Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (2): 198-211.DOI: 10.11686/cyxb2023147
Yu-zhu LI(), Jiang-di YU, Fei-fei DING, Jia-min MIAO, Xiao-ming BAI, Shang-li SHI()
Received:
2023-05-08
Revised:
2023-07-07
Online:
2024-02-20
Published:
2023-12-12
Contact:
Shang-li SHI
Yu-zhu LI, Jiang-di YU, Fei-fei DING, Jia-min MIAO, Xiao-ming BAI, Shang-li SHI. Progress in studies of molecular mechanisms and applications of somatic cell regeneration during genetic transformation[J]. Acta Prataculturae Sinica, 2024, 33(2): 198-211.
基因名称 Gene name | 表达盒 Gene cassette | 转化物种 Transformed species | 外植体 Explant | 再生方式 Regeneration | 转化效果 Transform efficiency | 表型 Phenotype | 参考文献 Reference |
---|---|---|---|---|---|---|---|
干细胞关键调节基因Key regulator gene of stem cell | |||||||
WUSCHEL (WUS) | 35S:AtWUS | 陆地棉Gossypium hirsutum | 下胚轴 Hypocotyl | 体胚发生 Embryogenesis | 胚性组织显著发生The percentage of explants giving rise to embryogenic tissues was significantly higher than in the control | 异常 Abnormal | [ |
PG10–90:XVE-OLexA-min35S:AtWUS | 烟草N. tabacum | 叶片Leaf | 器官发生 Organogenesis | 促进转化的顽拗型品种增殖Improving micropropagation in recalcitrant species | 异常 Abnormal | [ | |
PG10–90:XVE-OLexA-min35S:AtWUS | 中粒咖啡Coffea canephora | 叶片Leaf | 体胚发生 Embryogenesis | 提高体胚发生产量400% A 400% increases of somatic embryo production | 异常 Abnormal | [ | |
ZmPLTP:ZmWUS2 | 玉米Z. mays | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 促进仅含标记基因的T0代转基因植物体胚形成和再生Stimulated somatic embryo formation and regeneration of stable T0 plants that contained the selectable marker | 正常 Normal | [ | |
生长素相关基因Genes related with auxin | |||||||
BABY BOOM (BBM) | 35S:BnBBM HaUbi:BnBBM | 欧洲油菜B. napus | 小孢子Microspore | 体胚发生Embryogenesis | 外植体在无激素的培养基中再生Hormone-free regeneration of explants | 异常 Abnormal | [ |
35S:AtBBM; 35S:BnBBM | 烟草N. tabacum | 叶片Leaf | 器官发生 Organogenesis | 转化系自发形成芽和根Transformed lines exhibited spontaneous shoot and root formation | 异常 Abnormal | [ | |
35S:TcBBM | 可可T. cacao | 子叶Cotyledon | 体胚发生 Embryogenesis | 不需要激素的体胚发生和增殖Increasing SE formation and proliferation without use of exogenous hormones | 异常 Abnormal | [ | |
35S:TcBBM-GR | 可可T. cacao | 子叶Cotyledon | 体胚发生 Embryogenesis | 赋予叶片体胚发生能力Confering an embryogenic potential to leaves | 正常 Normal | [ | |
35S:BnBBM-GR | 辣椒C. annuum | 子叶Cotyledon | 体胚发生 Embryogenesis | 执拗型品种高效再生转基因植物Efficiently regenerating transgenic plants from recalcitrant varieties | 异常 Abnormal | [ | |
LEAFY COTYLEDON1 (LEC1) | 35S: PaHAP3A;PG10–90:XVE-OLexA-min35S:PaHAP3A | 欧洲云杉P. abies | 胚性细胞系Embryonic cell lines | 体胚发生Embryogenesis | 促进体胚分化Leading to the differentiation of ectopic embryos from maturing somatic embryos | 正常 Normal | [ |
AGAMOUS-LIKE 15 (AGL15) | 35S:gGmAGL15;35S:cGmAGL15 | 大豆G. max | 子叶Cotyledon | 体胚发生Embryogenesis | 促进体胚发育Enhancing somatic embryo development | 异常 Abnormal | [ |
WUS+BBM | Nos:ZmWUS2+ ZmUbi:ZmBBM | 玉米Z. mays | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 实现多个执拗型品种高频转化High transformation frequencies in numerous previously nontransformable maize inbred lines | 正常 Normal | [ |
Nos:ZmWUS2+ ZmUbi:ZmBBM | 高粱S. bicolor 甘蔗S. officinarum 水稻O. sativa | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 促进高粱未成熟胚、甘蔗愈伤组织和籼稻愈伤组织的转化Stimulating transformation in sorghum immature embryos, sugarcane callus, and indica rice callus | 正常 Normal | [ | |
Nos:ZmWUS2+ ZmUbi:ZmBBM | 玉米Z. mays 高粱S. bicolor | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 不需要选择性标记基因获得执拗型玉米自交系B73和高粱P898012的有效转化Efficient transformation of recalcitrant maize inbred B73 and sorghum P898012 genotypes without use of a selectable marker gene | 正常 Normal | [ | |
WUS+BBM | Nos:ZmWUS2+ZmPLTP:ZmBBM | 玉米Z. mays | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 绕过愈伤组织诱导直接产生体胚并再生Somatic embryos rapidly formed and directly germinated into plants without a callus phase | 正常 Normal | [ |
ZmAxig1:ZmWUS2+ZmPLTP:ZmBBM | 玉米Z. mays | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 绕过愈伤组织诱导直接产生体胚并再生,且T1代种子正常萌发Somatic embryos rapidly formed and directly germinated into plants without a callus phase, and single-copy T1 seed germinated normally | 正常 Normal | [ | |
ZmPLTP:ZmWUS2+ZmPLTP:ZmBBM | 高粱S. bicolor | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 更多基因型被转化,并缩短转基因植株再生时间More sorghum genotypes amenable to transformation and a faster time to generate transformed plants | 正常 Normal | [ | |
Nos:ZmWUS2-3xEnhZmUbi:ZmBBM | 玉米Z. mays 高粱S. bicolor | 叶片Leaf | 体胚发生 Embryogenesis | 通过体胚直接发生而显著提高玉米和高粱的转化效率并获得Cas9介导的基因编辑植株Substantially improving leaf transformation in maize and sorghum by direct SE, allowing the recovery of plants with Cas9-mediated gene dropouts and targeted gene insertion | 正常 Normal | [ | |
