.42±0.66a | 36.05±9.99ab |
3100 | 20.07±2.11bc | 7.79±0.16a | 1.88±0.32c | 0 | 13.50±2.68a | 48.91±7.52a |
3250 | 32.73±3.77a | 7.86±0.20a | 1.82±0.28c | 0 | 12.17±1.43a | 42.19±6.39a |
3400 | 25.53±2.00b | 7.76±0.09a | 2.69±1.55c | 0 | 13.67±0.47a | 61.75±12.33a |
3550 | 41.18±8.60a | 7.76±0.05a | 2.52±1.55c | 0 | 13.38±3.99a | 32.64±6.69ab |
海拔Altitude (m) | TN (g·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
2200 | 1.46±0.23c | 0.81±0.05ab | 13.81±0.16a | 47.32±10.97c | 6.07±0.77b | 127.33±12.65c |
2350 | 3.99±0.93ab | 0.97±0.08a | 12.99±1.51ab | 149.99±35.56a | 9.17±0.96a | 233.36±25.23ab |
2500 | 2.28±0.76bc | 0.78±0.06ab | 13.08±1.05ab | 79.99±20.09b | 2.47±0.41c | 268.22±21.91a |
2650 | 2.41±1.07bc | 0.64±0.09b | 10.78±1.11b | 63.71±8.93b | 4.85±0.44b | 254.94±34.98ab |
2800 | 2.37±0.71bc | 0.80±0.13ab | 11.91±1.04b | 91.09±30.41b | 2.94±0.58c | 148.66±17.24bc |
2950 | 4.03±1.02ab | 0.93±0.00a | 12.29±0.43b | 178.38±69.67a | 5.04±0.27b | 188.14±17.25b |
3100 | 3.81±0.28ab | 0.83±0.06ab | 12.55±0.62ab | 194.19±51.82a | 2.44±0.55c | 190.66±17.41b |
3250 | 4.61±0.33a | 0.76±0.03ab | 13.08±0.76ab | 169.28±27.16a | 2.69±0.56c | 171.57±26.64bc |
3400 | 5.67±0.67a | 0.95±0.08a | 12.87±1.03ab | 269.57±52.86a | 5.28±0.79b | 267.25±26.10a |
3550 | 3.01±0.49ab | 0.82±0.04ab | 13.66±2.56ab | 150.10±48.90a | 4.25±0.48b | 160.70±5.09bc |
Table 1 Altitude characteristics of soil physicochemical properties, stoichiometry and plant community
海拔Altitude (m) | SWC (%) | pH | TS (g·kg-1) | Margalefs | Margalefh | SOC (g·kg-1) |
---|---|---|---|---|---|---|
2200 | 17.87±2.94c | 7.79±0.07a | 3.90±0.07abc | 2.11±0.16a | 12.92±2.26a | 13.49±2.89c |
2350 | 25.23±9.22abc | 7.68±0.14a | 5.38±1.31abc | 1.00±0.00a | 12.89±2.53a | 35.92±6.31ab |
2500 | 35.69±6.34a | 7.78±0.09a | 13.93±2.71a | 2.67±0.47a | 8.67±2.59a | 22.73±6.74bc |
2650 | 16.53±2.33c | 7.86±0.14a | 11.49±3.08ab | 2.44±1.13a | 11.00±2.60a | 21.07±6.28bc |
2800 | 19.03±3.77bc | 7.89±0.11a | 12.17±1.74ab | 1.56±0.42a | 16.33±4.50a | 21.99±7.65bc |
2950 | 31.65±0.99a | 7.95±0.30a | 1.83±0.97c | 0 | 14.42±0.66a | 36.05±9.99ab |
3100 | 20.07±2.11bc | 7.79±0.16a | 1.88±0.32c | 0 | 13.50±2.68a | 48.91±7.52a |
3250 | 32.73±3.77a | 7.86±0.20a | 1.82±0.28c | 0 | 12.17±1.43a | 42.19±6.39a |
3400 | 25.53±2.00b | 7.76±0.09a | 2.69±1.55c | 0 | 13.67±0.47a | 61.75±12.33a |
3550 | 41.18±8.60a | 7.76±0.05a | 2.52±1.55c | 0 | 13.38±3.99a | 32.64±6.69ab |
海拔Altitude (m) | TN (g·kg-1) | TP (g·kg-1) | TK (g·kg-1) | AN (mg·kg-1) | AP (mg·kg-1) | AK (mg·kg-1) |
2200 | 1.46±0.23c | 0.81±0.05ab | 13.81±0.16a | 47.32±10.97c | 6.07±0.77b | 127.33±12.65c |
2350 | 3.99±0.93ab | 0.97±0.08a | 12.99±1.51ab | 149.99±35.56a | 9.17±0.96a | 233.36±25.23ab |
2500 | 2.28±0.76bc | 0.78±0.06ab | 13.08±1.05ab | 79.99±20.09b | 2.47±0.41c | 268.22±21.91a |
2650 | 2.41±1.07bc | 0.64±0.09b | 10.78±1.11b | 63.71±8.93b | 4.85±0.44b | 254.94±34.98ab |