Nos:ZmWUS2-3xEnhZmUbi:ZmBBM | 苔麸Eragrostis tef;柳枝稷Panicum virgatum;珍珠粟Pennisetum glaucum;梁Setaria italica;黑麦Secale cereale;大麦Hordeum vulgare;水稻O. sativa | 叶片Leaf | 体胚发生 Embryogenesis | 获得禾本科4个不同亚科7个物种的体胚再生转化植株Embryogenic callus and regenerated plantlets were successfully produced in seven species spanning four grass subfamilies | 正常 Normal | [ | |
CK相关基因CK related genes | |||||||
CUP-SHAPED COTYLEDON1 or 2CUC1 or 2 | 35S:AtCUC1 or 2 | 拟南芥A. thaliana | 幼苗Seedling | 器官发生 Organogenesis | 转化愈伤组织不定芽数量提高10倍The average number of adventitious shoots on a callus was 10 times than that in the control | 异常 Abnormal | [ |
ENHANCER OF SHOOT REGENERATION2 (ESR2) | PG10–90:XVE-OLexA-min35S:AtESR2 | 拟南芥A. thaliana | 根Root | 器官发生 Organogenesis | 不需要添加外源CK而促进芽再生Promoted shoot regeneration independently of added cytokinin | 正常 Normal | [ |
Knotted1 (Kn1) | 35S:ZmKn1 | 甜橙Citrus sinensis | 茎段Internodal stem segments | 器官发生 Organogenesis | 转化效率提高3~15倍Enhances transformation efficiencies from 3 to 15 fold | 异常 Abnormal | [ |
35S:ZmKn1 | 烟草N. tabacum | 叶片Leaf | 器官发生Organogenesis | 转化效率提高3倍3-fold increase in transformation efficiency | 异常Abnormal | [ | |
MONOPTEROS (MP) | AtMP:AtMPΔ | 拟南芥A. thaliana | 根Root 叶Leaf 叶柄Petiole 子叶Cotyledon | 器官发生 Organogenesis | 促进再生芽发生Promote de novo shoot organogenesis | 异常Abnormal | [ |
GROWTH-REGULATING FACTOR5(GRF5) | 2×35S:AtGRF5;2×35S:BvGRF5-L | 甜菜Beta vulgaris | 下胚轴Cotyledon 子叶Hypocotyl | 器官发生 Organogenesis | 提高转化效率和再生效率,包括执拗型品种Accelerated shoot organogenesis and resulted in significant improvements in transformation, including recalcitrant varieties | 正常 Normal | [ |
2×35S:AtGRF5;2×35 S:HaGRF5-L | 向日葵Helianthus annuu | 子叶Cotyledon | 器官发生Organogenesis | 促进转化细胞中芽的产生Increasing in the production of developing transgenic shoots | 正常Normal | [ | |
PcUbi4-2:: GmGRF5-L | 大豆G. max | 茎节Primary node | 器官发生Organogenesis | 促进转化细胞中芽的产生Increasing in the production of developing transgenic shoots | 正常 Normal | [ | |
PcUbi4-2: BnGRF5-L | 欧洲油菜B. napus | 下胚轴Hypocotyl | 器官发生Organogenesis | 显著提高转化效率Significantly increases in genetic transformation of the explant tissue | 正常 Normal | [ | |
BdEF1:AtGRF5;BdEF 1:ZmGRF5-L1/2 | 玉米Z. mays | 未成熟胚Immature embryo | 体胚发生Embryogenesis | 促进胚性愈伤组织增殖,提高转化效率A higher rate of embryogenic callus growth leading to an increased recovery of transgenic plants | 正常 Normal | [ | |
GRF-INTERACTING FACTOR (GRF-FIF) | TaUbi:GRF4-GIF1 | 小麦T. aestivum | 未成熟胚Immature embryo | 器官发生Organogenesis | 平均再生效率比对照高7.8倍The average regeneration efficiency of the GRF4-GIF1 chimera was 7.8-fold higher than the empty vector control | 正常 Normal | [ |
TaUbi:GRF4-GIF1 | 水稻O. sativa | 种子Seed | 器官发生Organogenesis | 转化愈伤组织的再生效率比对照提高2.1倍A 2.1-fold increase in regeneration efficiency in the calli transformed compared with those transformed with the control vectors | 正常 Normal | [ | |
ClUbi:GRF4-GIF1 | 柠檬Citrus×limon | 上胚轴Etiolated epicotyl | 器官发生 Organogenesis | 再生效率比对照提高4.7倍A 4.7-fold increase in regeneration frequency relative to those transformed with the empty vector control | 正常 Normal | [ | |
ISOPENTENYL TRANSFERASE (IPT) | 35S:ipt | 烟草N. tabacum | 茎Stem 叶片Leaf | 器官发生Organogenesis | 芽数量增加2.4倍,再生时间缩短1.5~2.3倍2.4-fold increase in the number of shoots formation and 1.5-2.3 fold decrease in the time of shoots formation | 异常 Abnormal | [ |
35S:ipt | 黄瓜Cucumis sativus | 幼苗Seedling | 器官发生Organogenesis | 芽平均大小增加7.5倍7.5-fold increase in the size of shoots | 异常 Abnormal | [ | |
35S:ipt in Ac | 烟草N. tabacum | 叶片Leaf | 器官发生Organogenesis | 转基因植株的选择标记基因被自动切除Marker-free phenotypically normal transgenic plants | 正常 Normal | [ | |
35S:ipt in Ac | 杂交山杨Populus sieboldii×Populus grandidentata | 茎Stem | 器官发生Organogenesis | 转基因植株的选择标记基因被自动切除Marker-free phenotypically normal transgenic plants | 正常 Normal | [ | |
35S:GVG- 6×UAS-min3-5S:ipt | 烟草N. tabacum | 叶片Leaf | 器官发生Organogenesis | Dex诱导系统控制下,再生植株增加24.3倍A 24.3-fold increase in shoots regenerants under the control of the Dex-inducible system | 正常 Normal | [ | |
35S:GVG - 6×UAS-min3-5S:ipt | 莴苣Lactuca sativa | 子叶Cotyledon | 器官发生Organogenesis | Dex诱导系统控制下,再生植株增加6.6倍A 6.6-fold increase in shoots regenerants under the control of the Dex-inducible system | 正常 Normal | [ | |
Nos:ZmWUS 2-ZmUbi:IPT or Nos:ZmW US2- ZmUbi:AtSTM | 拟南芥A. thaliana 烟草N. tabacum | 幼苗Seedling | 器官发生Organogenesis | 无须组织培养,快速产生基因编辑植株Generating gene-edited plants through de novo meristem induction | 正常 Normal | [ | |
Nos:ZmWUS 2-ZmUbi:IPT or Nos:ZmW US2- ZmUbi:AtSTM | 番茄Solanum lycopersicum;马铃薯S. tuberosum;葡萄Vitis vinifera | 幼苗Seedling | 器官发生Organogenesis | 无须组织培养,快速产生基因编辑植株Generating gene-edited plants through de novo meristem induction | 正常 Normal | [ |