2800 | 2.37±0.71bc | 0.80±0.13ab | 11.91±1.04b | 91.09±30.41b | 2.94±0.58c | 148.66±17.24bc |
2950 | 4.03±1.02ab | 0.93±0.00a | 12.29±0.43b | 178.38±69.67a | 5.04±0.27b | 188.14±17.25b |
3100 | 3.81±0.28ab | 0.83±0.06ab | 12.55±0.62ab | 194.19±51.82a | 2.44±0.55c | 190.66±17.41b |
3250 | 4.61±0.33a | 0.76±0.03ab | 13.08±0.76ab | 169.28±27.16a | 2.69±0.56c | 171.57±26.64bc |
3400 | 5.67±0.67a | 0.95±0.08a | 12.87±1.03ab | 269.57±52.86a | 5.28±0.79b | 267.25±26.10a |
3550 | 3.01±0.49ab | 0.82±0.04ab | 13.66±2.56ab | 150.10±48.90a | 4.25±0.48b | 160.70±5.09bc |
影响因子Impact factor | 轴Ⅰ得分Axis Ⅰ score | 轴Ⅱ得分Axis Ⅱ score | 拟合系数R2 | P值P value |
---|---|---|---|---|
海拔Altitude | 0.85 | 0.50 | 0.31 | 0.00** |
土壤含水量SWC | 0.27 | 0.18 | 0.06 | 0.75 |
土壤pH值pH | -0.19 | 0.19 | 0.04 | 0.62 |
土壤总盐含量TS | -0.80 | 0.36 | 0.21 | 0.04* |
灌木层Margalef丰富度指数Margalefs | -0.90 | 0.12 | 0.34 | 0.00** |
草本层Margalef丰富度指数Margalefh | 0.45 | -0.38 | 0.06 | 0.71 |
Table 2 Significance test of impact factor
影响因子Impact factor | 轴Ⅰ得分Axis Ⅰ score | 轴Ⅱ得分Axis Ⅱ score | 拟合系数R2 | P值P value |
---|---|---|---|---|
海拔Altitude | 0.85 | 0.50 | 0.31 | 0.00** |
土壤含水量SWC | 0.27 | 0.18 | 0.06 | 0.75 |
土壤pH值pH | -0.19 | 0.19 | 0.04 | 0.62 |
土壤总盐含量TS | -0.80 | 0.36 | 0.21 | 0.04* |
灌木层Margalef丰富度指数Margalefs | -0.90 | 0.12 | 0.34 | 0.00** |
草本层Margalef丰富度指数Margalefh | 0.45 | -0.38 | 0.06 | 0.71 |
土壤化学计量 Soil stoichiometry | 赤池信息准则 AIC | 拟合系数 R2 | 影响因子 Impact factor | 回归系数估计值 Estimated regression coefficient | 标准误 Standard error | t值 t value |
---|---|---|---|---|---|---|
SOC | 162.09 | 0.37 | 海拔Altitude* | 0.02 | 0.01 | 2.55 |
TS* | -1.03 | 0.54 | -1.92 | |||
TN | 14.42 | 0.25 | Margalefs** | -0.64 | 0.19 | -3.32 |
TP | -141.31 | 0.37 | 海拔Altitude* | -0.00 | 0.00 | -2.62 |
Margalefs*** | -0.04 | 0.01 | -3.77 | |||
Margalefh* | 0.00 | 0.00 | 2.10 | |||
TK | 25.65 | 0.16 | SWC* | 0.07 | 0.03 | 2.34 |
TS* | -0.11 | 0.06 | -1.76 | |||
AN | 254.73 | 0.43 | Margalefs*** | -41.56 | 9.30 | -4.47 |
AP | 39.29 | 0.25 | 海拔Altitude** | -0.00 | 0.00 | -3.35 |
TS* | -0.19 | 0.08 | -2.46 | |||
AK | 246.62 | 0.11 | TS* | 3.66 | 1.92 | 1.91 |
C/N | 30.18 | 0.10 | 海拔Altitude* | 0.00 | 0.00 | 1.87 |
C/P | 167.92 | 0.32 | 海拔Altitude*** | 0.02 | 0.01 | 3.88 |
C/K | 8.86 | 0.28 | 海拔Altitude* | 0.00 | 0.00 | 2.37 |
N/P | 25.36 | 0.20 | 海拔Altitude** | 0.00 | 0.00 | 2.91 |
N/K | -134.27 | 0.16 | 海拔Altitude* | 0.00 | 0.00 | 2.57 |
P/K | -277.71 | 0.12 | Margalefh* | 0.00 | 0.00 | 2.23 |
Table 3 Stepwise regression of main factors affecting soil stoichiometry
土壤化学计量 Soil stoichiometry | 赤池信息准则 AIC | 拟合系数 R2 | 影响因子 Impact factor | 回归系数估计值 Estimated regression coefficient | 标准误 Standard error | t值 t value |
---|---|---|---|---|---|---|
SOC | 162.09 | 0.37 | 海拔Altitude* | 0.02 | 0.01 | 2.55 |
TS* | -1.03 | 0.54 | -1.92 | |||
TN | 14.42 | 0.25 | Margalefs** | -0.64 | 0.19 | -3.32 |