Table 1 Application of regeneration-promoting genes in the improvement of plant transformation system
基因名称 Gene name | 表达盒 Gene cassette | 转化物种 Transformed species | 外植体 Explant | 再生方式 Regeneration | 转化效果 Transform efficiency | 表型 Phenotype | 参考文献 Reference |
---|---|---|---|---|---|---|---|
干细胞关键调节基因Key regulator gene of stem cell | |||||||
WUSCHEL (WUS) | 35S:AtWUS | 陆地棉Gossypium hirsutum | 下胚轴 Hypocotyl | 体胚发生 Embryogenesis | 胚性组织显著发生The percentage of explants giving rise to embryogenic tissues was significantly higher than in the control | 异常 Abnormal | [ |
PG10–90:XVE-OLexA-min35S:AtWUS | 烟草N. tabacum | 叶片Leaf | 器官发生 Organogenesis | 促进转化的顽拗型品种增殖Improving micropropagation in recalcitrant species | 异常 Abnormal | [ | |
PG10–90:XVE-OLexA-min35S:AtWUS | 中粒咖啡Coffea canephora | 叶片Leaf | 体胚发生 Embryogenesis | 提高体胚发生产量400% A 400% increases of somatic embryo production | 异常 Abnormal | [ | |
ZmPLTP:ZmWUS2 | 玉米Z. mays | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 促进仅含标记基因的T0代转基因植物体胚形成和再生Stimulated somatic embryo formation and regeneration of stable T0 plants that contained the selectable marker | 正常 Normal | [ | |
生长素相关基因Genes related with auxin | |||||||
BABY BOOM (BBM) | 35S:BnBBM HaUbi:BnBBM | 欧洲油菜B. napus | 小孢子Microspore | 体胚发生Embryogenesis | 外植体在无激素的培养基中再生Hormone-free regeneration of explants | 异常 Abnormal | [ |
35S:AtBBM; 35S:BnBBM | 烟草N. tabacum | 叶片Leaf | 器官发生 Organogenesis | 转化系自发形成芽和根Transformed lines exhibited spontaneous shoot and root formation | 异常 Abnormal | [ | |
35S:TcBBM | 可可T. cacao | 子叶Cotyledon | 体胚发生 Embryogenesis | 不需要激素的体胚发生和增殖Increasing SE formation and proliferation without use of exogenous hormones | 异常 Abnormal | [ | |
35S:TcBBM-GR | 可可T. cacao | 子叶Cotyledon | 体胚发生 Embryogenesis | 赋予叶片体胚发生能力Confering an embryogenic potential to leaves | 正常 Normal | [ | |
35S:BnBBM-GR | 辣椒C. annuum | 子叶Cotyledon | 体胚发生 Embryogenesis | 执拗型品种高效再生转基因植物Efficiently regenerating transgenic plants from recalcitrant varieties | 异常 Abnormal | [ | |
LEAFY COTYLEDON1 (LEC1) | 35S: PaHAP3A;PG10–90:XVE-OLexA-min35S:PaHAP3A | 欧洲云杉P. abies | 胚性细胞系Embryonic cell lines | 体胚发生Embryogenesis | 促进体胚分化Leading to the differentiation of ectopic embryos from maturing somatic embryos | 正常 Normal | [ |
AGAMOUS-LIKE 15 (AGL15) | 35S:gGmAGL15;35S:cGmAGL15 | 大豆G. max | 子叶Cotyledon | 体胚发生Embryogenesis | 促进体胚发育Enhancing somatic embryo development | 异常 Abnormal | [ |
WUS+BBM | Nos:ZmWUS2+ ZmUbi:ZmBBM | 玉米Z. mays | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 实现多个执拗型品种高频转化High transformation frequencies in numerous previously nontransformable maize inbred lines | 正常 Normal | [ |
Nos:ZmWUS2+ ZmUbi:ZmBBM | 高粱S. bicolor 甘蔗S. officinarum 水稻O. sativa | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 促进高粱未成熟胚、甘蔗愈伤组织和籼稻愈伤组织的转化Stimulating transformation in sorghum immature embryos, sugarcane callus, and indica rice callus | 正常 Normal | [ | |
Nos:ZmWUS2+ ZmUbi:ZmBBM | 玉米Z. mays 高粱S. bicolor | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 不需要选择性标记基因获得执拗型玉米自交系B73和高粱P898012的有效转化Efficient transformation of recalcitrant maize inbred B73 and sorghum P898012 genotypes without use of a selectable marker gene | 正常 Normal | [ | |
WUS+BBM | Nos:ZmWUS2+ZmPLTP:ZmBBM | 玉米Z. mays | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 绕过愈伤组织诱导直接产生体胚并再生Somatic embryos rapidly formed and directly germinated into plants without a callus phase | 正常 Normal | [ |
ZmAxig1:ZmWUS2+ZmPLTP:ZmBBM | 玉米Z. mays | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 绕过愈伤组织诱导直接产生体胚并再生,且T1代种子正常萌发Somatic embryos rapidly formed and directly germinated into plants without a callus phase, and single-copy T1 seed germinated normally | 正常 Normal | [ | |
ZmPLTP:ZmWUS2+ZmPLTP:ZmBBM | 高粱S. bicolor | 未成熟胚 Immature embryo | 体胚发生 Embryogenesis | 更多基因型被转化,并缩短转基因植株再生时间More sorghum genotypes amenable to transformation and a faster time to generate transformed plants | 正常 Normal | [ | |
Nos:ZmWUS2-3xEnhZmUbi:ZmBBM | 玉米Z. mays 高粱S. bicolor | 叶片Leaf | 体胚发生 Embryogenesis | 通过体胚直接发生而显著提高玉米和高粱的转化效率并获得Cas9介导的基因编辑植株Substantially improving leaf transformation in maize and sorghum by direct SE, allowing the recovery of plants with Cas9-mediated gene dropouts and targeted gene insertion | 正常 Normal | [ | |
Nos:ZmWUS2-3xEnhZmUbi:ZmBBM | 苔麸Eragrostis tef;柳枝稷Panicum virgatum;珍珠粟Pennisetum glaucum;梁Setaria italica;黑麦Secale cereale;大麦Hordeum vulgare;水稻O. sativa | 叶片Leaf | 体胚发生 Embryogenesis | 获得禾本科4个不同亚科7个物种的体胚再生转化植株Embryogenic callus and regenerated plantlets were successfully produced in seven species spanning four grass subfamilies | 正常 Normal | [ | |
CK相关基因CK related genes | |||||||