TP | -141.31 | 0.37 | 海拔Altitude* | -0.00 | 0.00 | -2.62 |
Margalefs*** | -0.04 | 0.01 | -3.77 | |||
Margalefh* | 0.00 | 0.00 | 2.10 | |||
TK | 25.65 | 0.16 | SWC* | 0.07 | 0.03 | 2.34 |
TS* | -0.11 | 0.06 | -1.76 | |||
AN | 254.73 | 0.43 | Margalefs*** | -41.56 | 9.30 | -4.47 |
AP | 39.29 | 0.25 | 海拔Altitude** | -0.00 | 0.00 | -3.35 |
TS* | -0.19 | 0.08 | -2.46 | |||
AK | 246.62 | 0.11 | TS* | 3.66 | 1.92 | 1.91 |
C/N | 30.18 | 0.10 | 海拔Altitude* | 0.00 | 0.00 | 1.87 |
C/P | 167.92 | 0.32 | 海拔Altitude*** | 0.02 | 0.01 | 3.88 |
C/K | 8.86 | 0.28 | 海拔Altitude* | 0.00 | 0.00 | 2.37 |
N/P | 25.36 | 0.20 | 海拔Altitude** | 0.00 | 0.00 | 2.91 |
N/K | -134.27 | 0.16 | 海拔Altitude* | 0.00 | 0.00 | 2.57 |
P/K | -277.71 | 0.12 | Margalefh* | 0.00 | 0.00 | 2.23 |
1 | Ning Q, Chen L, Zhang C Z, et al. Saprotrophic fungal communities in arable soils are strongly associated with soil fertility and stoichiometry. Applied Soil Ecology, 2020, 159: 103843. |
2 | Li Y, Ma J, Xiao C, et al. Effects of climate factors and soil properties on soil nutrients and elemental stoichiometry across the Huang-Huai-Hai River Basin, China. Journal of Soils and Sediments, 2020, 20(17): 1970-1982. |
3 | Tian L, Lin Z, Wu X, et al. Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland. Science of the Total Environment, 2017, 622: 184-191. |
4 | Jiang L, He Z S, Liu J F, et al. Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis forest on Daiyun Mountain. Forests, 2019, 10(12): 1089. |
5 | Liu L, Wang M H, Yang W, et al. Soil stoichiometric characteristics of alpine meadow in northwest Yunnan under different disturbance types. Pratacultural Science, 2022, 39(4): 634-644. |
刘莉, 王明浩, 杨蔚, 等. 不同干扰类型下滇西北高寒草甸土壤化学计量特征. 草业科学, 2022, 39(4): 634-644. | |
6 | Hu C, Li F, Xie Y H, et al. Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China. European Journal of Soil Science, 2019, 70: 1128-1140. |
7 | Sardans J, Peuelas J. Potassium: A neglected nutrient in global change. Global Ecology and Biogeography, 2015, 24(3): 261-275. |
8 | Kerkhoff A J, Enquist B J, Elser J J, et al. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 2005, 14(6): 585-598. |
9 | Wang Y, Ren Z, Ma P, et al. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment, 2020, 722: 137910. |
10 | Li Y G, Zhou X B, Zhang Y M. Shrub modulates the stoichiometry of moss and soil in desert ecosystems, China. Journal of Arid Land, 2019, 11(4): 579-594. |
11 | Guo J P, Li N P, Tohuti Y. The grand ceremony of the People’s Republic of China, Xinjiang Uygur Autonomous Region volume. Beijing: China Social Press, 2016. |
郭景平, 李宁平, 托乎提·亚克夫. 中华人民共和国政区大典·新疆维吾尔自治区卷. 北京: 中国社会出版社, 2016. | |
12 | Ma Z J, Zhang Y L, Liu B. Relationship between species diversity of plant communities and soil factors at different elevations in Baluntai area, the southern slope of Mid-Tianshan Mountains. Guihaia, 2022, 42(7): 1116-1125. |
马紫荆, 张云玲, 刘彬. 天山中段南坡巴伦台地区不同海拔植物群落物种多样性与土壤因子的关系. 广西植物, 2022, 42(7): 1116-1125. | |
13 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
14 | Fanelli G, Lestini M, Saulia S. Floristic gradients of herbaceous vegetation and P/N ratio in soil in a Mediterranean area. Plant Ecology, 2007, 194(2): 231-242. |
15 | Tian H, Chen G, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1/2/3): 139-151. |
16 | Hobbie S E, Gough L. Foliar and soil nutrients in tundra on glacial landscapes of contrasting ages in northern Alaska. Oecologia, 2016, 131(3): 453-462. |
17 | Aponte C, Maraón T, García L. Microbial C, N and P in soils of Mediterranean oak forests: Influence of season, canopy cover and soil depth. Biogeochemistry, 2010, 101(1): 77-92. |
18 | Su Y, Wu Z, Xie P, et al. Warming effects on topsoil organic carbon and C∶N∶P stoichiometry in a subtropical forested landscape. Forests, 2020, 11(1): 66. |
19 | Prathibha P, Kothai P, Saradhi I V, et al. Chemical characterization of precipitation at a coastal site in Trombay, Mumbai, India. Environmental Monitoring and Assessment, 2010, 168(1/2/3/4): 45-53. |
20 | Dong T F. Soil nutrients and their ecological stoichiometry of Pinus yunnanensis forest along an elevation gradient. Chinese Journal of Ecology, 2021, 40(3): 672-679. |
董廷发. 不同海拔云南松林土壤养分及其生态化学计量特征. 生态学杂志, 2021, 40(3): 672-679. | |
21 | Mcgroddy M E, Daufresne T, Hedin L O. Scaling of C∶N∶P stoichiometry in forest worldwide: Implications of terrestrial redfield-type ratios. Ecology, 2004, 85(9): 2390-2401. |
22 | Houlton B Z, Wang Y P, Vitousek P M, et al. A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 2008, 454(7202): 327-330. |
23 | Hedin L O, Vitousek P M, Matson P A. Nutrient losses over four million years of tropical forest development. Ecology, 2003, 84(9): 2231-2255. |
24 | Zhang Y, Li C, Wang M L. Linkages of C∶N∶P stoichiometry between soil and leaf and their response to climatic factors along altitudinal gradients. Journal of Soils and Sediments, 2018, 19(6): 1820-1829. |
25 | Yang Y H, Luo Y Q. Carbon∶nitrogen stoichiometry in forest ecosystems during stand development. Global Ecology and Biogeography, 2011, 20(2): 354-361. |
26 | Li L, Chang Y P, Xu Z L. Stoichiometric characteristics of Picea schrenkiana forests with a hydrothermal gradient and their correlation with soil physicochemical factors on Tianshan Mountain. Acta Ecologica Sinica, 2018, 38(22): 8139-8148. |
李路, 常亚鹏, 许仲林. 天山雪岭云杉林土壤CNP化学计量特征随水热梯度的变化. 生态学报, 2018, 38(22): 8139-8148. | |
27 | Olander L P, Vitousek P M. Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 2000, 49(2): 175-190. |
28 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: Is there a “redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
29 | Cheng M, An S S. Responses of soil nitrogen, phosphorous and organic matter to vegetation succession on the Loess Plateau of China. Journal of Arid Land, 2015, 7(2): 216-223. |