CUP-SHAPED COTYLEDON1 or 2CUC1 or 2 | 35S:AtCUC1 or 2 | 拟南芥A. thaliana | 幼苗Seedling | 器官发生 Organogenesis | 转化愈伤组织不定芽数量提高10倍The average number of adventitious shoots on a callus was 10 times than that in the control | 异常 Abnormal | [ |
ENHANCER OF SHOOT REGENERATION2 (ESR2) | PG10–90:XVE-OLexA-min35S:AtESR2 | 拟南芥A. thaliana | 根Root | 器官发生 Organogenesis | 不需要添加外源CK而促进芽再生Promoted shoot regeneration independently of added cytokinin | 正常 Normal | [ |
Knotted1 (Kn1) | 35S:ZmKn1 | 甜橙Citrus sinensis | 茎段Internodal stem segments | 器官发生 Organogenesis | 转化效率提高3~15倍Enhances transformation efficiencies from 3 to 15 fold | 异常 Abnormal | [ |
35S:ZmKn1 | 烟草N. tabacum | 叶片Leaf | 器官发生Organogenesis | 转化效率提高3倍3-fold increase in transformation efficiency | 异常Abnormal | [ | |
MONOPTEROS (MP) | AtMP:AtMPΔ | 拟南芥A. thaliana | 根Root 叶Leaf 叶柄Petiole 子叶Cotyledon | 器官发生 Organogenesis | 促进再生芽发生Promote de novo shoot organogenesis | 异常Abnormal | [ |
GROWTH-REGULATING FACTOR5(GRF5) | 2×35S:AtGRF5;2×35S:BvGRF5-L | 甜菜Beta vulgaris | 下胚轴Cotyledon 子叶Hypocotyl | 器官发生 Organogenesis | 提高转化效率和再生效率,包括执拗型品种Accelerated shoot organogenesis and resulted in significant improvements in transformation, including recalcitrant varieties | 正常 Normal | [ |
2×35S:AtGRF5;2×35 S:HaGRF5-L | 向日葵Helianthus annuu | 子叶Cotyledon | 器官发生Organogenesis | 促进转化细胞中芽的产生Increasing in the production of developing transgenic shoots | 正常Normal | [ | |
PcUbi4-2:: GmGRF5-L | 大豆G. max | 茎节Primary node | 器官发生Organogenesis | 促进转化细胞中芽的产生Increasing in the production of developing transgenic shoots | 正常 Normal | [ | |
PcUbi4-2: BnGRF5-L | 欧洲油菜B. napus | 下胚轴Hypocotyl | 器官发生Organogenesis | 显著提高转化效率Significantly increases in genetic transformation of the explant tissue | 正常 Normal | [ | |
BdEF1:AtGRF5;BdEF 1:ZmGRF5-L1/2 | 玉米Z. mays | 未成熟胚Immature embryo | 体胚发生Embryogenesis | 促进胚性愈伤组织增殖,提高转化效率A higher rate of embryogenic callus growth leading to an increased recovery of transgenic plants | 正常 Normal | [ | |
GRF-INTERACTING FACTOR (GRF-FIF) | TaUbi:GRF4-GIF1 | 小麦T. aestivum | 未成熟胚Immature embryo | 器官发生Organogenesis | 平均再生效率比对照高7.8倍The average regeneration efficiency of the GRF4-GIF1 chimera was 7.8-fold higher than the empty vector control | 正常 Normal | [ |
TaUbi:GRF4-GIF1 | 水稻O. sativa | 种子Seed | 器官发生Organogenesis | 转化愈伤组织的再生效率比对照提高2.1倍A 2.1-fold increase in regeneration efficiency in the calli transformed compared with those transformed with the control vectors | 正常 Normal | [ | |
ClUbi:GRF4-GIF1 | 柠檬Citrus×limon | 上胚轴Etiolated epicotyl | 器官发生 Organogenesis | 再生效率比对照提高4.7倍A 4.7-fold increase in regeneration frequency relative to those transformed with the empty vector control | 正常 Normal | [ | |
ISOPENTENYL TRANSFERASE (IPT) | 35S:ipt | 烟草N. tabacum | 茎Stem 叶片Leaf | 器官发生Organogenesis | 芽数量增加2.4倍,再生时间缩短1.5~2.3倍2.4-fold increase in the number of shoots formation and 1.5-2.3 fold decrease in the time of shoots formation | 异常 Abnormal | [ |
35S:ipt | 黄瓜Cucumis sativus | 幼苗Seedling | 器官发生Organogenesis | 芽平均大小增加7.5倍7.5-fold increase in the size of shoots | 异常 Abnormal | [ | |
35S:ipt in Ac | 烟草N. tabacum | 叶片Leaf | 器官发生Organogenesis | 转基因植株的选择标记基因被自动切除Marker-free phenotypically normal transgenic plants | 正常 Normal | [ | |
35S:ipt in Ac | 杂交山杨Populus sieboldii×Populus grandidentata | 茎Stem | 器官发生Organogenesis | 转基因植株的选择标记基因被自动切除Marker-free phenotypically normal transgenic plants | 正常 Normal | [ | |
35S:GVG- 6×UAS-min3-5S:ipt | 烟草N. tabacum | 叶片Leaf | 器官发生Organogenesis | Dex诱导系统控制下,再生植株增加24.3倍A 24.3-fold increase in shoots regenerants under the control of the Dex-inducible system | 正常 Normal | [ | |
35S:GVG - 6×UAS-min3-5S:ipt | 莴苣Lactuca sativa | 子叶Cotyledon | 器官发生Organogenesis | Dex诱导系统控制下,再生植株增加6.6倍A 6.6-fold increase in shoots regenerants under the control of the Dex-inducible system | 正常 Normal | [ | |
Nos:ZmWUS 2-ZmUbi:IPT or Nos:ZmW US2- ZmUbi:AtSTM | 拟南芥A. thaliana 烟草N. tabacum | 幼苗Seedling | 器官发生Organogenesis | 无须组织培养,快速产生基因编辑植株Generating gene-edited plants through de novo meristem induction | 正常 Normal | [ | |
Nos:ZmWUS 2-ZmUbi:IPT or Nos:ZmW US2- ZmUbi:AtSTM | 番茄Solanum lycopersicum;马铃薯S. tuberosum;葡萄Vitis vinifera | 幼苗Seedling | 器官发生Organogenesis | 无须组织培养,快速产生基因编辑植株Generating gene-edited plants through de novo meristem induction | 正常 Normal | [ |
1 | Fehér A. Callus, dedifferentiation, totipotency, somatic embryogenesis: what these terms mean in the era of molecular plant biology? Frontiers in Plant Science, 2019, 10: 536. |
2 | Cao X, Xie H, Song M, et al. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation, 2023, 4(1): 100345. |
3 | Di R, Purcell V, Collins G B, et al. Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Reports, 1996, 15: 746-750. |