30 | Zhang M, Zhang X K, Liang W J, et al. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere, 2011, 21(5): 615-620. |
31 | Muller M, Yvonne O, Schickhoff U, et al. Himalayan tree line soil and foliar C∶N∶P stoichiometry indicate nutrient shortage with elevation. Geoderma, 2017, 291(2): 21-32. |
32 | Wang H, Liu S R, Wang J X, et al. Differential effects of conifer and broadleaf litter inputs on soil organic carbon chemical composition through altered soil microbial community composition. Scientific Reports, 2016, 6(1): 27097. |
33 | Zechmeister-Boltenstern S, Keiblinger K M, Mooshammer M, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecological Monographs, 2015, 85(2): 133-155. |
34 | Nottingham A T, Turner B L, Whitaker J, et al. Soil microbial nutrient constraints along a tropical forest elevation gradient: A belowground test of a biogeochemical paradigm. Biogeosciences, 2015, 12(20): 6071-6083. |
35 | Tipping E, Somerville C J, Luster J. The C∶N∶P∶S stoichiometry of soil organic matter. Biogeochemistry, 2016, 130(1): 117-131. |
36 | Armengaud P, Sulpice R, Miller A J, et al. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiology, 2009, 150(2): 772-785. |
37 | Zhao D, Oosterhuis D M, Bednarz C W. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 2001, 39(1): 103-109. |
38 | Teixeira P C, Gonçalves J L M, Arthur J C, et al. Eucalyptus sp. seedling response to potassium fertilization and soil water. Ciencia Forestal, 2008, 18(1): 47-63. |
39 | ElMesbahi M N, Azcón R, Ruiz-Lozano J M, et al. Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza, 2012, 22(7): 555-564. |
40 | Oddo E, Inzerillo S, La Bella F, et al. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiology, 2011, 31(2): 131-138. |
[1] | Lin-zhi LI, De-gang ZHANG, Yuan MA, Zhu-zhu LUO, Dong LIN, Long HAI, Lan-ge BAI. Ecological stoichiometry characteristics of soil aggregates in alpine meadows with differing degrees of degradation [J]. Acta Prataculturae Sinica, 2023, 32(8): 48-60. |
[2] | Xin LU, Juan QI, Shang-li SHI, Mei-mei CHE, Xia LI, Shuang-shuang DU, Ning-gang SAI, Yan-wei JIA. Effects of broad-leaved grass inhibitors combined with nitrogen on soil characteristics of alpine meadow [J]. Acta Prataculturae Sinica, 2023, 32(7): 38-48. |
[3] | Cai-feng LIU, Yuan-yuan DUAN, Ling-ling WANG, Yi-mo WANG, Zheng-gang GUO. Effects of plateau pika (Ochotona curzoniae) disturbance on the relationship between plant species diversity and soil ecological stoichiometry in alpine meadows [J]. Acta Prataculturae Sinica, 2023, 32(6): 157-166. |
[4] | Huan LIU, Kai DONG, Zeng-wangdui REN, Jing-long WANG, Yun-fei LIU, Gui-qin ZHAO. Effects of co-sowing of Artemisia wellbyi and perennial grasses on the characteristics of vegetation and soil fungal communities in desertified grasslands in Tibet [J]. Acta Prataculturae Sinica, 2023, 32(6): 45-57. |