4 | Zhang Z, Xing A, Staswick P, et al. The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell, Tissue and Organ Culture, 1999, 56(1): 37-46. |
5 | Paz M M, Martinez J C, Kalvig A B, et al. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Reports, 2006, 25(3): 206-213. |
6 | Li H, Wylie S J, Jones M G K. Transgenic yellow lupin (Lupinus luteus). Plant Cell Reports, 2000, 19: 634-637. |
7 | Hamada H, Linghu Q, Nagira Y, et al. An in planta biolistic method for stable wheat transformation. Scientific Reports, 2017, 7(1): 11443. |
8 | Maren N A, Duan H, Da K, et al. Genotype-independent plant transformation. Horticulture Research, 2022, 9: uhac047. |
9 | Ikeuchi M, Ogawa Y, Iwase A, et al. Plant regeneration: cellular origins and molecular mechanisms. Development, 2016, 143(9): 1442-1451. |
10 | Ikeuchi M, Iwase A, Rymen B, et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiology, 2017, 175(3): 1158-1174. |
11 | Iwase A, Harashima H, Ikeuchi M, et al. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis.The Plant Cell, 2017, 29(1): 54-69. |
12 | Cheng Y, Liu H, Cao L, et al. Down-regulation of multiple CDK inhibitor ICK/KRP genes promotes cell proliferation, callus induction and plant regeneration in Arabidopsis. Frontiers in Plant Science, 2015, 6: 825. |
13 | Kirch T, Simon R, Grünewald M, et al. The DORNROSCHEN/ENHANCER OF SHOOT REGENERATION1 gene of Arabidopsis acts in the control of meristem cell fate and lateral organ development. The Plant Cell, 2003, 15(3): 694-705. |
14 | Iwase A, Mita K, Nonaka S, et al. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed. Journal of Plant Research, 2015, 128: 389-397. |
15 | Mozgová I, Muñoz-Viana R, Hennig L. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genetics, 2017, 13(1): e1006562. |
16 | Lee K, Seo P J. Dynamic epigenetic changes during plant regeneration. Trends in Plant Science, 2018, 23(3): 235-247. |
17 | Chen T, Dent S Y. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nature Reviews Genetics, 2014, 15(2): 93-106. |
18 | He C, Chen X, Huang H, et al. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues. PLoS Genetics, 2012, 8(8): e1002911. |
19 | Ikeuchi M, Iwase A, Rymen B, et al. PRC2 represses dedifferentiation of mature somatic cells in Arabidopsis. Nature Plants, 2015, 1(7): 1-7. |
20 | Iwase A, Mitsuda N, Koyama T, et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Current Biology, 2011, 21(6): 508-514. |
21 | Zhang H, Bishop B, Ringenberg W, et al. The CHD3 remodeler PICKLE associates with genes enriched for trimethylation of histone H3 lysine 27. Plant Physiology, 2012, 159(1): 418-432. |
22 | Furuta K, Kubo M, Sano K, et al. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant and Cell Physiology, 2011, 52(4): 618-628. |
23 | Lee K, Park O S, Choi C Y, et al. ARABIDOPSIS TRITHORAX 4 facilitates shoot identity establishment during the plant regeneration process. Plant and Cell Physiology, 2019, 60(4): 826-834. |
24 | Atta R, Laurens L, Boucheron-Dubuisson E, et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. The Plant Journal, 2009, 57(4): 626-644. |
25 | Berckmans B, Vassileva V, Schmid S P, et al. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. The Plant Cell, 2011, 23(10): 3671-3683. |
26 | Fan M, Xu C, Xu K, et al. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Research, 2012, 22(7): 1169-1180. |
27 | Anzola J M, Sieberer T, Ortbauer M, et al. Putative Arabidopsis transcriptional adaptor protein (PROPORZ1) is required to modulate histone acetylation in response to auxin. Proceedings of the National Academy of Sciences, 2010, 107(22): 10308-10313. |
28 | Liu J, Hu X, Qin P, et al. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture. Plant and Cell Physiology, 2018, 59(4): 739-748. |
29 | Kareem A, Durgaprasad K, Sugimoto K, et al. PLETHORA genes control regeneration by a two-step mechanism. Current Biology, 2015, 25(8): 1017-1030. |
30 | Pinon V, Prasad K, Grigg S P, et al. Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proceedings of the National Academy of Sciences, 2013, 110(3): 1107-1112. |
31 | Daimon Y, Takabe K, Tasaka M. The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant and Cell Physiology, 2003, 44(2): 113-121. |
32 | Cheng Z J, Wang L, Sun W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology, 2013, 161(1): 240-251. |
33 | Riou-Khamlichi C, Huntley R, Jacqmard A, et al. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science, 1999, 283(5407): 1541-1544. |
34 | Ikeda Y, Banno H, Niu Q W, et al. The ENHANCER OF SHOOT REGENERATION 2 gene in Arabidopsis regulates CUP-SHAPED COTYLEDON 1 at the transcriptional level and controls cotyledon development. Plant and Cell Physiology, 2006, 47(11): 1443-1456. |
35 | Skirycz A, Radziejwoski A, Busch W, et al. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana. The Plant Journal, 2008, 56(5): 779-792. |
36 | Higuchi M, Pischke M S, Mähönen A P, et al. In planta functions of the Arabidopsis cytokinin receptor family. Proceedings of the National Academy of Sciences, 2004, 101(23): 8821-8826. |
37 | Sakai H, Honma T, Aoyama T, et al. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 2001, 294(5546): 1519-1521. |
38 | Gallois J L, Nora F R, Mizukami Y, et al. WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes & Development, 2004, 18(4): 375-380. |
39 | Gordon S P, Heisler M G, Reddy G V, et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development, 2007, 134(19): 3539-3548. |
40 | Meng W J, Cheng Z J, Sang Y L, et al. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. The Plant Cell, 2017, 29(6): 1357-1372. |
41 | Wang J, Tian C, Zhang C, et al. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation. The Plant Cell, 2017, 29(6): 1373-1387. |
42 | Zubo Y O, Blakley I C, Yamburenko M V, et al. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proceedings of the National Academy of Sciences, 2017, 114(29): E5995-E6004. |
43 | Zhang T Q, Lian H, Zhou C M, et al. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. The Plant Cell, 2017, 29(5): 1073-1087. |
44 | Toonen M A, Hendriks T, Schmidt E D, et al. Description of somatic-embryo-forming single cells in carrot suspension cultures employing video cell tracking. Planta, 1994, 194: 565-572. |
45 | Fehér A. Somatic embryogenesis-stress-induced remodeling of plant cell fate. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2015, 1849(4): 385-402. |
46 | Bai B, Su Y H, Yuan J, et al. Induction of somatic embryos in Arabidopsis requires local YUCCA expression mediated by the down-regulation of ethylene biosynthesis. Molecular Plant, 2013, 6(4): 1247-1260. |
47 | Braybrook S A, Harada J J. LECs go crazy in embryo development. Trends in Plant Science, 2008, 13(12): 624-630. |
48 | Gaj M D, Trojanowska A, Ujczak A, et al. Hormone-response mutants of Arabidopsis thaliana (L.) Heynh. impaired in somatic embryogenesis. Plant Growth Regulation, 2006, 49: 183-197. |
49 | Horstman A, Li M, Heidmann I, et al. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis.Plant Physiology,2017, 175(2): 848-857. |
50 | Shang B, Xu C, Zhang X, et al. Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proceedings of the National Academy of Sciences, 2016, 113(18): 5101-5106. |
51 | Zheng Y, Ren N, Wang H, et al. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-LiKe15. The Plant Cell, 2009, 21(9): 2563-2577. |
52 | Stone S L, Braybrook S A, Paula S L, et al. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proceedings of the National Academy of Sciences, 2008, 105(8): 3151-3156. |
53 | Junker A, Mönke G, Rutten T, et al. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. The Plant Journal, 2012, 71(3): 427-442. |
54 | Bouchabke-Coussa O, Obellianne M, Linderme D, et al. Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Reports, 2013, 32: 675-686. |
55 | Rashid S Z, Yamaji N, Kyo M. Shoot formation from root tip region: a developmental alteration by WUS in transgenic tobacco. Plant Cell Reports, 2007, 26: 1449-1455. |
56 | Arroyo-Herrera A, Ku Gonzalez A, Canche Moo R, et al. Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 2008, 94: 171-180. |
57 | Zuo J, Niu Q W, Frugis G, et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. The Plant Journal, 2000, 30(3): 349-359. |
58 | Gallois J L, Woodward C, Reddy G V, et al. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development, 2000, 129(13): 3207-3217. |
59 | Hoerster G, Wang N, Ryan L, et al. Use of non-integrating Zm-Wus2 vectors to enhance maize transformation: non-integrating WUS2 enhances transformation. In vitro Cellular & Developmental Biology-Plant, 2020, 56(3): 265-279. |
60 | Boutilier K, Offringa R, Sharma V K, et al. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. The Plant Cell, 2002, 14(8): 1737-1749. |
61 | Khanday I, Santos-Medellín C, Sundaresan V. Rice embryogenic trigger BABY BOOM1 promotes somatic embryogenesis by upregulation of auxin biosynthesis genes. BioRxiv, 2020, https://doi.org/10.1101/2020.08.24.265025. |
62 | Srinivasan C, Liu Z, Heidmann I, et al. Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta, 2007, 225: 341-351. |