[5] | Guo-hong YOU, Dan LIU, Yan-li WANG, Chang-ting WANG. Response of plant leaf ecological stoichiometric characteristics to long-term nitrogen addition in alpine meadow [J]. Acta Prataculturae Sinica, 2022, 31(9): 50-62. |
[6] | Peng-bo ZHAO, Kai-yang QIU, Ying-zhong XIE, Wang-suo LIU, Xiao-wei LI, Lin CHEN, Ji-fei WANG, Wen-fen MENG, Ye-yun HUANG, Xiao-cong LI, Hao-nan YANG. Change in plant community characteristics along altitudinal gradients in the main browsing areas of Pseudois nayaur in the Helan Mountains [J]. Acta Prataculturae Sinica, 2022, 31(6): 79-90. |
[7] | Fang-fang NI, Shi-jie LV, Zhi-qiang QU, Lu BAI, Biao MENG, Bo-han ZHANG, Zhi-guo LI. Effects of vegetation characteristics of desert steppe in the non-growing season on near-surface dust flux under different stocking rates [J]. Acta Prataculturae Sinica, 2022, 31(3): 26-33. |
[8] | Ke-tong YANG, Guo-peng CHEN, Jun-ren XIAN, Xiao-ya YU, Jin-wu ZHANG, Li WANG. Characteristics of stem and leaf functional traits of Rhododendron capitatum on the north slope of Zhagaliang, Gansu [J]. Acta Prataculturae Sinica, 2022, 31(2): 111-120. |
[9] | Gui-qin ZHAO, Ze-liang JU, Ji-kuan CHAI. Effects of altitude and variety on nutrient levels and epiphytes of oats [J]. Acta Prataculturae Sinica, 2022, 31(11): 147-157. |
[10] | Xu-mei JIN, Ying-ying WANG, Chong-yi LIU, Xin-yi CHEN, Ming-xiu LONG, Shu-bin HE. Effects on soil nutrients and bacterial communities of different cover crops in an organic kiwifruit orchard in the Guanzhong region of China [J]. Acta Prataculturae Sinica, 2022, 31(10): 53-63. |
[11] | Ying MA, Zhi-hao XU, Qiao-hong ZENG, Jian-long MENG, Ya-hu HU, Jie-qiong SU. Impact of nitrogen addition on stoichiometric characteristics of herbaceous species in desert steppe [J]. Acta Prataculturae Sinica, 2021, 30(6): 64-72. |
[12] | Jie LI, Pan PAN, Chang-ting WANG, Lei HU, Ke-yu CHEN, Wen-gao YANG. Root dynamics of artificial grassland for swards of differing ages in the ‘Three-River Source’ region [J]. Acta Prataculturae Sinica, 2021, 30(3): 28-40. |
[13] | Ju-hong WANG, Ze-xuan XU, Wen CHEN, Hui ZHU, Long-jun HUANG, Jia-wei LI. The stoichiometric characteristics of Alternanthera philoxeroides with different invasive degrees and their comparison with the coexisting species Gomphrena celosioides [J]. Acta Prataculturae Sinica, 2021, 30(2): 115-123. |
[14] | Jing-jing ZHANG, Zun-chi LIU, Chuang YAN, Yun-xia WANG, Kai LIU, Xin-rong SHI, Zhi-you YUAN. Effects of soil pH on soil carbon, nitrogen, and phosphorus ecological stoichiometry in three types of steppe [J]. Acta Prataculturae Sinica, 2021, 30(2): 69-81. |
[15] | Guo-bao HE. Distribution characteristics and plant community diversity on the north slopes of the Qilian Mountains [J]. Acta Prataculturae Sinica, 2021, 30(12): 194-201. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||