63 | Florez S L, Erwin R L, Maximova S N, et al. Enhanced somatic embryogenesis in Theobroma cacao using the homologous BABY BOOM transcription factor. BMC Plant Biology, 2015, 15(1): 121. |
64 | Shires M E, Florez S L, Lai T S, et al. Inducible somatic embryogenesis in Theobroma cacao achieved using the DEX-activatable transcription factor-glucocorticoid receptor fusion. Biotechnology Letters, 2017, 39(11): 1747-1755. |
65 | Heidmann I, De Lange B, Lambalk J, et al. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Reports, 2011, 30(6): 1107-1115. |
66 | Uddenberg D, Abrahamsson M, von Arnold S. Overexpression of PaHAP3A stimulates differentiation of ectopic embryos from maturing somatic embryos of Norway spruce. Tree Genetics & Genomes, 2016, 12(2): 18. |
67 | Thakare D, Tang W, Hill K, et al. The MADS-domain transcriptional regulator AGAMOUS-LIKE15 promotes somatic embryo development in Arabidopsis and soybean.Plant Physiology, 2008, 146(4): 1663-1672. |
68 | Wang Y, He S, Long Y, et al. Genetic variations in ZmSAUR15 contribute to the formation of immature embryo-derived embryonic calluses in maize. The Plant Journal, 2022, 109(4): 980-991. |
69 | Lowe K, Wu E, Wang N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. The Plant Cell, 2016, 28(9): 1998-2015. |
70 | Mookkan M, Nelson-Vasilchik K, Hague J, et al. Selectable marker independent transformation of recalcitrant maize inbred B73 and sorghum P898012 mediated by morphogenic regulators BABY BOOM and WUSCHEL2. Plant Cell Reports, 2017, 36(9): 1477-1491. |
71 | Mookkan M, Nelson-Vasilchik K, Hague J, et al. Morphogenic regulator-mediated transformation of maize inbred B73. Current Protocols in Plant Biology, 2018, 3(4): e20075. |
72 | Lowe K, La Rota M, Hoerster G, et al. Rapid genotype “independent” Zea mays L.(maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology-Plant, 2018, 54(3): 240-252. |
73 | Aregawi K, Shen J, Pierroz G, et al. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnology Journal, 2022, 20(4): 748-760. |
74 | Wang N, Ryan L, Sardesai N. et al. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nature Plants, 2023, 9(2): 255-270. |
75 | Hu W, Li W, Xie S, et al. Kn1 gene overexpression drastically improves genetic transformation efficiencies of citrus cultivars.Plant Cell, Tissue and Organ Culture (PCTOC), 2016, 125(1): 81-91. |
76 | Luo K, Zheng X, Chen Y, et al. The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Reports, 2006, 25(5): 403-409. |
77 | Ckurshumova W, Smirnova T, Marcos D, et al. Irrepressible MONOPTEROS/ARF5 promotes de novo shoot formation. New Phytologist, 2014, 204(3): 556-566. |
78 | Kong J, Martin-Ortigosa S, Finer J, et al. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Frontiers in Plant Science, 2020, 11: 572319. |
79 | Debernardi J M, Tricoli D M, Ercoli M F, et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology, 2020, 38(11): 1274-1279. |
80 | Smigocki A C, Owens L D. Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proceedings of the National Academy of Sciences, 1988, 85(14): 5131-5135. |
81 | Smigocki A C, Owens L D. Cytokinin-to-auxin ratios and morphology of shoots and tissues transformed by a chimeric isopentenyl transferase gene. Plant Physiology, 1989, 91(3): 808-811. |
82 | Ebinuma H, Sugita K, Matsunaga E, et al. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proceedings of the National Academy of Sciences, 1997, 94(6): 2117-2121. |
83 | Kunkel T, Niu Q W, Chan Y S, et al. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nature Biotechnology, 1999, 17(9): 916-919. |
84 | Maher M F, Nasti R A, Vollbrecht M, et al. Plant gene editing through de novo induction of meristems. Nature Biotechnology, 2020, 38(1): 84-89. |
85 | Yanai O, Shani E, Dolezal K, et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Current Biology, 2005, 15(17): 1566-1571. |
86 | Jasinski S, Piazza P, Craft J, et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology, 2005, 15(17): 1560-1565. |
87 | Cole M, Chandler J, Weijers D, et al. DORNROSCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo. Development, 2009, 136(10): 1643-1651. |
88 | Zhao Z, Andersen S U, Ljung K, et al. Hormonal control of the shoot stem-cell niche. Nature, 2010, 465(7301): 1089-1092. |
89 | Kim J H. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants. BMB Reports, 2019, 52(4): 227. |
90 | Kim J H, Tsukaya H. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. Journal of Experimental Botany, 2015, 66(20): 6093-6107. |
91 | Luo G, Palmgren M. GRF-GIF chimeras boost plant regeneration. Trends in Plant Science, 2021, 26(3): 201-204. |
92 | Wu W, Li J, Wang Q, et al. Growth-Regulating Factor 5 (GRF5)-mediated gene regulatory network promotes leaf growth and expansion in poplar. New Phytologist, 2021, 230(2): 612-628. |
93 | Guo S P, Tian M P, Ding J. Application of GRF-GIF chimera in genetic transformation of strawberry. Molecular Plant Breeding, 2023, http://kns.cnki.net/kcms/detail/46.1068.S.20220511.0923.002.html. |
郭苏平, 田美萍, 丁静. GRF-GIF嵌合体在草莓遗传转化中的应用. 分子植物育种, 2023, http://kns.cnki.net/kcms/detail/46.1068.S.20220511.0923.002.html. | |
94 | Akiyoshi D E, Klee H, Amasino R M, et al. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proceedings of the National Academy of Sciences, 1984, 81(19): 5994-5998. |
95 | Barry G F, Rogers S G, Fraley R T, et al. Identification of a cloned cytokinin biosynthetic gene. Proceedings of the National Academy of Sciences, 1984, 81(15): 4776-4780. |
96 | Nasti R A, Zinselmeier M H, Vollbrecht M, et al. Fast-TrACC: a rapid method for delivering and testing gene editing reagents in somatic plant cells. Frontiers in Genome Editing, 2021, 2: 621710. |
[1] | Kai JIANG, Xue-li WU, Yi-jun LIU, Yue MA, Yang SONG, Wen-jie LU, Zeng-yu WANG. Comparative study on transformation systems of seashore paspalum using hpt and bar genes as selection markers [J]. Acta Prataculturae Sinica, 2023, 32(1): 165-177. |
[2] | HE Lin-jiang, HUANG Xi-ye, LIU Jin-ping, YOU Ming-hong, YANG Xiao-qin. Differences in physiological responses and regeneration strategies of male and female Humulus scandens plants during wintering [J]. Acta Prataculturae Sinica, 2020, 29(3): 49-59. |
[3] | YANG Liu-hui, YIN Hang, HUANG Qin-mei, ZHANG Yan-ni, HE Miao, ZHOU Yun-wei. An analysis of the response of the LpWRKY20 gene to abiotic stress and its role in drought resistance [J]. Acta Prataculturae Sinica, 2020, 29(1): 193-202. |
[4] | YANG Ke, CHEN Yi-you, WANG Jun-cheng, YAO Li-rong, MENG Ya-xiong, MA Xiao-le, LI Bao-chun, SI Er-jing, WANG Hua-jun. Selection of different explants from hops and establishment of a regeneration system [J]. Acta Prataculturae Sinica, 2019, 28(8): 209-217. |
[5] | MA Dong-mei, QIN Chu. The expression of the salt tolerance gene AtSOS in Medicago [J]. Acta Prataculturae Sinica, 2018, 27(6): 81-91. |
[6] | CHEN Ran-Ran, ZHU Ping-Hui, JIA Bo-Wei, SONG Xue-Wei, WANG Zi-Jun, LI Ji-Na, LI Qiang, DING Xiao-Dong, ZHU Yan-Ming. Isolation of GsARHP from Glycine soja and its functional analysis in transgenic alfalfa under alkaline stress [J]. Acta Prataculturae Sinica, 2017, 26(9): 92-103. |
[7] | JIANG Ji-Shan, FANG Zhi-Hong, CHEN Min, WANG Yun-Qi, WU Xin-Ming, JIA Hui-Li, WU Yu-Di, GAO Hong-Wen, WANG Xue-Min. Cloning and expression analysis of homogentisate phytyltransferase from Medicago sativa and its genetic transformation in Arabidopsis thaliana [J]. Acta Prataculturae Sinica, 2017, 26(3): 82-90. |
[8] | JIA Hui-Li, WANG Xue-Min, GUO Ji-Cheng, GAO Hong-Wen, WU Xin-Ming, LIU Jian-Ning, SHI Yong-Hong, DONG Kuan-Hu, WANG Yun-Qi. Cloning and expression analysis of MsLEA4-4 from Medicago sativa [J]. Acta Prataculturae Sinica, 2017, 26(12): 108-116. |
[9] | ZENG Qing-Fei, WEI Xin, CAI Yi-Ming, SHU Jian-Hong, WU Jia-Hai, WANG Xiao-Li. Enhancing drought and heat tolerance in Lolium spp. through overexpression of the FaSAMDC gene [J]. Acta Prataculturae Sinica, 2017, 26(12): 117-127. |
[10] | CHAO Zhao-Xia, REN Yan-Ping, QIAN Jin, YAO Zheng-Pei, XU Lei, ZHANG Hua. Functional analysis of two stress-related promoters in Medicago varia cultivar Xinmu No.1 [J]. Acta Prataculturae Sinica, 2017, 26(1): 131-141. |
[11] | SUN Yi, YAN Xing-Fu. Seed emergence and growth of Caragana korshinskii in different habitat [J]. Acta Prataculturae Sinica, 2016, 25(7): 186-195. |
[12] | CHEN Cai-Hong, CHUAN Xiu-Juan, WANG Hui, JIA Yan-Xing, CHEN Zhi-Jian, LIU Guo-Dao, LUO Li-Juan. Factors affecting genetic transformation efficiency for stylo (Stylosanthes guianensis) with Agrobacterium tumefaciens [J]. Acta Prataculturae Sinica, 2016, 25(6): 102-108. |
[13] | MA Dong-Mei, QIN Chu, NI Xing, XU Xing, GUO Ling-Na. Introduction of AtSOS pathway genes into tall fescue to improve salt tolerance [J]. Acta Prataculturae Sinica, 2016, 25(12): 170-179. |
[14] | HU Hai-Ying, ZHANG Rui, DUAN Yan-Hui, XIE Ying-Zhong. In vitro research on receptor regeneration and genetic transformation in Glycyrrhiza uralensis [J]. Acta Prataculturae Sinica, 2016, 25(11): 50-56. |
[15] | FENG Guang-Yan, WANG Xue-Min, FU Yuan-Yuan, FANG Zhi-Hong, GAO Hong-Wen, ZHANG Xin-Quan. Isolation of MsWRKY33 transcription factor and its genetic transformation in Medicago sativa [J]. Acta Prataculturae Sinica, 2015, 24(11): 48-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||